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PÙ�¥���
A Note on Using this Text

Thank you for reading this short preface. Allow us to share a few key points
about the text so that youmay beƩer understand what you will find beyond this
page.

This text comprises a three–text series on Calculus. The first part covers ma-
terial taught in many “Calc 1” courses: limits, derivaƟves, and the basics of inte-
graƟon, found in Chapters 1 through 6.1. The second text covers material oŌen
taught in “Calc 2:” integraƟon and its applicaƟons, along with an introducƟon
to sequences, series and Taylor Polynomials, found in Chapters 5 through 8. The
third text covers topics common in “Calc 3” or “mulƟvariable calc:” parametric
equaƟons, polar coordinates, vector–valued funcƟons, and funcƟons of more
than one variable, found in Chapters 9 through 13. All three are available sepa-
rately for free at www.vmi.edu/APEX.

PrinƟng the enƟre text as one volumemakes for a large, heavy, cumbersome
book. One can certainly only print the pages they currently need, but some pre-
fer to have a nice, bound copy of the text. Therefore this text has been split into
these three manageable parts, each of which can be purchased for about $10 at
Amazon.com.

APEX – Affordable Print and Electronic teXts

APEX is a consorƟum of authors who collaborate to produce high–quality,
low–cost textbooks. The current textbook–wriƟng paradigm is facing a poten-
Ɵal revoluƟon as desktop publishing and electronic formats increase in popular-
ity. However, wriƟng a good textbook is no easy task, as the Ɵme requirements
alone are substanƟal. It takes countless hours of work to produce text, write
examples and exercises, edit and publish. Through collaboraƟon, however, the
cost to any individual can be lessened, allowing us to create texts that we freely
distribute electronically and sell in printed form for an incredibly low cost. Hav-
ing said that, nothing is enƟrely free; someone always bears some cost. This
text “cost” the authors of this book their Ɵme, and that was not enough. APEX
Calculus would not exist had not the Virginia Military InsƟtute, through a gen-
erous Jackson–Hope grant, given one of the authors significant Ɵme away from
teaching so he could focus on this text.

http://www.vmi.edu/APEX
http://amazon.com


Each text is available as a free .pdf, protected by a CreaƟve Commons At-
tribuƟon - Noncommercial 3.0 copyright. That means you can give the .pdf to
anyone you like, print it in any form you like, and even edit the original content
and redistribute it. If you do the laƩer, you must clearly reference this work and
you cannot sell your edited work for money.

We encourage others to adapt this work to fit their own needs. One might
add secƟons that are “missing” or remove secƟons that your students won’t
need. The source files can be found at github.com/APEXCalculus.

You can learn more at www.vmi.edu/APEX.

https://github.com/APEXCalculus
http://www.vmi.edu/APEX
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1: L®Ã®ãÝ

Calculus means “a method of calculaƟon or reasoning.” When one computes
the sales tax on a purchase, one employs a simple calculus. When one finds the
area of a polygonal shape by breaking it up into a set of triangles, one is using
another calculus. Proving a theorem in geometry employs yet another calculus.

Despite the wonderful advances in mathemaƟcs that had taken place into
the first half of the 17th century, mathemaƟcians and scienƟsts were keenly
aware of what they could not do. (This is true even today.) In parƟcular, two
important concepts eluded mastery by the great thinkers of that Ɵme: area and
rates of change.

Area seems innocuous enough; areas of circles, rectangles, parallelograms,
etc., are standard topics of study for students today just as theywere then. How-
ever, the areas of arbitrary shapes could not be computed, even if the boundary
of the shape could be described exactly.

Rates of change were also important. When an object moves at a constant
rate of change, then “distance = rate× Ɵme.” But what if the rate is not constant
– can distance sƟll be computed? Or, if distance is known, can we discover the
rate of change?

It turns out that these two concepts were related. Two mathemaƟcians, Sir
IsaacNewton andGoƪried Leibniz, are creditedwith independently formulaƟng
a system of compuƟng that solved the above problems and showed how they
were connected. Their system of reasoning was “a” calculus. However, as the
power and importance of their discovery took hold, it became known to many
as “the” calculus. Today, we generally shorten this to discuss “calculus.”

The foundaƟon of “the calculus” is the limit. It is a tool to describe a par-
Ɵcular behavior of a funcƟon. This chapter begins our study of the limit by ap-
proximaƟng its value graphically and numerically. AŌer a formal definiƟon of
the limit, properƟes are established that make “finding limits” tractable. Once
the limit is understood, then the problems of area and rates of change can be
approached.

1.1 An IntroducƟon To Limits

We begin our study of limits by considering examples that demonstrate key con-
cepts that will be explained as we progress.
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Chapter 1 Limits

Consider the funcƟon y = sin x
x . When x is near the value 1, what value (if

any) is y near?
While our quesƟon is not precisely formed (what consƟtutes “near the value

1”?), the answer does not seem difficult to find. Onemight think first to look at a
graph of this funcƟon to approximate the appropriate y values. Consider Figure
1.1, where y = sin x

x is graphed. For values of x near 1, it seems that y takes on
values near 0.85. In fact, when x = 1, then y = sin 1

1 ≈ 0.84, so it makes sense
that when x is “near” 1, y will be “near” 0.84.

Consider this again at a different value for x. When x is near 0, what value (if
any) is y near? By considering Figure 1.2, one can see that it seems that y takes
on values near 1. But what happens when x = 0? We have

y → sin 0
0

→
“ 0
0
”
.

The expression “0/0” has no value; it is indeterminate. Such an expression gives
no informaƟon about what is going on with the funcƟon nearby. We cannot find
out how y behaves near x = 0 for this funcƟon simply by leƫng x = 0.

Finding a limit entails understanding how a funcƟon behaves near a parƟcu-
lar value of x. Before conƟnuing, it will be useful to establish some notaƟon. Let
y = f(x); that is, let y be a funcƟon of x for some funcƟon f. The expression “the
limit of y as x approaches 1” describes a number, oŌen referred to as L, that y
nears as x nears 1. We write all this as

lim
x→1

y = lim
x→1

f(x) = L.

This is not a complete definiƟon (that will come in the next secƟon); this is a
pseudo-definiƟon that will allow us to explore the idea of a limit.

Above, where f(x) = sin(x)/x, we approximated

lim
x→1

sin x
x

≈ 0.84 and lim
x→0

sin x
x

≈ 1.

(We approximated these limits, hence used the “≈” symbol, since we are work-
ing with the pseudo-definiƟon of a limit, not the actual definiƟon.)

Once we have the true definiƟon of a limit, we will find limits analyƟcally;
that is, exactly using a variety of mathemaƟcal tools. For now, we will approx-
imate limits both graphically and numerically. Graphing a funcƟon can provide
a good approximaƟon, though oŌen not very precise. Numerical methods can
provide a more accurate approximaƟon. We have already approximated limits
graphically, so we now turn our aƩenƟon to numerical approximaƟons.

Consider again limx→1 sin(x)/x. To approximate this limit numerically, we
can create a table of x and f(x) values where x is “near” 1. This is done in Figure
1.3.

Notes:
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x sin(x)/x
0.9 0.870363
0.99 0.844471
0.999 0.841772
1 0.841471

1.001 0.84117
1.01 0.838447
1.1 0.810189

Figure 1.3: Values of sin(x)/x with x near
1.

x sin(x)/x
-0.1 0.9983341665
-0.01 0.9999833334
-0.001 0.9999998333

0 not defined
0.001 0.9999998333
0.01 0.9999833334
0.1 0.9983341665

Figure 1.4: Values of sin(x)/x with x near
1.
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Figure 1.5: Graphically approximaƟng a
limit in Example 1.

x x2−x−6
6x2−19x+3

2.9 0.29878
2.99 0.294569
2.999 0.294163
3 not defined

3.001 0.294073
3.01 0.293669
3.1 0.289773

Figure 1.6: Numerically approximaƟng a
limit in Example 1.

1.1 An IntroducƟon To Limits

NoƟce that for values of xnear 1, wehave sin(x)/xnear 0.841. The x = 1 row
is in bold to highlight the fact thatwhen considering limits, we are not concerned
with the value of the funcƟon at that parƟcular x value; we are only concerned
with the values of the funcƟon when x is near 1.

Now approximate limx→0 sin(x)/x numerically. We already approximated
the value of this limit as 1 graphically in Figure 1.2. The table in Figure 1.4 shows
the value of sin(x)/x for values of x near 0. Ten places aŌer the decimal point
are shown to highlight how close to 1 the value of sin(x)/x gets as x takes on
values very near 0. We include the x = 0 row in bold again to stress that we are
not concerned with the value of our funcƟon at x = 0, only on the behavior of
the funcƟon near 0.

This numerical method gives confidence to say that 1 is a good approxima-
Ɵon of limx→0 sin(x)/x; that is,

lim
x→0

sin(x)/x ≈ 1.

Later we will be able to prove that the limit is exactly 1.
We now consider several examples that allow us explore different aspects

of the limit concept.

.. Example 1 ApproximaƟng the value of a limit
Use graphical and numerical methods to approximate

lim
x→3

x2 − x− 6
6x2 − 19x+ 3

.

SÊ½çã®ÊÄ To graphically approximate the limit, graph

y = (x2 − x− 6)/(6x2 − 19x+ 3)

on a small interval that contains 3. To numerically approximate the limit, create
a table of values where the x values are near 3. This is done in Figures 1.5 and
1.6, respecƟvely.

The graph shows that when x is near 3, the value of y is very near 0.3. By
considering values of x near 3, we see that y = 0.294 is a beƩer approximaƟon.
The graph and the table imply that

lim
x→3

x2 − x− 6
6x2 − 19x+ 3

≈ 0.294.
..

This example may bring up a few quesƟons about approximaƟng limits (and
the nature of limits themselves).

1. If a graph does not produce as good an approximaƟon as a table, why
bother with it?

Notes:

3



.....−1. −0.5. 0.5. 1.

0.5

.

1

.
x

.

y

Figure 1.7: Graphically approximaƟng a
limit in Example 2.

x f(x)
-0.1 0.9
-0.01 0.99
-0.001 0.999
0.001 0.999999
0.01 0.9999
0.1 0.99

Figure 1.8: Numerically approximaƟng a
limit in Example 2.

Chapter 1 Limits

2. How many values of x in a table are “enough?” In the previous example,
could we have just used x = 3.001 and found a fine approximaƟon?

Graphs are useful since they give a visual understanding concerning the be-
havior of a funcƟon. SomeƟmes a funcƟon may act “erraƟcally” near certain
x values which is hard to discern numerically but very plain graphically. Since
graphing uƟliƟes are very accessible, itmakes sense tomake proper use of them.

Since tables and graphs are used only to approximate the value of a limit,
there is not a firm answer to how many data points are “enough.” Include
enough so that a trend is clear, and use values (when possible) both less than
and greater than the value in quesƟon. In Example 1, we used both values less
than and greater than 3. Had we used just x = 3.001, we might have been
tempted to conclude that the limit had a value of 0.3. While this is not far off,
we could do beƩer. Using values “on both sides of 3” helps us idenƟfy trends.

.. Example 2 ApproximaƟng the value of a limit
Graphically and numerically approximate the limit of f(x) as x approaches 0,
where

f(x) =
{

x+ 1 x ≤ 0
−x2 + 1 x > 0 .

SÊ½çã®ÊÄ Again we graph f(x) and create a table of its values near x =
0 to approximate the limit. Note that this is a piecewise defined funcƟon, so it
behaves differently on either side of 0. Figure 1.7 shows a graph of f(x), and on
either side of 0 it seems the y values approach 1.

The table shown in Figure 1.8 shows values of f(x) for values of x near 0. It
is clear that as x takes on values very near 0, f(x) takes on values very near 1.
It turns out that if we let x = 0 for either “piece” of f(x), 1 is returned; this is
significant and we’ll return to this idea later.

The graph and table allow us to say that limx→0 f(x) ≈ 1; in fact, we are
probably very sure it equals 1. ..

IdenƟfying When Limits Do Not Exist

A funcƟon may not have a limit for all values of x. That is, we cannot say
limx→c f(x) = L for some numbers L for all values of c, for there may not be a
number that f(x) is approaching. There are three ways in which a limit may fail
to exist.

1. The funcƟon f(x)may approach different values on either side of c.

2. The funcƟon may grow without upper or lower bound as x approaches c.

Notes:

4
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Figure 1.9: Observing no limit as x → 1 in
Example 3.

x f(x)
0.9 2.01
0.99 2.0001
0.999 2.000001
1.001 1.001
1.01 1.01
1.1 1.1

Figure 1.10: Values of f(x) near x = 1 in
Example 3.
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Figure 1.11: Observing no limit as x → 1
in Example 4.

x f(x)
0.9 100.
0.99 10000.
0.999 1.× 106

1.001 1.× 106

1.01 10000.
1.1 100.

Figure 1.12: Values of f(x) near x = 1 in
Example 4.

1.1 An IntroducƟon To Limits

3. The funcƟon may oscillate as x approaches c.

We’ll explore each of these in turn.

.. Example 3 Different Values Approached From LeŌ and Right
Explore why lim

x→1
f(x) does not exist, where

f(x) =
{

x2 − 2x+ 3 x ≤ 1
x x > 1 .

SÊ½çã®ÊÄ A graph of f(x) around x = 1 and a table are given Figures
1.9 and 1.10, respecƟvely. It is clear that as x approaches 1, f(x) does not seem
to approach a single number. Instead, it seems as though f(x) approaches two
different numbers. When considering values of x less than 1 (approaching 1
from the leŌ), it seems that f(x) is approaching 2; when considering values of
x greater than 1 (approaching 1 from the right), it seems that f(x) is approach-
ing 1. Recognizing this behavior is important; we’ll study this in greater depth
later. Right now, it suffices to say that the limit does not exist since f(x) is not
approaching one value as x approaches 1. ..

.. Example 4 The FuncƟon Grows Without Bound
Explore why lim

x→1
1/(x− 1)2 does not exist.

SÊ½çã®ÊÄ A graph and table of f(x) = 1/(x − 1)2 are given in Figures
1.11 and 1.12, respecƟvely. Both show that as x approaches 1, f(x) grows larger
and larger.

We can deduce this on our own, without the aid of the graph and table. If x
is near 1, then (x− 1)2 is very small, and:

1
very small number

→ very large number.

Since f(x) is not approaching a single number, we conclude that

lim
x→1

1
(x− 1)2

does not exist. ..

.. Example 5 ..The FuncƟon Oscillates
Explore why limx→0 sin(1/x) does not exist.

Notes:

5
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Figure 1.14: InterpreƟng a difference
quoƟent as the slope of a secant line.

Chapter 1 Limits

SÊ½çã®ÊÄ Two graphs of f(x) = sin(1/x) are given in Figures 1.13. Fig-
ure 1.13(a) shows f(x) on the interval [−1, 1]; noƟce how f(x) seems to oscillate
near x = 0. One might think that despite the oscillaƟon, as x approaches 0,
f(x) approaches 0. However, Figure 1.13(b) zooms in on sin(1/x), on the inter-
val [−0.1, 0.1]. Here the oscillaƟon is even more pronounced. Finally, in the
table in Figure 1.13(c), we see sin(x)/x evaluated for values of x near 0. As x
approaches 0, f(x) does not appear to approach any value.

It can be shown that in reality, as x approaches 0, sin(1/x) takes on all values
between−1 and 1 infinite Ɵmes! Because of this oscillaƟon,

limx→0 sin(1/x) does not exist....
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.
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x sin(1/x)
0.1 −0.544021
0.01 −0.506366
0.001 0.82688
0.0001 −0.305614

1.× 10−5 0.0357488
1.× 10−6 −0.349994
1.× 10−7 0.420548

(a) (b) (c)

Figure 1.13: Observing that f(x) = sin(1/x) has no limit as x → 0 in Example 5.

Limits of Difference QuoƟents

We have approximated limits of funcƟons as x approached a parƟcular num-
ber. We will consider another important kind of limit aŌer explaining a few key
ideas.

Let f(x) represent the posiƟon funcƟon, in feet, of some parƟcle that is mov-
ing in a straight line, where x is measured in seconds. Let’s say that when x = 1,
the parƟcle is at posiƟon 10 Ō., and when x = 5, the parƟcle is at 20 Ō. Another
way of expressing this is to say

f(1) = 10 and f(5) = 20.

Since the parƟcle traveled 10 feet in 4 seconds, we can say the parƟcle’s average
velocity was 2.5 Ō/s. We write this calculaƟon using a “quoƟent of differences,”
or, a difference quoƟent:

f(5)− f(1)
5− 1

=
10
4

= 2.5Ō/s.

Notes:
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Figure 1.15: Secant lines of f(x) at x = 1
and x = 1 + h, for shrinking values of h
(i.e., h → 0).

h f(1+h)−f(1)
h

−0.5 9.25
−0.1 8.65
−0.01 8.515
0.01 8.485
0.1 8.35
0.5 7.75

Figure 1.16: The difference quoƟent eval-
uated at values of h near 0.

1.1 An IntroducƟon To Limits

This difference quoƟent can be thought of as the familiar “rise over run” used
to compute the slopes of lines. In fact, that is essenƟally what we are doing:
given two points on the graph of f, we are finding the slope of the secant line
through those two points. See Figure 1.14.

Now consider finding the average speed on another Ɵme interval. We again
start at x = 1, but consider the posiƟon of the parƟcle h seconds later. That is,
consider the posiƟons of the parƟcle when x = 1 and when x = 1 + h. The
difference quoƟent is now

f(1+ h)− f(1)
(1+ h)− 1

=
f(1+ h)− f(1)

h
.

Let f(x) = −1.5x2 + 11.5x; note that f(1) = 10 and f(5) = 20, as in our
discussion. We can compute this difference quoƟent for all values of h (even
negaƟve values!) except h = 0, for then we get “0/0,” the indeterminate form
introduced earlier. For all values h ̸= 0, the difference quoƟent computes the
average velocity of the parƟcle over an interval of Ɵme of length h starƟng at
x = 1.

For small values of h, i.e., values of h close to 0, we get average velociƟes
over very short Ɵme periods and compute secant lines over small intervals. See
Figure 1.15. This leads us to wonder what the limit of the difference quoƟent is
as h approaches 0. That is,

lim
h→0

f(1+ h)− f(1)
h

= ?

As we do not yet have a true definiƟon of a limit nor an exact method for
compuƟng it, we seƩle for approximaƟng the value. While we could graph the
difference quoƟent (where the x-axis would represent h values and the y-axis
would represent values of the difference quoƟent) we seƩle for making a table.
See Figure 1.16. The table gives us reason to assume the value of the limit is
about 8.5.

Proper understanding of limits is key to understanding calculus. With limits,
we can accomplish seemingly impossible mathemaƟcal things, like adding up an
infinite number of numbers (and not get infinity) and finding the slope of a line
between two points, where the “two points” are actually the same point. These
are not just mathemaƟcal curiosiƟes; they allow us to link posiƟon, velocity and
acceleraƟon together, connect cross-secƟonal areas to volume, find the work
done by a variable force, and much more.

In the next secƟon we give the formal definiƟon of the limit and begin our
study of finding limits analyƟcally. In the following exercises, we conƟnue our
introducƟon and approximate the value of limits.

Notes:
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Exercises 1.1
Terms and Concepts
1. In your own words, what does it mean to “find the limit of

f(x) as x approaches 3”?

2. An expression of the form 0
0 is called .

3. T/F: The limit of f(x) as x approaches 5 is f(5).

4. Describe three situaƟons where lim
x→c

f(x) does not exist.

5. In your own words, what is a difference quoƟent?

Problems
In Exercises 6 – 15, approximate the given limits both numer-
ically and graphically.

6. lim
x→1

x2 + 3x− 5

7. lim
x→0

x3 − 3x2 + x− 5

8. lim
x→0

x+ 1
x2 + 3x

9. lim
x→3

x2 − 2x− 3
x2 − 4x+ 3

10. lim
x→−1

x2 + 8x+ 7
x2 + 6x+ 5

11. lim
x→2

x2 + 7x+ 10
x2 − 4x+ 4

12. lim
x→2

f(x), where

f(x) =
{

x+ 2 x ≤ 2
3x− 5 x > 2 .

13. lim
x→3

f(x), where

f(x) =
{

x2 − x+ 1 x ≤ 3
2x+ 1 x > 3 .

14. lim
x→0

f(x), where

f(x) =
{

cos x x ≤ 0
x2 + 3x+ 1 x > 0 .

15. lim
x→π/2

f(x), where

f(x) =
{

sin x x ≤ π/2
cos x x > π/2 .

In Exercises 16 – 24, a funcƟon f and a value a are
given. Approximate the limit of the difference quoƟent,

lim
h→0

f(a+ h)− f(a)
h

, using h = ±0.1,±0.01.

16. f(x) = −7x+ 2, a = 3

17. f(x) = 9x+ 0.06, a = −1

18. f(x) = x2 + 3x− 7, a = 1

19. f(x) =
1

x+ 1
, a = 2

20. f(x) = −4x2 + 5x− 1, a = −3

21. f(x) = ln x, a = 5

22. f(x) = sin x, a = π

23. f(x) = cos x, a = π

8



1.2 Epsilon-Delta DefiniƟon of a Limit

1.2 Epsilon-Delta DefiniƟon of a Limit

This secƟon introduces the formal definiƟon of a limit, the “epsilon–delta,” or
“ε–δ,” definiƟon.

Before we give the actual definiƟon, let’s consider a few informal ways of
describing a limit. Given a funcƟon y = f(x) and an x value, call it c, we say that
the limit of the funcƟon f is a value L:

1. if “y tends to L” as “x tends to c.”

2. if “y approaches L” as “x approaches c.”

3. if y is near L whenever x is near c.

The problem with these definiƟons is that the words “tends,” “approach,”
and especially “near” are not exact. In what way does the variable x tend to or
approach c? How near do x and y have to be to c and L, respecƟvely?

The definiƟon we describe in this secƟon comes from formalizing 3. A quick
restatement gets us closer to what we want:

3′. If x is within a certain tolerance level of c, then the corresponding value y =
f(x) is within a certain tolerance level of L.

The accepted notaƟon for the x-tolerance is the lowercaseGreek leƩer delta,
or δ, and the y-tolerance is lowercase epsilon, or ε. One more rephrasing of 3′
nearly gets us to the actual definiƟon:

3′′. If x is within δ units of c, then the corresponding value of y is within ε units
of L.

Note that this means (let the “−→” represent the word “implies”):

c− δ < x < c+ δ −→ L− ε < y < L+ ε or |x− c| < δ −→ |y− L| < ε

The point is that δ and ε, being tolerances, can be any posiƟve (but typically
small) values. Finally, we have the formal definiƟon of the limit with the notaƟon
seen in the previous secƟon.

Notes:
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Figure 1.17: IllustraƟng the ε− δ process.

Chapter 1 Limits

..
DefiniƟon 1 The Limit of a FuncƟon f

Let f be a funcƟon defined on an open interval containing c. The notaƟon

lim
x→c

f(x) = L,

read as “the limit of f(x), as x approaches c, is L,” means that given any
ε > 0, there exists δ > 0 such that whenever |x − c| < δ, we have
|f(x)− L| < ε.

(MathemaƟcians oŌen enjoy wriƟng ideas without using any words. Here is
the wordless definiƟon of the limit:

lim
x→c

f(x) = L ⇐⇒ ∀ ε > 0, ∃ δ > 0 s.t. |x− c| < δ −→ |f(x)− L| < ε.)

There is an emphasis here that we may have passed over before. In the
definiƟon, the y-tolerance ε is given first and then the limit will exist if we can
find an x-tolerance δ that works.

It is Ɵme for an example. Note that the explanaƟon is long, but it will take
you through all steps necessary to understand the ideas.

.. Example 6 ..EvaluaƟng a limit using the definiƟon
Show that lim

x→4

√
x = 2.

SÊ½çã®ÊÄ Beforeweuse the formal definiƟon, let’s try somenumerical
tolerances. What if the y tolerance is 0.5, or ε = 0.5? How close to 4 does x
have to be so that y is within 0.5 units of 2 (or 1.5 < y < 2.5)? In this case, we
can just square these values to get 1.52 < x < 2.52, or

2.25 < x < 6.25.

So, what is the desired x tolerance? Remember, we want to find a symmetric
interval of x values, namely 4− δ < x < 4+ δ. The lower bound of 2.25 is 1.75
units from 4; the upper bound of 6.25 is 2.25 units from 4. We need the smaller
of these two distances; we must have δ = 1.75. See Figure 1.17.

Now read it in the correct way: For the y tolerance ε = 0.5, we have found
an x tolerance, δ = 1.75, so that whenever x is within δ units of 4, then y is
within ε units of 2. That’s what we were trying to find.

Let’s try another value of ε.

Notes:
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1.2 Epsilon-Delta DefiniƟon of a Limit

What if the y tolerance is 0.01, or ε = 0.01? How close to 4 does x have to
be in order for y to be within 0.01 units of 2 (or 1.99 < y < 2.01)? Again, we
just square these values to get 1.992 < x < 2.012, or

3.9601 < x < 4.0401.

So, what is the desired x tolerance? In this case wemust have δ = 0.0399. Note
that in some sense, it looks like there are two tolerances (below 4 of 0.0399
units and above 4 of 0.0401 units). However, we couldn’t use the larger value
of 0.0401 for δ since then the interval for x would be 3.9599 < x < 4.0401
resulƟng in y values of 1.98995 < y < 2.01 (which contains values NOT within
0.01 units of 2).

What we have so far: if ε = 0.5, then δ = 1.75 and if ε = 0.01, then
δ = 0.0399. A paƩern is not easy to see, so we switch to general ε and δ and do
the calculaƟons symbolically. We start by assuming y =

√
x is within ε units of

2:

|y− 2| < ε

−ε < y− 2 < ε (DefiniƟon of absolute value)
−ε <

√
x− 2 < ε (y =

√
x)

2− ε <
√
x < 2+ ε (Add 2)

(2− ε)2 < x < (2+ ε)2 (Square all)
4− 4ε+ ε2 < x < 4+ 4ε+ ε2 (Expand)

4− (4ε− ε2) < x < 4+ (4ε+ ε2) (Rewrite in the desired form)

Since we want this last interval to describe an x tolerance around 4, we have
that either δ = 4ε + ε2 or δ = 4ε − ε2. However, as we saw in the case when
ε = 0.01, we want the smaller of the two values for δ. So, to conclude this part,
we set δ equal to theminimumof these two values, or δ = min{4ε+ε2, 4ε−ε2}.
Since ε > 0, the minimum will occur when δ = 4ε− ε2. That’s the formula!

We can check this for our previous values. If ε = 0.5, the formula gives
δ = 4(0.5)−(0.5)2 = 1.75 andwhen ε = 0.01, the formula gives δ = 4(0.01)−
(0.01)2 = 0.399.

So given any ε > 0, we can set δ = 4ε − ε2 and the limit definiƟon is saƟs-
fied. We have shown formally (and finally!) that lim

x→4

√
x = 2. ...

If you are thinking this process is long, you would be right. The previous
example is also a bit unsaƟsfying in that

√
4 = 2; why work so hard to prove

something so obvious? Many ε − δ proofs are long and difficult to do. In this

Notes:
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Chapter 1 Limits

secƟon, we will focus on examples where the answer is, frankly, obvious, be-
cause the non–obvious examples are even harder. That is why theorems about
limits are so useful! AŌer doing a fewmore ε–δ proofs, youwill really appreciate
the analyƟcal “short cuts” found in the next secƟon.

.. Example 7 ..EvaluaƟng a limit using the definiƟon
Show that lim

x→2
x2 = 4.

SÊ½çã®ÊÄ Let’s do this example symbolically from the start. Let ε > 0
be given; we want |y − 4| < ε, i.e., |x2 − 4| < ε. How do we find δ such that
when |x− 2| < δ, we are guaranteed that |x2 − 4| < ε?

This is a bit trickier than the previous example, but let’s start by noƟcing that
|x2 − 4| = |x− 2| · |x+ 2|. Consider:

|x2 − 4| < ε −→ |x− 2| · |x+ 2| < ε −→ |x− 2| < ε

|x+ 2|
. (1.1)

Could we not set δ =
ε

|x+ 2|
?

Weare close to an answer, but the catch is that δmust be a constant value (so
it can’t contain x). There is a way towork around this, but we do have tomake an
assumpƟon. Remember that ε is supposed to be a small number, which implies
that δ will also be a small value. In parƟcular, we can (probably) assume that
δ < 1. If this is true, then |x − 2| < δ would imply that |x − 2| < 1, giving
1 < x < 3.

Now, back to the fracƟon
ε

|x+ 2|
. If 1 < x < 3, then 3 < x+ 2 < 5. Taking

reciprocals, we have
1
5
<

1
|x+ 2|

<
1
3
so that, in parƟcular,

ε

5
<

ε

|x+ 2|
. (1.2)

This suggests that we set δ =
ε

5
. To see why, let’s go back to the equaƟons:

|x− 2| < δ

|x− 2| < ε

5
(Our choice of δ)

|x− 2| · |x+ 2| < |x+ 2| · ε
5

(MulƟply by |x+ 2|)

|x2 − 4| < |x+ 2| · ε
5

(Combine leŌ side)

|x2 − 4| < |x+ 2| · ε
5
< |x+ 2| · ε

|x+ 2| = ε (Using (1.2) as long as δ < 1)

Notes:
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Figure 1.18: Choosing δ = ε/5 in Exam-
ple 7.

Note: Recall ln 1 = 0 and ln x < 0 when
0 < x < 1. So ln(1 − ε) < 0, hence we
consider its absolute value.

1.2 Epsilon-Delta DefiniƟon of a Limit

We have arrived at |x2−4| < ε as desired. Note again, in order to make this
happen we needed δ to first be less than 1. That is a safe assumpƟon; we want
ε to be arbitrarily small, forcing δ to also be small.

We have also picked δ to be smaller than “necessary.” We could get bywith a
slightly larger δ, as shown in Figure 1.18. The dashed, red lines show the bound-
aries defined by our choice of ε. The gray, dashed lines show the boundaries
defined by seƫng δ = ε/5. Note how these gray lines are within the red lines.
That is perfectly fine; by choosing xwithin the gray lines we are guaranteed that
f(x) will be within ε of 4.

In summary, given ε > 0, set δ = ε/5. Then |x− 2| < δ implies |x2 − 4| < ε
(i.e. |y− 4| < ε) as desired. We have shown that lim

x→2
x2 = 4. Figure 1.18 gives

a visualizaƟon of this; by restricƟng x to values within δ = ε/5 of 2, we see that
f(x) is within ε of 4. ...

.. Example 8 ..EvaluaƟng a limit using the definiƟon
Show that lim

x→0
ex = 1.

SÊ½çã®ÊÄ Symbolically, we want to take the equaƟon |ex − 1| < ε and
unravel it to the form |x− 0| < δ. Let’s look at some calculaƟons:

|ex − 1| < ε

−ε < ex − 1 < ε (DefiniƟon of absolute value)
1− ε < ex < 1+ ε (Add 1)

ln(1− ε) < x < ln(1+ ε) (Take natural logs)

Making the safe assumpƟon that ε < 1 ensures the last inequality is valid (i.e.,
so that ln(1−ε) is defined). We can then set δ to be the minimum of | ln(1−ε)|
and ln(1+ ε); i.e.,

δ = min{| ln(1− ε)|, ln(1+ ε)}.

Now, we work through the actual the proof:

|x− 0| < δ

−δ < x < δ (DefiniƟon of absolute value)
ln(1− ε) < x < ln(1+ ε) (By our choice of δ)

1− ε < ex < 1+ ε (ExponenƟate)
−ε < ex − 1 < ε (Subtract 1)

Notes:

13



Chapter 1 Limits

In summary, given ε > 0, let δ = min{| ln(1−ε|, ln(1+ε)}. Then |x−0| < δ
implies |ex − 1| < ε as desired. We have shown that lim

x→0
ex = 1. ...

We note that we could actually show that limx→c ex = ec for any constant c.
We do this by factoring out ec from both sides, leaving us to show limx→c ex−c =
1 instead. By using the subsƟtuƟon y = x−c, this reduces to showing limy→0 ey =
1 which we just did in the last example. As an added benefit, this shows that in
fact the funcƟon f(x) = ex is conƟnuous at all values of x, an important concept
we will define in SecƟon 1.5.

Notes:
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Exercises 1.2
Terms and Concepts
1. What is wrong with the following “definiƟon” of a limit?

“The limit of f(x), as x approaches a, is K”
means that given any δ > 0 there exists ε > 0
such that whenever |f(x) − K| < ε, we have
|x− a| < δ.

2. Which is given first in establishing a limit, the x–tolerance
or the y–tolerance?

3. T/F: εmust always be posiƟve.

4. T/F: δ must always be posiƟve.

Problems
Exercises 5 – 11, prove the given limit using an ε− δ proof.

5. lim
x→5

3− x = −2

6. lim
x→3

x2 − 3 = 6

7. lim
x→4

x2 + x− 5 = 15

8. lim
x→2

x3 − 1 = 7

9. lim
x→2

5 = 5

10. lim
x→0

e2x − 1 = 0

11. lim
x→0

sin x = 0 (Hint: use the fact that | sin x| ≤ |x|, with
equality only when x = 0.)

15



Chapter 1 Limits

1.3 Finding Limits AnalyƟcally

In SecƟon 1.1 we explored the concept of the limit without a strict definiƟon,
meaning we could only make approximaƟons. In the previous secƟon we gave
the definiƟon of the limit and demonstrated how to use it to verify our approxi-
maƟons were correct. Thus far, our method of finding a limit is 1) make a really
good approximaƟon either graphically or numerically, and 2) verify our approx-
imaƟon is correct using a ε-δ proof.

Recognizing that ε–δ proofs are cumbersome, this secƟon gives a series of
theorems which allow us to find limits much more quickly and intuiƟvely.

Suppose that limx→2 f(x) = 2 and limx→2 g(x) = 3. What is limx→2(f(x) +
g(x))? IntuiƟon tells us that the limit should be 5, as we expect limits to behave
in a nice way. The following theorem states that already established limits do
behave nicely.

..
Theorem 1 Basic Limit ProperƟes

Let b, c, L and K be real numbers, let n be a posiƟve integer, and let f and g be
funcƟons with the following limits:

lim
x→c

f(x) = L and lim
x→c

g(x) = K.

The following limits hold.

1. Constants: lim
x→c

b = b

2. IdenƟty lim
x→c

x = c

3. Sums/Differences: lim
x→c

(f(x)± g(x)) = L± K

4. Scalar MulƟples: lim
x→c

b · f(x) = bL

5. Products: lim
x→c

f(x) · g(x) = LK

6. QuoƟents: lim
x→c

f(x)/g(x) = L/K, (K ̸= 0)

7. Powers: lim
x→c

f(x)n = Ln

8. Roots: lim
x→c

n
√

f(x) = n√L

9. ComposiƟons: Adjust our previously given limit situaƟon to:

lim
x→c

f(x) = L and lim
x→L

g(x) = K.

Then lim
x→c

g(f(x)) = K.

Notes:
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1.3 Finding Limits AnalyƟcally

We make a note about Property #8: when n is even, Lmust be greater than
0. If n is odd, then the statement is true for all L.

We apply the theorem to an example.

.. Example 9 Using basic limit properƟes
Let

lim
x→2

f(x) = 2, lim
x→2

g(x) = 3 and p(x) = 3x2 − 5x+ 7.

Find the following limits:

1. lim
x→2

(
f(x) + g(x)

)
2. lim

x→2

(
5f(x) + g(x)2

) 3. lim
x→2

p(x)

SÊ½çã®ÊÄ

1. Using the Sum/Difference rule, we know that lim
x→2

(
f(x)+g(x)

)
= 2+3 =

5.

2. Using the ScalarMulƟple and Sum/Difference rules, wefind that lim
x→2

(
5f(x)+

g(x)2
)
= 5 · 2+ 32 = 19.

3. Here we combine the Power, Scalar MulƟple, Sum/Difference and Con-
stant Rules. We show quite a few steps, but in general these can be omit-
ted:

lim
x→2

p(x) = lim
x→2

(3x2 − 5x+ 7)

= lim
x→2

3x2 − lim
x→2

5x+ lim
x→2

7

= 3 · 22 − 5 · 2+ 7
= 9..

Part 3 of the previous example demonstrates how the limit of a quadraƟc
polynomial can be determined using the properƟes of Theorem 1. Not only that,
recognize that

lim
x→2

p(x) = 9 = p(2);

i.e., the limit at 2 was found just by plugging 2 into the funcƟon. This holds
true for all polynomials, and also for raƟonal funcƟons (which are quoƟents of
polynomials), as stated in the following theorem.

Notes:
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Chapter 1 Limits

..
Theorem 2 Limits of Polynomial and RaƟonal FuncƟons

Let p(x) and q(x) be polynomials and c a real number. Then:

1. lim
x→c

p(x) = p(c)

2. lim
x→c

p(x)
q(x)

=
p(c)
q(c)

, where q(c) ̸= 0.

.. Example 10 Finding a limit of a raƟonal funcƟon
Using Theorem 2, find

lim
x→−1

3x2 − 5x+ 1
x4 − x2 + 3

.

SÊ½çã®ÊÄ Using Theorem 2, we can quickly state that

lim
x→−1

3x2 − 5x+ 1
x4 − x2 + 3

=
3(−1)2 − 5(−1) + 1
(−1)4 − (−1)2 + 3

=
9
3
= 3...

It was likely frustraƟng in SecƟon 1.2 to do a lot of work to prove that

lim
x→2

x2 = 4

as it seemed fairly obvious. The previous theorems state that many funcƟons
behave in such an “obvious” fashion, as demonstrated by the raƟonal funcƟon
in Example 10.

Polynomial and raƟonal funcƟons are not the only funcƟons to behave in
such a predictable way. The following theorem gives a list of funcƟons whose
behavior is parƟcularly “nice” in terms of limits. In the next secƟon, we will give
a formal name to these funcƟons that behave “nicely.”

..
Theorem 3 Special Limits

Let c be a real number in the domain of the given funcƟon and let n be a posiƟve integer. The
following limits hold:

1. lim
x→c

sin x = sin c

2. lim
x→c

cos x = cos c

3. lim
x→c

tan x = tan c

4. lim
x→c

csc x = csc c

5. lim
x→c

sec x = sec c

6. lim
x→c

cot x = cot c

7. lim
x→c

ax = ac (a > 0)

8. lim
x→c

ln x = ln c

9. lim
x→c

n
√
x = n

√
c

Notes:
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1.3 Finding Limits AnalyƟcally

.. Example 11 ..EvaluaƟng limits analyƟcally
Evaluate the following limits.

1. lim
x→π

cos x

2. lim
x→3

(sec2 x− tan2 x)

3. lim
x→π/2

cos x sin x

4. lim
x→1

eln x

5. lim
x→0

sin x
x

SÊ½çã®ÊÄ

1. This is a straighƞorward applicaƟon of Theorem 3. lim
x→π

cos x = cos π =

−1.

2. We can approach this in at least two ways. First, by directly applying The-
orem 3, we have:

lim
x→3

(sec2 x− tan2 x) = sec2 3− tan2 3.

Using the Pythagorean Theorem, this last expression is 1; therefore

lim
x→3

(sec2 x− tan2 x) = 1.

We can also use the Pythagorean Theorem from the start.

lim
x→3

(sec2 x− tan2 x) = lim
x→3

1 = 1,

using the Constant limit rule. Either way, we find the limit is 1.

3. Applying Theorem 3 directly gives

lim
x→π/2

cos x sin x = cos(π/2) sin(π/2) = 0 · 1 = 0.

4. Again, we can approach this in two ways. First, we can use the exponen-
Ɵal/logarithmic idenƟty that eln x = x and evaluate lim

x→1
eln x = lim

x→1
x = 1.

We can also use the ComposiƟon limit rule. Using Theorem 3, we have
lim
x→1

ln x = ln 1 = 0. Thus

lim
x→1

eln x = lim
x→0

ex = e0 = 1.

Both approaches are valid, giving the same result.

Notes:
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Chapter 1 Limits

5. We encountered this limit in SecƟon 1.1. Applying our theorems, we at-
tempt to find the limit as

lim
x→0

sin x
x

→ sin 0
0

→
“ 0
0
”
.

This, of course, violates a condiƟon of Theorem 1, as the limit of the de-
nominator is not allowed to be 0. Therefore, we are sƟll unable to evaluate
this limit with tools we currently have at hand.

...

The secƟon could have been Ɵtled “Using Known Limits to Find Unknown
Limits.” By knowing certain limits of funcƟons, we can find limits involving sums,
products, powers, etc., of these funcƟons. We further the development of such
comparaƟve tools with the Squeeze Theorem, a clever and intuiƟve way to find
the value of some limits.

Before staƟng this theorem formally, suppose we have funcƟons f, g and h
where g always takes on values between f and h; that is, for all x in an interval,

f(x) ≤ g(x) ≤ h(x).

If f and h have the same limit at c, and g is always “squeezed” between them,
then g must have the same limit as well. That is what the Squeeze Theorem
states.

..
Theorem 4 Squeeze Theorem

Let f, g and h be funcƟons on an open interval I containing c such that
for all x in I,

f(x) ≤ g(x) ≤ h(x).

If
lim
x→c

f(x) = L = lim
x→c

h(x),

then
lim
x→c

g(x) = L.

It can take somework to figure out appropriate funcƟons bywhich to “squeeze”
the given funcƟon you are trying to evaluate a limit of. However, that is gener-
ally the only place work is necessary; the theorem makes the “evaluaƟng the
limit part” very simple.

Notes:
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(1, tan θ)
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(cos θ, sin θ)

.
(1, 0)

Figure 1.19: The unit circle and related tri-
angles.

1.3 Finding Limits AnalyƟcally

We use the Squeeze Theorem in the following example to finally prove that

lim
x→0

sin x
x

= 1.

.. Example 12 ..Using the Squeeze Theorem
Use the Squeeze Theorem to show that

lim
x→0

sin x
x

= 1.

SÊ½çã®ÊÄ We begin by considering the unit circle. Each point on the
unit circle has coordinates (cos θ, sin θ) for some angle θ as shown in Figure 1.19.
Using similar triangles, we can extend the line from the origin through the point
to the point (1, tan θ), as shown. (Here we are assuming that 0 ≤ θ ≤ π/2.
Later we will show that we can also consider θ ≤ 0.)

The area of the large triangle is 1
2 tan θ; the area of the sector is θ/2; the

area of the triangle contained inside the sector is 1
2 sin θ. It is then clear from

the diagram that

.. θ.

tan θ

.
1

.. θ.
1

.. θ.

sin θ

.
1

tan θ
2

≥ θ

2
≥ sin θ

2

MulƟply all terms by
2

sin θ
, giving

1
cos θ

≥ θ

sin θ
≥ 1.

Taking reciprocals reverses the inequaliƟes, giving

cos θ ≤ sin θ
θ

≤ 1.

(These inequaliƟes hold for all values of θ near 0, even negaƟve values, since
cos(−θ) = cos θ and sin(−θ) = − sin θ.)

Now take limits.

Notes:
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Chapter 1 Limits

lim
θ→0

cos θ ≤ lim
θ→0

sin θ
θ

≤ lim
θ→0

1

cos 0 ≤ lim
θ→0

sin θ
θ

≤ 1

1 ≤ lim
θ→0

sin θ
θ

≤ 1

Clearly this means that lim
θ→0

sin θ
θ

= 1.
...

Two notes about the previous example are worth menƟoning. First, one
might be discouraged by this applicaƟon, thinking “I would never have come up
with that onmy own. This is too hard!” Don’t be discouraged; within this textwe
will guide you in your use of the Squeeze Theorem. As one gains mathemaƟcal
maturity, clever proofs like this are easier and easier to create.

Second, this limit tells us more than just that as x approaches 0, sin(x)/x
approaches 1. Both x and sin x are approaching 0, but the raƟo of x and sin x
approaches 1, meaning that they are approaching 0 in essenƟally the same way.
Another way of viewing this is: for small x, the funcƟons y = x and y = sin x are
essenƟally indisƟnguishable.

We include this special limit, along with three others, in the following theo-
rem.

..
Theorem 5 Special Limits

1. lim
x→0

sin x
x

= 1

2. lim
x→0

cos x− 1
x

= 0

3. lim
x→0

(1+ x)
1
x = e

4. lim
x→0

ex − 1
x

= 1

A short word on how to interpret the laƩer three limits. We know that as
x goes to 0, cos x goes to 1. So, in the second limit, both the numerator and
denominator are approaching 0. However, since the limit is 0, we can interpret
this as saying that “cos x is approaching 1 faster than x is approaching 0.”

In the third limit, inside the parentheses we have an expression that is ap-
proaching 1 (though never equaling 1), and we know that 1 raised to any power
is sƟll 1. At the same Ɵme, the power is growing toward infinity. What happens

Notes:
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Figure 1.20: Graphing f in Example 13 to
understand a limit.

1.3 Finding Limits AnalyƟcally

to a number near 1 raised to a very large power? In this parƟcular case, the
result approaches Euler’s number, e, approximately 2.718.

In the fourth limit, we see that as x → 0, ex approaches 1 “just as fast” as
x → 0, resulƟng in a limit of 1.

Our final theorem for this secƟon will be moƟvated by the following exam-
ple.

.. Example 13 Using algebra to evaluate a limit
Evaluate the following limit:

lim
x→1

x2 − 1
x− 1

.

SÊ½çã®ÊÄ Webegin by aƩempƟng to apply Theorem3and subsƟtuƟng
1 for x in the quoƟent. This gives:

lim
x→1

x2 − 1
x− 1

=
12 − 1
1− 1

=
“ 0
0
”
,

and indeterminate form. We cannot apply the theorem.
By graphing the funcƟon, as in Figure 1.20, we see that the funcƟon seems

to be linear, implying that the limit should be easy to evaluate. Recognize that
the numerator of our quoƟent can be factored:

x2 − 1
x− 1

=
(x− 1)(x+ 1)

x− 1
.

The funcƟon is not defined when x = 1, but for all other x,

x2 − 1
x− 1

=
(x− 1)(x+ 1)

x− 1
=

(x− 1)(x+ 1)
x− 1

= x+ 1.

Clearly lim
x→1

x+1 = 2. Recall that when considering limits, we are not concerned
with the value of the funcƟon at 1, only the value the funcƟon approaches as x
approaches 1. Since (x2− 1)/(x− 1) and x+ 1 are the same at all points except
x = 1, they both approach the same value as x approaches 1. Therefore we can
conclude that

lim
x→1

x2 − 1
x− 1

= 2...

The key to the above example is that the funcƟons y = (x2− 1)/(x− 1) and
y = x+1 are idenƟcal except at x = 1. Since limits describe a value the funcƟon
is approaching, not the value the funcƟon actually aƩains, the limits of the two
funcƟons are always equal.

Notes:
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..
Theorem 6 Limits of FuncƟons Equal At All But One Point

Let g(x) = f(x) for all x in an open interval, except possibly at c, and let
lim
x→c

g(x) = L for some real number L. Then

lim
x→c

f(x) = L.

The Fundamental Theorem of Algebra tells us that when dealing with a ra-

Ɵonal funcƟon of the form g(x)/f(x) and directly evaluaƟng the limit lim
x→c

g(x)
f(x)

returns “0/0”, then (x − c) is a factor of both g(x) and f(x). One can then use
algebra to factor this term out, cancel, then apply Theorem 6. We demonstrate
this once more.

.. Example 14 EvaluaƟng a limit using Theorem 6

Evaluate lim
x→3

x3 − 2x2 − 5x+ 6
2x3 + 3x2 − 32x+ 15

.
We begin by applying Theorem 3 and subsƟtuƟng 3 for x. This returns the famil-
iar indeterminate form of “0/0”. Since the numerator and denominator are each
polynomials, we know that (x− 3) is factor of each. Using whatever method is
most comfortable to you, factor out (x−3) fromeach (using polynomial division,
syntheƟc division, a computer algebra system, etc.). We find that

x3 − 2x2 − 5x+ 6
2x3 + 3x2 − 32x+ 15

=
(x− 3)(x2 + x− 2)

(x− 3)(2x2 + 9x− 5)
.

We can cancel the (x−3) terms as long as x ̸= 3. Using Theorem 6we conclude:

lim
x→3

x3 − 2x2 − 5x+ 6
2x3 + 3x2 − 32x+ 15

= lim
x→3

(x− 3)(x2 + x− 2)
(x− 3)(2x2 + 9x− 5)

= lim
x→3

(x2 + x− 2)
(2x2 + 9x− 5)

=
10
40

=
1
4
.

SÊ½çã®ÊÄ
..

We end this secƟon by revisiƟng a limit first seen in SecƟon 1.1, a limit of
a difference quoƟent. Let f(x) = −1.5x2 + 11.5x; we approximated the limit

lim
h→0

f(1+ h)− f(1)
h

≈ 8.5. We formally evaluate this limit in the following ex-
ample.

Notes:
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1.3 Finding Limits AnalyƟcally

.. Example 15 EvaluaƟng the limit of a difference quoƟent

Let f(x) = −1.5x2 + 11.5x; find lim
h→0

f(1+ h)− f(1)
h

.

SÊ½çã®ÊÄ Since f is a polynomial, our first aƩempt should be to em-

ploy Theorem 3 and subsƟtute 0 for h. However, we see that this gives us
“ 0
0
”
.

Knowing that we have a raƟonal funcƟon hints that some algebra will help. Con-
sider the following steps:

lim
h→0

f(1+ h)− f(1)
h

= lim
h→0

−1.5(1+ h)2 + 11.5(1+ h)−
(
−1.5(1)2 + 11.5(1)

)
h

= lim
h→0

−1.5(1+ 2h+ h2) + 11.5+ 11.5h− 10
h

= lim
h→0

−1.5h2 + 8.5h
h

= lim
h→0

(−1.5h+ 8.5) (using Theorem 6, as h ̸= 0)

= 8.5 (using Theorem 3)

This matches our previous approximaƟon. ..

This secƟon contains several valuable tools for evaluaƟng limits. One of the
main results of this secƟon is Theorem 3; it states that many funcƟons that we
use regularly behave in a very nice, predictable way. In the next secƟon we give
a name to this nice behavior; we label such funcƟons as conƟnuous. Defining
that term will require us to look again at what a limit is and what causes limits
to not exist.

Notes:
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Exercises 1.3
Terms and Concepts
1. Explain in your own words, without using ε − δ formality,

why lim
x→c

b = b.

2. Explain in your own words, without using ε − δ formality,
why lim

x→c
x = c.

3. What does the text mean when it says that certain func-
Ɵons’ “behavior is ‘nice’ in terms of limits”? What, in par-
Ɵcular, is “nice”?

4. Sketch a graph that visually demonstrates the Squeeze The-
orem.

5. You are given the following informaƟon:

(a) lim
x→1

f(x) = 0

(b) lim
x→1

g(x) = 0

(c) lim
x→1

f(x)/g(x) = 2

What can be said about the relaƟve sizes of f(x) and g(x)
as x approaches 1?

Problems
Using:

lim
x→9

f(x) = 6 lim
x→6

f(x) = 9
lim
x→9

g(x) = 3 lim
x→6

g(x) = 3
evaluate the limits given in Exercises 6 – 13, where possible.
If it is not possible to know, state so.

6. lim
x→9

(f(x) + g(x))

7. lim
x→9

(3f(x)/g(x))

8. lim
x→9

(
f(x)− 2g(x)

g(x)

)
9. lim

x→6

(
f(x)

3− g(x)

)
10. lim

x→9
g
(
f(x)
)

11. lim
x→6

f
(
g(x)

)
12. lim

x→6
g
(
f(f(x))

)
13. lim

x→6
f(x)g(x)− f 2(x) + g2(x)

Using:
lim
x→1

f(x) = 2 lim
x→10

f(x) = 1
lim
x→1

g(x) = 0 lim
x→10

g(x) = π

evaluate the limits given in Exercises 14 – 17, where possible.
If it is not possible to know, state so.

14. lim
x→1

f(x)g(x)

15. lim
x→10

cos
(
g(x)

)
16. lim

x→1
f(x)g(x)

17. lim
x→1

g
(
5f(x)

)
In Exercises 18 – 32, evaluate the given limit.

18. lim
x→3

x2 − 3x+ 7

19. lim
x→π

(
x− 3
x− 5

)7

20. lim
x→π/4

cos x sin x

21. lim
x→0

ln x

22. lim
x→3

4x
3−8x

23. lim
x→π/6

csc x

24. lim
x→0

ln(1+ x)

25. lim
x→π

x2 + 3x+ 5
5x2 − 2x− 3

26. lim
x→π

3x+ 1
1− x

27. lim
x→6

x2 − 4x− 12
x2 − 13x+ 42

28. lim
x→0

x2 + 2x
x2 − 2x

29. lim
x→2

x2 + 6x− 16
x2 − 3x+ 2

30. lim
x→2

x2 − 10x+ 16
x2 − x− 2

31. lim
x→−2

x2 − 5x− 14
x2 + 10x+ 16

32. lim
x→−1

x2 + 9x+ 8
x2 − 6x− 7

Use the Squeeze Theorem in Exercises 33 – 35, where appro-
priate, to evaluate the given limit.

33. lim
x→0

x sin
(
1
x

)
34. lim

x→0
sin x cos

(
1
x2

)
35. lim

x→3
f(x), where x2 ≤ f(x) ≤ 3x on [0, 3].

Exercises 36 – 39 challenge your understanding of limits but
can be evaluated using the knowledge gained in this secƟon.

36. lim
x→0

sin 3x
x

37. lim
x→0

sin 5x
8x

38. lim
x→0

ln(1+ x)
x

39. lim
x→0

sin x
x

, where x is measured in degrees, not radians.
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1.4 One Sided Limits

1.4 One Sided Limits
We introduced the concept of a limit gently, approximaƟng their values graphi-
cally and numerically. Next came the rigorous definiƟon of the limit, along with
an admiƩedly tedious method for compuƟng them. The previous secƟon gave
us tools (which we call theorems) that allow us to compute limits with greater
ease. Chief among the results were the facts that polynomials and raƟonal,
trigonometric, exponenƟal and logarithmic funcƟons (and their sums, products,
etc.) all behave “nicely.” In this secƟon we rigorously define what we mean by
“nicely.”

In SecƟon 1.1 we explored the three ways in which limits of funcƟons failed
to exist:

1. The funcƟon approached different values from the leŌ and right,

2. The funcƟon grows without bound, and

3. The funcƟon oscillates.

In this secƟon we explore in depth the concepts behind #1 by introducing
the one-sided limit. We begin with formal definiƟons that are very similar to the
definiƟon of the limit given in SecƟon 1.2, but the notaƟon is slightly different
and a short phrase has been added to the end.

..
DefiniƟon 2 One Sided Limits

LeŌ-Hand Limit

Let f be a funcƟon defined on an open interval containing c. The notaƟon

lim
x→c−

f(x) = L,

read as “the limit of f(x) as x approaches c from the leŌ is L,” or “the leŌ-hand limit of f at c is L”
means that given any ε > 0, there exists δ > 0 such that |x−c| < δ implies |f(x)−L| < ε, for all x < c.

Right-Hand Limit

Let f be a funcƟon defined on an open interval containing c. The notaƟon

lim
x→c+

f(x) = L,

read as “the limit of f(x) as x approaches c from the right is L,” or “the right-hand limit of f at c is L”
means that given any ε > 0, there exists δ > 0 such that |x − c| < δ implies |f(x) − L| < ε, for all
x > c.

Notes:
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Figure 1.21: A graph of f in Example 16.

Chapter 1 Limits

PracƟcally speaking, when evaluaƟng a leŌ-hand limit, we consider only val-
ues of x “to the leŌ of c,” i.e., where x < c. The admiƩedly imperfect notaƟon
x → c− is used to imply that we look at values of x to the leŌ of c. The nota-
Ɵon has nothing to do with posiƟve or negaƟve values of either x or c. A similar
statement holds for evaluaƟng right-hand limits; there we consider only values
of x to the right of c, i.e., x > c. We can use the theorems from previous secƟons
to help us evaluate these limits; we just restrict our view to one side of c.

We pracƟce evaluaƟng leŌ and right-hand limits through a series of exam-
ples.

.. Example 16 ..EvaluaƟng one sided limits

Let f(x) =

{
x 0 ≤ x ≤ 1

3− x 1 < x < 2 , as shown in Figure 1.21. Find each of the

following:

1. lim
x→1−

f(x)

2. lim
x→1+

f(x)

3. lim
x→1

f(x)

4. f(1)

5. lim
x→0+

f(x)

6. f(0)

7. lim
x→2−

f(x)

8. f(2)

SÊ½çã®ÊÄ For these problems, the visual aid of the graph is likely more
effecƟve in evaluaƟng the limits than using f itself. Therefore we will refer oŌen
to the graph.

1. As x goes to 1 from the leŌ, we see that f(x) is approaching the value of 1.
Therefore lim

x→1−
f(x) = 1.

2. As x goes to 1 from the right, we see that f(x) is approaching the value of 2.
Recall that it does not maƩer that there is an “open circle” there; we are
evaluaƟng a limit, not the value of the funcƟon. Therefore lim

x→1+
f(x) = 2.

3. The limit of f as x approaches 1 does not exist, as discussed in the first
secƟon. The funcƟon does not approach one parƟcular value, but two
different values from the leŌ and the right.

4. Using the definiƟon and by looking at the graph we see that f(1) = 1.

5. As x goes to 0 from the right, we see that f(x) is also approaching 0. There-
fore lim

x→0+
f(x) = 0. Note we cannot consider a leŌ-hand limit at 0 as f is

not defined for values of x < 0.

Notes:
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Figure 1.22: A graph of f from Example 17

1.4 One Sided Limits

6. Using the definiƟon and the graph, f(0) = 0.

7. As x goes to 2 from the leŌ, we see that f(x) is approaching the value of
1. Therefore lim

x→2−
f(x) = 1.

8. The graph and the definiƟon of the funcƟon show that f(2) is not defined.
...

Note how the leŌ and right-hand limits were different; this, of course, causes
the limit to not exist. The following theorem states what is fairly intuiƟve: the
limit exists precisely when the leŌ and right-hand limits are equal.

..
Theorem 7 Limits and One Sided Limits

Let f be a funcƟon defined on an open interval I containing c. Then

lim
x→c

f(x) = L

if, and only if,

lim
x→c−

f(x) = L and lim
x→c+

f(x) = L.

The phrase “if, and only if” means the two statements are equivalent: they
are either both true or both false. If the limit equals L, then the leŌ and right
hand limits both equal L. If the limit is not equal to L, then at least one of the
leŌ and right-hand limits is not equal to L (it may not even exist).

One thing to consider in Examples 16 – 19 is that the value of the funcƟon
may/may not be equal to the value(s) of its leŌ/right-hand limits, even when
these limits agree.

.. Example 17 ..EvaluaƟng limits of a piecewise–defined funcƟon

Let f(x) =

{
2− x 0 < x < 1

(x− 2)2 1 < x < 2 , as shown in Figure 1.22. Evaluate the

following.

1. lim
x→1−

f(x)

2. lim
x→1+

f(x)

3. lim
x→1

f(x)

4. f(1)

5. lim
x→0+

f(x)

6. f(0)

7. lim
x→2−

f(x)

8. f(2)

Notes:
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Figure 1.24: Graphing f in Example 19

Chapter 1 Limits

SÊ½çã®ÊÄ Againwewill evaluate each using both the definiƟon of f and
its graph.

1. As x approaches 1 from the leŌ, we see that f(x) approaches 1. Therefore
lim

x→1−
f(x) = 1.

2. As x approaches 1 from the right, we see that again f(x) approaches 1.
Therefore lim

x→1+
f(x) = 1.

3. The limit of f as x approaches 1 exists and is 1, as f approaches 1 from both
the right and leŌ. Therefore lim

x→1
f(x) = 1.

4. f(1) is not defined. Note that 1 is not in the domain of f as defined by the
problem, which is indicated on the graph by an open circle when x = 1.

5. As x goes to 0 from the right, f(x) approaches 2. So lim
x→0+

f(x) = 2.

6. f(0) is not defined as 0 is not in the domain of f.

7. As x goes to 2 from the leŌ, f(x) approaches 0. So lim
x→2−

f(x) = 0.

8. f(2) is not defined as 2 is not in the domain of f.
...

.. Example 18 EvaluaƟng limits of a piecewise–defined funcƟon

Let f(x) =

{
(x− 1)2 0 ≤ x ≤ 2, x ̸= 1

1 x = 1 , as shown in Figure 1.23. Evaluate

the following.

1. lim
x→1−

f(x)

2. lim
x→1+

f(x)

3. lim
x→1

f(x)

4. f(1)

SÊ½çã®ÊÄ It is clear by looking at the graph that both the leŌ and right-
hand limits of f, as x approaches 1, is 0. Thus it is also clear that the limit is 0;
i.e., lim

x→1
f(x) = 0. It is also clearly stated that f(1) = 1.

..

.. Example 19 ..EvaluaƟng limits of a piecewise–defined funcƟon

Let f(x) =
{

x2 0 ≤ x ≤ 1
2− x 1 < x ≤ 2 , as shown in Figure 1.24. Evaluate the follow-

ing.

Notes:
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1.4 One Sided Limits

1. lim
x→1−

f(x)

2. lim
x→1+

f(x)

3. lim
x→1

f(x)

4. f(1)

SÊ½çã®ÊÄ It is clear from the definiƟon of the funcƟon and its graph
that all of the following are equal:

lim
x→1−

f(x) = lim
x→1+

f(x) = lim
x→1

f(x) = f(1) = 1.

...

In Examples 16 – 19 we were asked to find both lim
x→1

f(x) and f(1). Consider
the following table:

lim
x→1

f(x) f(1)

Example 16 does not exist 1
Example 17 1 not defined
Example 18 0 1
Example 19 1 1

Only in Example 19 do both the funcƟon and the limit exist and agree. This
seems “nice;” in fact, it seems “normal.” This is in fact an important situaƟon
which we explore in the next secƟon, enƟtled “ConƟnuity.” In short, a conƟnu-
ous funcƟon is one in which when a funcƟon approaches a value as x → c (i.e.,
when lim

x→c
f(x) = L), it actually aƩains that value at c. Such funcƟons behave

nicely as they are very predictable.

Notes:
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Exercises 1.4
Terms and Concepts
1. What are the three ways in which a limit may fail to exist?

2. T/F: If lim
x→1−

f(x) = 5, then lim
x→1

f(x) = 5

3. T/F: If lim
x→1−

f(x) = 5, then lim
x→1+

f(x) = 5

4. T/F: If lim
x→1

f(x) = 5, then lim
x→1−

f(x) = 5

Problems

In Exercises 5 – 12, evaluate each expression using the given
graph of f(x).
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(a) lim
x→1−

f(x)

(b) lim
x→1+

f(x)

(c) lim
x→1

f(x)

(d) f(1)

(e) lim
x→0−

f(x)

(f) lim
x→0+

f(x)
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(a) lim
x→1−

f(x)

(b) lim
x→1+

f(x)

(c) lim
x→1

f(x)

(d) f(1)

(e) lim
x→2−

f(x)

(f) lim
x→2+

f(x)

7.
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(a) lim
x→1−

f(x)

(b) lim
x→1+

f(x)

(c) lim
x→1

f(x)

(d) f(1)

(e) lim
x→2−

f(x)

(f) lim
x→0+

f(x)
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(a) lim
x→1−

f(x)

(b) lim
x→1+

f(x)

(c) lim
x→1

f(x)

(d) f(1)

9.

.....
0.5

.
1

.
1.5

.
2

.

0.5

.

1

.

1.5

.

2

. x.

y

(a) lim
x→1−

f(x)

(b) lim
x→1+

f(x)

(c) lim
x→1

f(x)

(d) f(1)

10.
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(a) lim
x→0−

f(x)

(b) lim
x→0+

f(x)

(c) lim
x→0

f(x)

(d) f(0)
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(a) lim
x→−2−

f(x)

(b) lim
x→−2+

f(x)

(c) lim
x→−2

f(x)

(d) f(−2)

(e) lim
x→2−

f(x)

(f) lim
x→2+

f(x)

(g) lim
x→2

f(x)

(h) f(2)

12.
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Let−3 ≤ a ≤ 3 be an integer.

(a) lim
x→a−

f(x)

(b) lim
x→a+

f(x)

(c) lim
x→a

f(x)

(d) f(a)

In Exercises 13 – 21, evaluate the given limits of the piecewise
defined funcƟons f.

13. f(x) =
{

x+ 1 x ≤ 1
x2 − 5 x > 1

(a) lim
x→1−

f(x)

(b) lim
x→1+

f(x)

(c) lim
x→1

f(x)

(d) f(1)

14. f(x) =
{

2x2 + 5x− 1 x < 0
sin x x ≥ 0

(a) lim
x→0−

f(x)

(b) lim
x→0+

f(x)

(c) lim
x→0

f(x)

(d) f(0)

15. f(x) =


x2 − 1 x < −1
x3 + 1 −1 ≤ x ≤ 1
x2 + 1 x > 1

(a) lim
x→−1−

f(x)

(b) lim
x→−1+

f(x)

(c) lim
x→−1

f(x)

(d) f(−1)

(e) lim
x→1−

f(x)

(f) lim
x→1+

f(x)

(g) lim
x→1

f(x)

(h) f(1)

16. f(x) =
{

cos x x < π
sin x x ≥ π

(a) lim
x→π−

f(x)

(b) lim
x→π+

f(x)

(c) lim
x→π

f(x)

(d) f(π)

17. f(x) =
{

1− cos2 x x < a
sin2 x x ≥ a ,

where a is a real number.

(a) lim
x→a−

f(x)

(b) lim
x→a+

f(x)

(c) lim
x→a

f(x)

(d) f(a)

18. f(x) =


x+ 1 x < 1
1 x = 1

x− 1 x > 1

(a) lim
x→1−

f(x)

(b) lim
x→1+

f(x)

(c) lim
x→1

f(x)

(d) f(1)

19. f(x) =


x2 x < 2

x+ 1 x = 2
−x2 + 2x+ 4 x > 2

(a) lim
x→2−

f(x)

(b) lim
x→2+

f(x)

(c) lim
x→2

f(x)

(d) f(2)

20. f(x) =
{

a(x− b)2 + c x < b
a(x− b) + c x ≥ b ,

where a, b and c are real numbers.

(a) lim
x→b−

f(x)

(b) lim
x→b+

f(x)

(c) lim
x→b

f(x)

(d) f(b)

21. f(x) =
{ |x|

x x ̸= 0
0 x = 0

(a) lim
x→0−

f(x)

(b) lim
x→0+

f(x)

(c) lim
x→0

f(x)

(d) f(0)

Review

22. Evaluate the limit: lim
x→−1

x2 + 5x+ 4
x2 − 3x− 4

.

23. Evaluate the limit: lim
x→−4

x2 − 16
x2 − 4x− 32

.

24. Evaluate the limit: lim
x→−6

x2 − 15x+ 54
x2 − 6x

.

25. Evaluate the limit: lim
x→2

x2 − 6x+ 9
x2 − 3x

.

26. Approximate the limit numerically: lim
x→0.4

x2 − 4.4x+ 1.6
x2 − 0.4x

.

27. Approximate the limit numerically: lim
x→0.2

x2 + 5.8x− 1.2
x2 − 4.2x+ 0.8

.

28. Approximate the limit numerically: lim
x→−0.5

x2 − 0.5x− 0.5
x2 + 6.5x+ 3

.

29. Approximate the limit numerically: lim
x→0.1

x2 + 0.9x− 0.1
x2 + 7.9x− 0.8

.
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Figure 1.25: A graph of f in Example 20.

Chapter 1 Limits

1.5 ConƟnuity
As we have studied limits, we have gained the intuiƟon that limits measure
“where a funcƟon is heading.” That is, if lim

x→1
f(x) = 3, then as x is close to 1,

f(x) is close to 3. We have seen, though, that this is not necessarily a good in-
dicator of what f(1) actually this. This can be problemaƟc; funcƟons can tend
to one value but aƩain another. This secƟon focuses on funcƟons that do not
exhibit such behavior.

..
DefiniƟon 3 ConƟnuous FuncƟon

Let f be a funcƟon defined on an open interval I containing c.

1. f is conƟnuous at c if lim
x→c

f(x) = f(c).

2. f is conƟnuous on I if f is conƟnuous at c for all values of c in I. If f
is conƟnuous on (−∞,∞), we say f is conƟnuous everywhere.

A useful way to establish whether or not a funcƟon f is conƟnuous at c is to
verify the following three things:

1. lim
x→c

f(x) exists,

2. f(c) is defined, and

3. lim
x→c

f(x) = f(c).

.. Example 20 Finding intervals of conƟnuity
Let f be defined as shown in Figure 1.25. Give the interval(s) on which f is con-
Ɵnuous.

SÊ½çã®ÊÄ We proceed by examining the three criteria for conƟnuity.

1. The limits lim
x→c

f(x) exists for all c between 0 and 3.

2. f(c) is defined for all c between 0 and 3, except for c = 1. We know
immediately that f cannot be conƟnuous at x = 1.

3. The limit lim
x→c

f(x) = f(c) for all c between 0 and 3, except, of course, for
c = 1.

We conclude that f is conƟnuous at every point of (0, 3) except at x = 1.
Therefore f is conƟnuous on (0, 1) and (1, 3)...

Notes:
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Figure 1.26: A graph of the step funcƟon
in Example 21.

1.5 ConƟnuity

.. Example 21 Finding intervals of conƟnuity
The floor funcƟon, f(x) = ⌊x⌋, returns the largest integer smaller than the input
x. (For example, f(π) = ⌊π⌋ = 3.) The graph of f in Figure 1.26 demonstrates
why this is oŌen called a “step funcƟon.”

Give the intervals on which f is conƟnuous.

SÊ½çã®ÊÄ We examine the three criteria for conƟnuity.

1. The limits limx→c f(x) do not exist at the jumps from one “step” to the
next, which occur at all integer values of c. Therefore the limits exist for
all c except when c is an integer.

2. The funcƟon is defined for all values of c.

3. The limit lim
x→c

f(x) = f(c) for all values of cwhere the limit exist, since each
step consists of just a line.

We conclude that f is conƟnuous everywhere except at integer values of c. So
the intervals on which f is conƟnuous are

. . . , (−2,−1), (−1, 0), (0, 1), (1, 2), . . . .
..

Our definiƟon of conƟnuity on an interval specifies the interval is an open
interval. We can extend the definiƟon of conƟnuity to closed intervals by con-
sidering the appropriate one-sided limits at the endpoints.

..
DefiniƟon 4 ConƟnuity on Closed Intervals

Let f be defined on the closed interval [a, b] for some real numbers a, b.
f is conƟnuous on [a, b] if:

1. f is conƟnuous on (a, b),

2. lim
x→a+

f(x) = f(a) and

3. lim
x→b−

f(x) = f(b).

We can make the appropriate adjustments to talk about conƟnuity on half–
open intervals such as [a, b) or (a, b] if necessary.

Notes:
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Chapter 1 Limits

.. Example 22 Determining intervals on which a funcƟon is conƟnuous
For each of the following funcƟons, give the domain of the funcƟon and the
interval(s) on which it is conƟnuous.

1. f(x) = 1/x

2. f(x) = sin x

3. f(x) =
√
x

4. f(x) =
√
1− x2

5. f(x) = |x|

SÊ½çã®ÊÄ We examine each in turn.

1. The domain of f(x) = 1/x is (−∞, 0)∪ (0,∞). As it is a raƟonal funcƟon,
we apply Theorem 2 to recognize that f is conƟnuous on all of its domain.

2. The domain of f(x) = sin x is all real numbers, or (−∞,∞). Applying
Theorem 3 shows that sin x is conƟnuous everywhere.

3. The domain of f(x) =
√
x is [0,∞). Applying Theorem3 shows that f(x) =√

x is conƟnuous on its domain of [0,∞).

4. The domain of f(x) =
√
1− x2 is [−1, 1]. Applying Theorems 1 and 3

shows that f is conƟnuous on all of its domain, [−1, 1].

5. The domain of f(x) = |x| is (−∞,∞). We can define the absolute value

funcƟon as f(x) =

{
−x x < 0
x x ≥ 0 . Each “piece” of this piece-wise de-

fined funcƟon is conƟnuous on all of its domain, giving that f is conƟnuous
on (−∞, 0) and [0,∞). As we saw before, we cannot assume this implies
that f is conƟnuous on (−∞,∞); we need to check that lim

x→0
f(x) = f(0),

as x = 0 is the point where f transiƟons from one “piece” of its definiƟon
to the other. It is easy to verify that this is indeed true, hence we conclude
that f(x) = |x| is conƟnuous everywhere.

..

ConƟnuity is inherently Ɵed to the properƟes of limits. Because of this, the
properƟes of limits found in Theorems 1 and 2 apply to conƟnuity as well. Fur-
ther, now knowing the definiƟon of conƟnuity we can re–read Theorem 3 as
giving a list of funcƟons that are conƟnuous on their domains. The following
theorem states how conƟnuous funcƟons can be combined to form other con-
Ɵnuous funcƟons, followed by a theorem which formally lists funcƟons that we
know are conƟnuous on their domains.

Notes:
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1.5 ConƟnuity

..
Theorem 8 ProperƟes of ConƟnuous FuncƟons

Let f and g be conƟnuous funcƟons on an interval I, let c be a real number
and let n be a posiƟve integer. The following funcƟons are conƟnuous on
I.

1. Sums/Differences: f± g

2. Constant MulƟples: c · f

3. Products: f · g

4. QuoƟents: f/g (as longs as g ̸= 0 on I)

5. Powers: f n

6. Roots: n
√
f (if n is even then f ≥ 0 on I; if n is odd,

then true for all values of f on I.)

7. ComposiƟons: Adjust the definiƟons of f and g to: Let f be
conƟnuous on I, where the range of f on I is J,
and let g be conƟnuous on J. Then g ◦ f, i.e.,
g(f(x)), is conƟnuous on I.

..
Theorem 9 ConƟnuous FuncƟons

The following funcƟons are conƟnuous on their domains.

1. f(x) = sin x

3. f(x) = tan x

5. f(x) = sec x

7. f(x) = ln x

9. f(x) = ax (a > 0)

2. f(x) = cos x

4. f(x) = cot x

6. f(x) = csc x

8. f(x) = n
√
x,

(where n is a posiƟve integer)

We apply these theorems in the following Example.

Notes:
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Figure 1.27: A graph of f in Example 23(a).

Chapter 1 Limits

.. Example 23 Determining intervals on which a funcƟon is conƟnuous
State the interval(s) on which each of the following funcƟons is conƟnuous.

1. f(x) =
√
x− 1+

√
5− x

2. f(x) = x sin x

3. f(x) = tan x

4. f(x) =
√
ln x

SÊ½çã®ÊÄ We examine each in turn, applying Theorems 8 and 9 as ap-
propriate.

1. The square–root terms are conƟnuous on the intervals [1,∞) and (−∞, 5],
respecƟvely. As f is conƟnuous only where each term is conƟnuous, f is
conƟnuous on [1, 5], the intersecƟon of these two intervals. A graph of f
is given in Figure 1.27.

2. The funcƟons y = x and y = sin x are each conƟnuous everywhere, hence
their product is, too.

3. Theorem 9 states that f(x) = tan x is conƟnuous “on its domain.” Its do-
main includes all real numbers except odd mulƟples of π/2. Thus f(x) =
tan x is conƟnuous on

. . .

(
−3π

2
,−π

2

)
,
(
−π

2
,
π

2

)
,

(
π

2
,
3π
2

)
, . . . ,

or, equivalently, on D = {x ∈ R | x ̸= n · π
2 , n is an odd integer}.

4. The domain of y =
√
x is [0,∞). The range of y = ln x is (−∞,∞), but if

we restrict its domain to [1,∞) its range is [0,∞). So restricƟng y = ln x
to the domain of [1,∞) restricts its output is [0,∞), on which y =

√
x is

defined. Thus the domain of f(x) =
√
ln x is [1,∞).

..

A common way of thinking of a conƟnuous funcƟon is that “its graph can
be sketched without liŌing your pencil.” That is, its graph forms a “conƟnuous”
curve, without holes, breaks or jumps. While beyond the scope of this text,
this pseudo–definiƟon glosses over some of the finer points of conƟnuity. Very
strange funcƟons are conƟnuous that one would be hard pressed to actually
sketch by hand.

This intuiƟve noƟon of conƟnuity does help us understand another impor-
tant concept as follows. Suppose f is defined on [1, 2] and f(1) = −10 and
f(2) = 5. If f is conƟnuous on [1, 2] (i.e., its graph can be sketched as a conƟn-
uous line from (1,−10) to (2, 5)) then we know intuiƟvely that somewhere on
[1, 2] f must be equal to −9, and −8, and −7, −6, . . . , 0, 1/2, etc. In short, f

Notes:
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1.5 ConƟnuity

takes on all intermediate values between −10 and 5. It may take on more val-
ues; fmay actually equal 6 at some Ɵme, for instance, but we are guaranteed all
values between−10 and 5.

While this noƟon seems intuiƟve, it is not trivial to prove and its importance
is profound. Therefore the concept is stated in the form of a theorem.

..
Theorem 10 Intermediate Value Theorem

Let f be a conƟnuous funcƟon on [a, b] and, without loss of generality,
let f(a) < f(b). Then for every value y, where f(a) < y < f(b), there is a
value c in [a, b] such that f(c) = y.

One important applicaƟon of the Intermediate Value Theorem is root find-
ing. Given a funcƟon f, we are oŌen interested in finding values of x where
f(x) = 0. These roots may be very difficult to find exactly. Good approximaƟons
can be found through successive applicaƟons of this theorem. Suppose through
direct computaƟon we find that f(a) < 0 and f(b) > 0, where a < b. The Inter-
mediate Value Theorem states that there is a c in [a, b] such that f(c) = 0. The
theorem does not give us any clue as to where that value is in the interval [a, b],
just that it exists.

There is a technique that produces a good approximaƟon of c. Let d be the
midpoint of the interval [a, b] and consider f(d). There are three possibiliƟes:

1. f(d) = 0 – we got lucky and stumbled on the actual value. We stop as we
found a root.

2. f(d) < 0 Then we know there is a root of f on the interval [d, b] – we have
halved the size of our interval, hence are closer to a good approximaƟon
of the root.

3. f(d) > 0 Then we know there is a root of f on the interval [a, d] – again,we
have halved the size of our interval, hence are closer to a good approxi-
maƟon of the root.

Successively applying this technique is called the BisecƟon Method of root
finding. We conƟnue unƟl the interval is sufficiently small. We demonstrate this
in the following example.

.. Example 24 ..Using the BisecƟon Method
Approximate the root of f(x) = x − cos x, accurate to three places aŌer the
decimal.

SÊ½çã®ÊÄ Consider the graph of f(x) = x−cos x, shown in Figure 1.28.
It is clear that the graph crosses the x-axis somewhere near x = 0.8. To start the

Notes:
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Figure 1.28: Graphing a root of f(x) = x−
cos x.

IteraƟon # Interval Midpoint Sign
1 [0.7, 0.9] f(0.8) > 0
2 [0.7, 0.8] f(0.75) > 0
3 [0.7, 0.75] f(0.725) < 0
4 [0.725, 0.75] f(0.7375) < 0
5 [0.7375, 0.75] f(0.7438) > 0
6 [0.7375, 0.7438] f(0.7407) > 0
7 [0.7375, 0.7407] f(0.7391) > 0
8 [0.7375, 0.7391] f(0.7383) < 0
9 [0.7383, 0.7391] f(0.7387) < 0
10 [0.7387, 0.7391] f(0.7389) < 0
11 [0.7389, 0.7391] f(0.7390) < 0
12 [0.7390, 0.7391]

Figure 1.29: IteraƟons of the BisecƟon
Method of Root Finding

Chapter 1 Limits

BisecƟonMethod, pick an interval that contains 0.8. We choose [0.7, 0.9]. Note
that all we care about are signs of f(x), not their actual value, so this is all we
display.

IteraƟon 1: f(0.7) < 0, f(0.9) > 0, and f(0.8) > 0. So replace 0.9 with 0.8 and
repeat.

IteraƟon 2: f(0.7) < 0, f(0.8) > 0, and at themidpoint, 0.75, wehave f(0.75) >
0. So replace 0.8 with 0.75 and repeat. Note that we don’t need to con-
Ɵnue to check the endpoints, just the midpoint. Thus we put the rest of
the iteraƟons in Table 1.29.

NoƟce that in the 12th iteraƟon we have the endpoints of the interval each
starƟng with 0.739. Thus we have narrowed the zero down to an accuracy of
the first three places aŌer the decimal. Using a computer, we have

f(0.7390) = −0.00014, f(0.7391) = 0.000024.

Either endpoint of the interval gives a good approximaƟon of where f is 0. The
IntermediateValue Theoremstates that the actual zero is sƟll within this interval.
While we do not know its exact value, we know it starts with 0.739.

This type of exercise is rarely done by hand. Rather, it is simple to program
a computer to run such an algorithm and stop when the endpoints differ by a
preset small amount. One of the authors did write such a program and found
the zero of f, accurate to 10 places aŌer the decimal, to be 0.7390851332. While
it took a few minutes to write the program, it took less than a thousandth of a
second for the program to run the necessary 35 iteraƟons. In less than 8 hun-
dredths of a second, the zero was calculated to 100 decimal places (with less
than 200 iteraƟons). ...

It is a simplemaƩer to extend theBisecƟonMethod to solve similar problems
to f(x) = 0. For instance, we can solve f(x) = 1. This may seem obvious, but
to many it is not. It actually works very well to define a new funcƟon g where
g(x) = f(x)− 1. Then use the BisecƟon Method to solve g(x) = 0.

Similarly, given two funcƟons f and g, we can use the BisecƟon Method to
solve f(x) = g(x). Once again, create a new funcƟon hwhere h(x) = f(x)−g(x)
and solve h(x) = 0.

In SecƟon 4.1 another equaƟon solving method will be introduced, called
Newton’s Method. In many cases, Newton’s Method is much faster. It relies on
more advanced mathemaƟcs, though, so we will wait before introducing it.

This secƟon formally defined what it means to be a conƟnuous funcƟon.
“Most” funcƟons that we deal with are conƟnuous, so oŌen it feels odd to have
to formally define this concept. Regardless, it is important, and forms the basis
of the next chapter.

In the next secƟon we examine onemore aspect of limits: limits that involve
infinity.

Notes:
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Exercises 1.5
Terms and Concepts
1. In your own words, describe what it means for a funcƟon

to be conƟnuous.

2. In your own words, describe what the Intermediate Value
Theorem states.

3. What is a “root” of a funcƟon?

4. Given funcƟons f and g on an interval I, how can the Bisec-
Ɵon Method be used to find a value c where f(c) = g(c)?

5. T/F: If f is defined on an open interval containing c, and
lim
x→c

f(x) exists, then f is conƟnuous at c.

6. T/F: If f is conƟnuous at c, then lim
x→c

f(x) exists.

7. T/F: If f is conƟnuous at c, then lim
x→c+

f(x) = f(c).

8. T/F: If f is conƟnuous on [a, b], then lim
x→a−

f(x) = f(a).

9. T/F: If f is conƟnuous on [0, 1) and [1, 2), then f is conƟnu-
ous on [0, 2).

10. T/F: The sum of conƟnuous funcƟons is also conƟnuous.

Problems
In Exercises 11 – 17, a graph of a funcƟon f is given along with
a value a. Determine if f is conƟnuous at a; if it is not, state
why it is not.
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17. (a) a = −2

(b) a = 0

(c) a = 2
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In Exercises 18 – 21, determine if f is conƟnuous at the indi-
cated values. If not, explain why.

18. f(x) =
{

1 x = 0
sin x
x x > 0

(a) x = 0

(b) x = π

19. f(x) =
{

x3 − x x < 1
x− 2 x ≥ 1

(a) x = 0

(b) x = 1

20. f(x) =

{
x2+5x+4
x2+3x+2 x ̸= −1

3 x = −1

(a) x = −1

(b) x = 10

21. f(x) =

{
x2−64

x2−11x+24 x ̸= 8
5 x = 8

(a) x = 0

(b) x = 8

In Exercises 22 – 32, give the intervals on which the given
funcƟon is conƟnuous.

22. f(x) = x2 − 3x+ 9

23. g(x) =
√
x2 − 4

24. h(k) =
√
1− k+

√
k+ 1

25. f(t) =
√
5t2 − 30

26. g(t) =
1√

1− t2

27. g(x) =
1

1+ x2

28. f(x) = ex

29. g(s) = ln s

30. h(t) = cos t

31. f(k) =
√

1− ek

32. f(x) = sin(ex + x2)

33. Let f be conƟnuous on [1, 5] where f(1) = −2 and f(5) =
−10. Does a value 1 < c < 5 exist such that f(c) = −9?
Why/why not?

34. Let g be conƟnuous on [−3, 7]where g(0) = 0 and g(2) =
25. Does a value −3 < c < 7 exist such that g(c) = 15?
Why/why not?

35. Let f be conƟnuous on [−1, 1] where f(−1) = −10 and
f(1) = 10. Does a value −1 < c < 1 exist such that
f(c) = 11? Why/why not?

36. Let h be a funcƟon on [−1, 1] where h(−1) = −10 and
h(1) = 10. Does a value −1 < c < 1 exist such that
h(c) = 0? Why/why not?

In Exercises 37 – 40, use the BisecƟon Method to approxi-
mate, accurate to two decimal places, the value of the root
of the given funcƟon in the given interval.

37. f(x) = x2 + 2x− 4 on [1, 1.5].

38. f(x) = sin x− 1/2 on [0.5, 0.55]

39. f(x) = ex − 2 on [0.65, 0.7].

40. f(x) = cos x− sin x on [0.7, 0.8].

Review

41. Let f(x) =
{

x2 − 5 x < 5
5x x ≥ 5 .

(a) lim
x→5−

f(x)

(b) lim
x→5+

f(x)

(c) lim
x→5

f(x)

(d) f(5)

42. Numerically approximate the following limits:

(a) lim
x→−4/5+

x2 − 8.2x− 7.2
x2 + 5.8x+ 4

(b) lim
x→−4/5−

x2 − 8.2x− 7.2
x2 + 5.8x+ 4

43. Give an example of funcƟon f(x) for which lim
x→0

f(x) does not
exist.
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Figure 1.30: Graphing f(x) = 1/x2 for val-
ues of x near 0.
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Figure 1.31: Observing infinite limit as
x → 1 in Example 25.

1.6 Limits involving infinity

1.6 Limits involving infinity
In DefiniƟon 1 we stated that in the equaƟon lim

x→c
f(x) = L, both c and L were

numbers. In this secƟon we relax that definiƟon a bit by considering situaƟons
when it makes sense to let c and/or L be “infinity.”

As a moƟvaƟng example, consider f(x) = 1/x2, as shown in Figure 1.30.
Note how, as x approaches 0, f(x) grows very, very large. It seems appropriate,
and descripƟve, to state that

lim
x→0

1
x2

= ∞.

Also note that as x gets very large, f(x) gets very, very small. We could represent
this concept with notaƟon such as

lim
x→∞

1
x2

= 0.

We explore both types of use of∞ in turn.

..
DefiniƟon 5 Limit of Infinity,∞

We say lim
x→c

f(x) = ∞ if for every M > 0 there exists δ > 0 such that if
0 < |x− c| < δ then f(x) ≥ M.

This is just like the ε–δ definiƟon from SecƟon 1.2. In that definiƟon, given
any (small) value ε, if we let x get close enough to c (within δ units of c) then f(x)
is guaranteed to be within ε of f(c). Here, given any (large) valueM, if we let x
get close enough to c (within δ units of c), then f(x) will be at least as large as
M. In other words, if we get close enough to c, then we can make f(x) as large
as we want. We can define limits equal to−∞ in a similar way.

It is important to note that by saying lim
x→c

f(x) = ∞ we are implicitly staƟng
that the limit of f(x), as x approaches c, does not exist. A limit only exists when
f(x) approaches an actual numeric value. We use the concept of limits that ap-
proach infinity because they are helpful and descripƟve.

.. Example 25 ..EvaluaƟng limits involving infinity
Find lim

x→1

1
(x− 1)2

as shown in Figure 1.31.

SÊ½çã®ÊÄ In Example 4 of SecƟon 1.1, by inspecƟng values of x close
to 1 we concluded that this limit does not exist. That is, it cannot equal any real

Notes:
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Figure 1.32: EvaluaƟng lim
x→0
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Figure 1.33: Graphing f(x) =
3x

x2 − 4
.

Chapter 1 Limits

number. But the limit could be infinite. And in fact, we see that the funcƟon
does appear to be growing larger and larger, as f(.99) = 104, f(.999) = 106,
f(.9999) = 108. A similar thing happens on the other side of 1. In general,
let a “large” value M be given. Let δ = 1/

√
M. If x is within δ of 1, i.e., if

|x− 1| < 1/
√
M, then:

|x− 1| < 1√
M

(x− 1)2 <
1
M

1
(x− 1)2

> M,

which is what we wanted to show. So we may say lim
x→1

1/(x− 1)2 = ∞. ...

.. Example 26 EvaluaƟng limits involving infinity
Find lim

x→0

1
x
, as shown in Figure 1.32.

SÊ½çã®ÊÄ It is easy to see that the funcƟon grows without bound near
0, but it does so in different ways on different sides of 0. Since its behavior is not

consistent, we cannot say that lim
x→0

1
x
= ∞. However, we can make a statement

about one–sided limits. We can state that lim
x→0+

1
x
= ∞ and lim

x→0−

1
x
= −∞.

..

VerƟcal asymptotes

If the limit of f(x) as x approaches c from either the leŌ or right (or both) is
∞ or−∞, we say the funcƟon has a verƟcal asymptote at c.

.. Example 27 Finding verƟcal asymptotes
Find the verƟcal asymptotes of f(x) =

3x
x2 − 4

.

SÊ½çã®ÊÄ VerƟcal asymptotes occurwhere the funcƟon growswithout
bound; this occurs at values of c where the denominator is 0. The denominator
is small near x = c, which in turn can make the funcƟon overall take on large
values. In the case of the given funcƟon, the denominator is 0 at x = ±2. SubsƟ-
tuƟng in values of x close to 2 and−2 seems to indicate that the funcƟon tends
toward∞ or−∞ at those points. We can graphically confirm this by looking at
Figure 1.33.

..

Notes:
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Figure 1.34: Graphically showing that

f(x) =
x2 − 1
x− 1

does not have an asymp-
tote at x = 1.

1.6 Limits involving infinity

When a funcƟon has a verƟcal asymptote, we can conclude that “the de-
nominator is 0” for some part of that funcƟon. However, just because the de-
nominator is 0 at a certain point does not mean there is a verƟcal asymptote
there. For instance, f(x) = (x2 − 1)/(x− 1) does not have a verƟcal asymptote
at x = 1, as shown in Figure 1.34. While the denominator does get small near
x = 1, the numerator gets small too, matching the denominator step for step.
In fact, factoring the numerator, we get

f(x) =
(x− 1)(x+ 1)

x− 1
.

Canceling the common term, we get that f(x) = x + 1 for x ̸= 1. So there is
clearly no asymptote, rather a hole exists in the graph at x = 1.

The above example may seem a liƩle contrived. Another example demon-
straƟng this important concept is f(x) = (sin x)/x. We have considered this

funcƟon several Ɵmes in the previous secƟons. We found that lim
x→0

sin x
x

= 1;
i.e., there is no verƟcal asymptote. No simple algebraic cancellaƟon makes this
fact obvious; we used the Squeeze Theorem in SecƟon 1.3 to prove this.

If the denominator is 0 at a certain point but the numerator is not, then
there will usually be a verƟcal asymptote at that point. On the other hand, if the
numerator and denominator are both zero at that point, then there may or may
not be a verƟcal asymptote at that point. This case where the numerator and
denominator are both zero returns us to an important topic.

Indeterminate Forms

We have seen how the limits

lim
x→0

sin x
x

and lim
x→1

x2 − 1
x− 1

each return the indeterminate form
“ 0
0
”
when we blindly plug in x = 0 and

x = 1, respecƟvely. However, 0/0 is not a valid arithmeƟcal expression. It gives
no indicaƟon that the respecƟve limits are 1 and 2.

With a liƩle cleverness, one can come up 0/0 expressions which have a limit
of∞, 0, or any other real number. That is why this expression is called indeter-
minate.

A key concept to understand is that such limits do not really return 0/0.
Rather, keep in mind that we are taking limits. What is really happening is that
the numerator is shrinking to 0 while the denominator is also shrinking to 0.

Notes:
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Chapter 1 Limits

The respecƟve rates at which they do this are very important and determine the
actual value of the limit.

An indeterminate form indicates that one needs to domore work in order to
compute the limit. That work may be algebraic (such as factoring and canceling)
or it may require a tool such as the Squeeze Theorem. In a later secƟon we will
learn a technique called l’Hospital’s Rule that provides another way to handle
indeterminate forms.

Some other common indeterminate forms are∞−∞,∞·0,∞/∞, 00,∞0

and 1∞. Again, keep in mind that these are the “blind” results of evaluaƟng a
limit, and each, in and of itself, has no meaning. The expression ∞ − ∞ does
not really mean “subtract infinity from infinity.” Rather, it means “One quanƟty
is subtracted from the other, but both are growing without bound.” What is the
result? It is possible to get every value between−∞ and∞

Note that 1/0 and ∞/0 are not indeterminate forms, though they are not
exactly valid mathemaƟcal expressions, either. Rather they indicate that the
limit will be∞,−∞, or not exist.

Limits at Infinity and Horizontal Asymptotes

At the beginning of this secƟonwebriefly consideredwhat happens to f(x) =
1/x2 as x grew very large. Graphically, it concerns the behavior of the funcƟon to
the “far right” of the graph. We make this noƟon more explicit in the following
definiƟon.

..
DefiniƟon 6 Limits at Infinity and Horizontal Asymptote

1. We say lim
x→∞

f(x) = L if for every ε > 0 there exists M > 0 such
that if x ≥ M, then |f(x)− L| < ε.

2. We say lim
x→−∞

f(x) = L if for every ε > 0 there existsM < 0 such

that if x ≤ M, then |f(x)− L| < ε.

3. If lim
x→∞

f(x) = L or lim
x→−∞

f(x) = L, we say that y = L is a horizontal
asymptote of f.

We can also define limits such as lim
x→∞

f(x) = ∞ by combining this definiƟon
with DefiniƟon 5.

Notes:
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Figure 1.36: Using a graph and a table
to approximate a horizontal asymptote in
Example 28.

1.6 Limits involving infinity

.. Example 28 ApproximaƟng horizontal asymptotes

Approximate the horizontal asymptote(s) of f(x) =
x2

x2 + 4
.

SÊ½çã®ÊÄ We will approximate the horizontal asymptotes by approxi-
maƟng the limits

lim
x→−∞

x2

x2 + 4
and lim

x→∞

x2

x2 + 4
.

Figure 1.36(a) shows a sketch of f, and part (b) gives values of f(x) for large mag-
nitude values of x. It seems reasonable to conclude from both of these sources
that f has a horizontal asymptote at y = 1.

Later, we will show how to determine this analyƟcally...

Horizontal asymptotes can take on a variety of forms. Figure 1.35(a) shows
that f(x) = x/(x2 + 1) has a horizontal asymptote of y = 0, where 0 is ap-
proached from both above and below.

Figure 1.35(b) shows that f(x) = x/
√
x2 + 1 has two horizontal asymptotes;

one at y = 1 and the other at y = −1.
Figure 1.35(c) shows that f(x) = (sin x)/x has even more interesƟng behav-

ior than at just x = 0; as x approaches±∞, f(x) approaches 0, but oscillates as
it does this.
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Figure 1.35: Considering different types of horizontal asymptotes.

We can analyƟcally evaluate limits at infinity for raƟonal funcƟons once we
understand lim

x→∞
1/x. As x gets larger and larger, the 1/x gets smaller and smaller,

approaching 0. We can, in fact, make 1/x as small as wewant by choosing a large

Notes:
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Chapter 1 Limits

enough value of x. Given ε, we can make 1/x < ε by choosing x > 1/ε. Thus
we have limx→∞ 1/x = 0.

It is now not much of a jump to conclude the following:

lim
x→∞

1
xn

= 0 and lim
x→−∞

1
xn

= 0

Now suppose we need to compute the following limit:

lim
x→∞

x3 + 2x+ 1
4x3 − 2x2 + 9

.

The trick to doing this is to divide through the numerator and denominator by x3
(hence dividing by 1), which is the largest power of x to appear in the funcƟon.
Doing this, we get

lim
x→∞

x3 + 2x+ 1
4x3 − 2x2 + 9

= lim
x→∞

x3 + 2x+ 1
4x3 − 2x2 + 9

· 1/x
3

1/x3

= lim
x→∞

x3/x3 + 2x/x3 + 1/x3

4x3/x3 − 2x2/x3 + 9/x3

= lim
x→∞

1+ 2/x2 + 1/x3

4− 2/x+ 9/x3
.

Then using the rules for limits (which also hold for limits at infinity), as well as
the fact about limits of 1/xn, we see that the limit becomes

1+ 0+ 0
4− 0+ 0

=
1
4
.

This procedure works for any raƟonal funcƟon. In fact, it gives us the follow-
ing theorem.

..
Theorem 11 Limits of RaƟonal FuncƟons at Infinity

Suppose we have a raƟonal funcƟon of the following form:

f(x) =
anxn + an−1xn−1 + · · ·+ a1x+ a0
bmxm + bm−1xm−1 + · · ·+ b1x+ b0

,

where any of the coefficients may be 0 except for an and bm.

1. If n = m, then limx→∞ f(x) = limx→−∞ f(x) = an
bm .

2. If n < m, then limx→∞ f(x) = limx→−∞ f(x) = 0.

3. If n > m, then limx→∞ f(x) and limx→−∞ f(x) are both infinite.

Notes:
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1.6 Limits involving infinity

We can see why this is true. If the highest power of x is the same in both
the numerator and denominator (i.e. n = m), we will be in a situaƟon like the
example above, where we will divide by xn and in the limit all the terms will
approach 0 except for anxn/xn and bmxn/xm. Since n = m, this will leave us with
the limit an/bm. If n < m, then aŌer dividing through by xm, all the terms in the
numerator will approach 0 in the limit, leaving us with 0/bm or 0. If n > m, and
we try dividing through by xn, we end up with all the terms in the denominator
tending toward 0, while the xn term in the numerator does not approach 0. This
is indicaƟve of some sort of infinite limit.

IntuiƟvely, as x gets very large, all the terms in the numerator are small in
comparison to anxn, and likewise all the terms in the denominator are small
compared to bnxm. If n = m, looking only at these two important terms, we
have (anxn)/(bnxm). This reduces to an/bm. If n < m, the funcƟon behaves
like an/(bmxm−n), which tends toward 0. If n > m, the funcƟon behaves like
anxn−m/bm, which will tend to either ∞ or −∞ depending on the values of n,
m, an, bm and whether you are looking for limx→∞ f(x) or limx→−∞ f(x).

With care, we can quickly evaluate limits at infinity for a large number of
funcƟons by considering the largest powers of x. For instance, consider again
lim

x→±∞

x√
x2 + 1

.When x is very large, x2 + 1 ≈ x2. Thus√
x2 + 1 ≈

√
x2 = |x|, and

x√
x2 + 1

≈ x
|x|

.

This expression is 1 when x is posiƟve and−1 when x is negaƟve. Hence we get
asymptotes of y = 1 and y = −1, respecƟvely.

.. Example 29 ..Finding a limit of a raƟonal funcƟon

Confirm analyƟcally that y = 1 is the horizontal asymptote of f(x) =
x2

x2 + 4
, as

approximated in Example 28.

SÊ½çã®ÊÄ Before using Theorem 11, let’s use the technique of evalu-
aƟng limits at infinity of raƟonal funcƟons that led to that theorem. The largest
power of x in f is 2, so divide the numerator and denominator of f by x2, then
take limits.

lim
x→∞

x2

x2 + 4
= lim

x→∞

x2/x2

x2/x2 + 4/x2

= lim
x→∞

1
1+ 4/x2

=
1

1+ 0
= 1.

Notes:
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Figure 1.37: Visualizing the funcƟons in
Example 30.

Chapter 1 Limits

We can also use Theorem 11 directly; in this case n = m so the limit is the
raƟo of the leading coefficients of the numerator and denominator, i.e., 1/1 = 1. ...

.. Example 30 Finding limits of raƟonal funcƟons
Use Theorem 11 to evaluate each of the following limits.

1. lim
x→−∞

x2 + 2x− 1
x3 + 1

2. lim
x→∞

x2 + 2x− 1
1− x− 3x2

3. lim
x→∞

x2 − 1
3− x

SÊ½çã®ÊÄ

1. The highest power of x is in the denominator. Therefore, the limit is 0; see
Figure 1.37(a).

2. The highest power of x is x2, which occurs in both the numerator and de-
nominator. The limit is therefore the raƟo of the coefficients of x2, which
is−1/3. See Figure 1.37(b).

3. The highest power of x is in the numerator so the limit will be∞ or−∞.
To see which, consider only the dominant terms from the numerator and
denominator, which are x2 and−x. The expression in the limit will behave
like x2/(−x) = −x for large values of x. Therefore, the limit is −∞. See
Figure 1.37(c).

..

Chapter Summary

In this chapter we:

• defined the limit,

• found accessible ways to approximate their values numerically and graph-
ically,

• developed a not–so–easy method of proving the value of a limit (ε − δ
proofs),

• explored when limits do not exist,

• defined conƟnuity and explored properƟes of conƟnuous funcƟons, and

Notes:
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1.6 Limits involving infinity

• considered limits that involved infinity.

Why? MathemaƟcs is famous for building on itself and calculus proves to be
no excepƟon. In the next chapter we will be interested in “dividing by 0.” That
is, we will want to divide a quanƟty by a smaller and smaller number and see
what value the quoƟent approaches. In other words, wewill want to find a limit.
These limits will enable us to, among other things, determine exactly how fast
something is moving when we are only given posiƟon informaƟon.

Later, wewill want to add up an infinite list of numbers. Wewill do so by first
adding up a finite string of numbers, then take a limit as the number of things
we are adding approaches infinity. Surprisingly, this sum oŌen is finite; that is,
we can add up an infinite list of numbers and get, for instance, 42.

These are just two quick examples of why we are interested in limits. Many
students dislike this topic when they are first introduced to it, but over Ɵme an
appreciaƟon is oŌen formed based on the scope of its applicability.

Notes:
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Exercises 1.6
Terms and Concepts
1. T/F: If lim

x→5
f(x) = ∞, then we are implicitly staƟng that the

limit exists.

2. T/F: If lim
x→∞

f(x) = 5, then we are implicitly staƟng that the
limit exists.

3. T/F: If lim
x→1−

f(x) = −∞, then lim
x→1+

f(x) = ∞

4. T/F: If lim
x→5

f(x) = ∞, then f has a verƟcal asymptote at
x = 5.

5. T/F:∞/0 is not an indeterminate form.

6. List 5 indeterminate forms.

7. Construct a funcƟon with a verƟcal asymptote at x = 5 and
a horizontal asymptote at y = 5.

8. Let lim
x→7

f(x) = ∞. Explain how we know that f is/is not
conƟnuous at x = 7.

Problems

In Exercises 9 – 14, evaluate the given limits using the graph
of the funcƟon.

9. f(x) =
1

(x+ 1)2

(a) lim
x→−1−

f(x)

(b) lim
x→−1+

f(x)

.....
−2

.
−1

.

50

.

100

. x.

y

10. f(x) =
1

(x− 3)(x− 5)2
.

(a) lim
x→3−

f(x)

(b) lim
x→3+

f(x)

(c) lim
x→3

f(x)

(d) lim
x→5−

f(x)

(e) lim
x→5+

f(x)

(f) lim
x→5

f(x)

...

..

2

.

4

.

6

.

−50

.

50

.

x

.

y

11. f(x) =
1

ex + 1

(a) lim
x→−∞

f(x)

(b) lim
x→∞

f(x)

(c) lim
x→0−

f(x)

(d) lim
x→0+

f(x)
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12. f(x) = x2 sin(πx)

(a) lim
x→−∞

f(x)

(b) lim
x→∞

f(x)
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.
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.
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100
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13. f(x) = cos(x)

(a) lim
x→−∞

f(x)

(b) lim
x→∞

f(x)

..... −1.
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.
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14. f(x) = 2x + 10

(a) lim
x→−∞

f(x)

(b) lim
x→∞

f(x)
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In Exercises 15 – 18, numerically approximate the following
limits:

(a) lim
x→3−

f(x)

(b) lim
x→3+

f(x)

(c) lim
x→3

f(x)

15. f(x) =
x2 − 1

x2 − x− 6

16. f(x) =
x2 + 5x− 36

x3 − 5x2 + 3x+ 9

17. f(x) =
x2 − 11x+ 30

x3 − 4x2 − 3x+ 18

18. f(x) =
x2 − 9x+ 18
x2 − x− 6

In Exercises 19 – 24, idenƟfy the horizontal and verƟcal
asymptotes, if any, of the given funcƟon.

19. f(x) =
2x2 − 2x− 4
x2 + x− 20

20. f(x) =
−3x2 − 9x− 6
5x2 − 10x− 15

21. f(x) =
x2 + x− 12

7x3 − 14x2 − 21x

22. f(x) =
x2 − 9
9x− 9

23. f(x) =
x2 − 9
9x+ 27

24. f(x) =
x2 − 1
−x2 − 1

In Exercises 25 – 28, evaluate the given limit.

25. lim
x→∞

x3 + 2x2 + 1
x− 5

26. lim
x→∞

x3 + 2x2 + 1
5− x

27. lim
x→−∞

x3 + 2x2 + 1
x2 − 5

28. lim
x→−∞

x3 + 2x2 + 1
5− x2

Review
29. Use an ε− δ proof to show that

lim
x→1

5x− 2 = 3.

30. Let lim
x→2

f(x) = 3 and lim
x→2

g(x) = −1. Evaluate the following
limits.

(a) lim
x→2

(f+ g)(x)

(b) lim
x→2

(fg)(x)

(a) lim
x→2

(f/g)(x)

(b) lim
x→2

f(x)g(x)

31. Let f(x) =
{

x2 − 1 x < 3
x+ 5 x ≥ 3 .

Is f conƟnuous everywhere?

32. Evaluate the limit: lim
x→e

ln x.
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2: D�Ù®ò�ã®ò�Ý

The previous chapter introduced the most fundamental of calculus topics: the
limit. This chapter introduces the second most fundamental of calculus topics:
the derivaƟve. Limits describe where a funcƟon is going; derivaƟves describe
how fast the funcƟon is going.

2.1 Instantaneous Rates of Change: The DerivaƟve

A common amusement park ride liŌs riders to a height then allows them to
freefall a certain distance before safely stopping them. Suppose such a ride
drops riders from a height of 150 feet. Student of physics may recall that the
height (in feet) of the riders, t seconds aŌer freefall (and ignoring air resistance,
etc.) can be accurately modeled by f(t) = −16t2 + 150.

Using this formula, it is easy to verify that, without intervenƟon, the riders
will hit the ground at t = 2.5

√
1.5 ≈ 3.06 seconds. Suppose the designers of

the ride decide to begin slow the riders’ fall aŌer 2 seconds (corresponding to a
height of 86 Ō.). How fast will the riders be traveling at that Ɵme?

We have been given a posiƟon funcƟon, but what we want to compute is a
velocity at a specific point in Ɵme, i.e., we want an instantaneous velocity. We
do not currently know how to calculate this.

However, wedo know fromcommonexperience how to calculate an average
velocity. (If we travel 60 miles in 2 hours, we know we had an average velocity
of 30 mph.) We looked at this concept in SecƟon 1.1 when we introduced the
difference quoƟent. We have

change in distance
change in Ɵme

=
“ rise ”
run

= average velocity.

We can approximate the instantaneous velocity at t = 2 by considering the
average velocity over some Ɵme period containing t = 2. If we make the Ɵme
interval small, we will get a good approximaƟon. (This fact is commonly used.
For instance, high speed cameras are used to track fast moving objects. Dis-
tances are measured over a fixed number of frames to generate an accurate
approximaƟon of the velocity.)

Consider the interval from t = 2 to t = 3 (just before the riders hit the



h
Average Velocity

Ō/s

1 −80
0.5 −72
0.1 −65.6
0.01 −64.16
0.001 −64.016

Figure 2.1: ApproximaƟng the instan-
taneous velocity with average velociƟes
over a small Ɵme period h.

Chapter 2 DerivaƟves

ground). On that interval, the average velocity is

f(3)− f(2)
3− 2

=
f(3)− f(3)

1
= −80 Ō/s,

where the minus sign indicates that the riders are moving down. By narrowing
the interval we consider, we will likely get a beƩer approximaƟon of the instan-
taneous velocity. On [2, 2.5] we have

f(2.5)− f(2)
2.5− 2

=
f(2.5)− f(2)

0.5
= −72 Ō/s.

We can do this for smaller and smaller intervals of Ɵme. For instance, over
a Ɵme span of 1/10th of a second, i.e., on [2, 2.1], we have

f(2.1)− f(2)
2.1− 2

=
f(2.1)− f(2)

0.1
= −65.6 Ō/s.

Over a Ɵme span of 1/100th of a second, on [2, 2.01], the average velocity is

f(2.01)− f(2)
2.01− 2

=
f(2.01)− f(2)

0.01
= −64.16 Ō/s.

Whatwe are really compuƟng is the average velocity on the interval [2, 2+h]
for small values of h. That is, we are compuƟng

f(2+ h)− f(2)
h

where h is small.
What we really want is for h = 0, but this, of course, returns the familiar

“0/0” indeterminate form. So we employ a limit, as we did in SecƟon 1.1.
We can approximate the value of this limit numerically with small values of

h as seen in Figure 2.1. It looks as though the velocity is approaching −64 Ō/s.
CompuƟng the limit directly gives

lim
h→0

f(2+ h)− f(2)
h

= lim
h→0

−16(2+ h)2 + 150− (−16(2)2 + 150)
h

= lim
h→0

−64h− 16h2

h
= lim

h→0
−64− 16h

= −64.

Graphically, we can view the average velociƟes we computed numerically as
the slopes of secant lines on the graph of f going through the points (2, f(2)) and

Notes:
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2.1 Instantaneous Rates of Change: The DerivaƟve

(2+h, f(2+h)). In Figure 2.2, the secant line corresponding to h = 1 is shown in
three contexts. Figure 2.2(a) shows a “zoomed out” version of f with its secant
line. In (b), we zoom in around the points of intersecƟon between f and the
secant line. NoƟce how well this secant line approximates f between those two
points – it is a common pracƟce to approximate funcƟons with straight lines.

As h → 0, these secant lines approach the tangent line, a line that goes
through the point (2, f(2)) with the special slope of −64. In parts (c) and (d) of
Figure 2.2, we zoom in around the point (2, 86). In (c) we see the secant line,
which approximates f well, but not as well the tangent line shown in (d).
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Figure 2.2: Parts (a), (b) and (c) show the secant line to f(x) with h = 1, zoomed in
different amounts. Part (d) shows the tangent line to f at x = 2.

We have just introduced a number of important concepts that we will flesh
out more within this secƟon. First, we formally define two of them.

Notes:
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Chapter 2 DerivaƟves

..
DefiniƟon 7 DerivaƟve at a Point

Let f be a conƟnuous funcƟon on an open interval I and let c be in I. The
derivaƟve of f at c, denoted f ′(c), is

lim
h→0

f(c+ h)− f(c)
h

,

provided the limit exists. If the limit exists, we say that f is differenƟable
at c; if the limit does not exist, then f is not differenƟable at c. If f is
differenƟable at every point in I, then f is differenƟable on I.

..
DefiniƟon 8 Tangent Line

Let f be conƟnuous on an open interval I and differenƟable at c, for some
c in I. The line with equaƟon ℓ(x) = f ′(c)(x−c)+ f(c) is the tangent line
to the graph of f at c; that is, it is the line through (c, f(c)) whose slope
is the derivaƟve of f at c.

Some examples will help us understand these definiƟons.

.. Example 31 ..Finding derivaƟves and tangent lines
Let f(x) = 3x2 + 5x− 7. Find:

1. f ′(1)

2. The equaƟon of the tangent line
to the graph of f at x = 1.

3. f ′(3)

4. The equaƟon of the tangent line
to the graph f at x = 3.

SÊ½çã®ÊÄ

1. We compute this directly using DefiniƟon 7.

f ′(1) = lim
h→0

f(1+ h)− f(1)
h

= lim
h→0

3(1+ h)2 + 5(1+ h)− 7− (3(1)2 + 5(1)− 7)
h

= lim
h→0

3h2 + 11h
h

= lim
h→0

3h+ 11 = 11.

Notes:

58



..... 1. 2. 3. 4.

20

.

40

.

60

.
x

.

y

Figure 2.3: A graph of f(x) = 3x2+5x−7
and its tangent lines at x = 1 and x = 3.

2.1 Instantaneous Rates of Change: The DerivaƟve

2. The tangent line at x = 1 has slope f ′(1) and goes through the point
(1, f(1)) = (1, 1). Thus the tangent line has equaƟon, in point-slope form,
y = 11(x− 1) + 1. In slope-intercept form we have y = 11x− 10.

3. Again, using the definiƟon,

f ′(3) = lim
h→0

f(3+ h)− f(3)
h

= lim
h→0

3(3+ h)2 + 5(3+ h)− 7− (3(3)2 + 5(3)− 7)
h

= lim
h→0

3h2 + 23h
h

= lim
h→0

3h+ 23

= 23.

4. The tangent line at x = 3has slope 23 and goes through thepoint (3, f(3)) =
(3, 35). Thus the tangent line has equaƟon y = 23(x−3)+35 = 23x−34.

A graph of f is given in Figure 2.3 along with the tangent lines at x = 1 and
x = 3. ...

Another important line that canbe createdusing informaƟon from thederiva-
Ɵve is the normal line. It is perpendicular to the tangent line, hence its slope is
the opposite–reciprocal of the tangent line’s slope.

..
DefiniƟon 9 Normal Line

Let f be conƟnuous on an open interval I and differenƟable at c, for some
c in I. The normal line to the graph of f at c is the line with equaƟon

n(x) =
−1
f ′(c)

(x− c) + f(c),

where f ′(c) ̸= 0. When f ′(c) = 0, the normal line is the verƟcal line
through

(
c, f(c)

)
; that is, x = c.

.. Example 32 ..Finding equaƟons of normal lines
Let f(x) = 3x2+5x−7, as in Example 31. Find the equaƟons of the normal lines
to the graph of f at x = 1 and x = 3.

SÊ½çã®ÊÄ In Example 31, we found that f ′(1) = 11. Hence at x = 1,

Notes:
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Figure 2.4: A graph of f(x) = 3x2+5x−7,
along with its normal line at x = 1.

Chapter 2 DerivaƟves

the normal line will have slope−1/11. An equaƟon for the normal line is

n(x) =
−1
11

(x− 1) + 1.

The normal line is ploƩed with y = f(x) in Figure 2.4. Note how the line looks
perpendicular to f. (A key word here is “looks.” MathemaƟcally, we say that the
normal line is perpendicular to f at x = 1 as the slope of the normal line is the
opposite–reciprocal of the slope of the tangent line. However, normal lines may
not always look perpendicular. The aspect raƟo of the graph plays a big role in
this.)

We also found that f ′(3) = 23, so the normal line to the graph of f at x = 3
will have slope−1/23. An equaƟon for the normal line is

n(x) =
−1
23

(x− 3) + 35.
...

Linear funcƟons are easy to work with; many funcƟons that arise in the
course of solving real problems are not easy to work with. A common prac-
Ɵce in mathemaƟcal problem solving is to approximate difficult funcƟons with
not–so–difficult funcƟons. Lines are a common choice. It turns out that at any
given point on a differenƟable funcƟon f, the best linear approximaƟon to f is its
tangent line. That is one reason we’ll spend considerable Ɵme finding tangent
lines to funcƟons.

One type of funcƟon that does not benefit from a tangent–line approxima-
Ɵon is a line; it is rather simple to recognize that the tangent line to a line is the
line itself. We look at this in the following example.

.. Example 33 ..Finding the DerivaƟve of a Line
quad Consider f(x) = 3x+ 5. Find the equaƟon of the tangent line to f at x = 1
and x = 7.

SÊ½çã®ÊÄ We find the slope of the tangent line by using DefiniƟon 7.

f ′(1) = lim
h→0

f(1+ h)− f(1)
h

= lim
h→0

3(1+ h) + 5− (3+ 5)
h

= lim
h→0

3h
h

= lim
h→0

3

= 3.

Notes:
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Figure 2.5: f(x) = sin x graphed with an
approximaƟon to its tangent line at x = 0.

2.1 Instantaneous Rates of Change: The DerivaƟve

We just found that f ′(1) = 3. That is, we found the instantaneous rate of
change of f(x) = 3x + 5 is 3. This is not surprising; lines are characterized by
being the only funcƟons with a constant rate of change. That rate of change
is called the slope of the line. Since their rates of change are constant, their
instantaneous rates of change are always the same; they are all the slope.

So given a line f(x) = ax + b, the derivaƟve at any point x will be a; that is,
f ′(x) = a.

It is now easy to see that the tangent line to the graph of f at x = 1 is just f,
with the same being true for x = 7. ...

We oŌen desire to find the tangent line to the graph of a funcƟon without
knowing the actual derivaƟve of the funcƟon. In these cases, the best we may
be able to do is approximate the tangent line. We demonstrate this in the next
example.

.. Example 34 Numerical ApproximaƟon of the Tangent Line
Approximate the equaƟon of the tangent line to the graph of f(x) = sin x at
x = 0.

SÊ½çã®ÊÄ In order to find the equaƟon of the tangent line, we need a
slope and a point. The point is given to us: (0, sin 0) = (0, 0). To compute the
slope, we need the derivaƟve. This is where we will make an approximaƟon.
Recall that

f ′(0) ≈ sin(0+ h)− sin 0
h

for a small value of h. We choose (somewhat arbitrarily) to let h = 0.1. Thus

f ′(0) ≈ sin(0.1)− sin 0
0.1

≈ 0.9983.

Thus our approximaƟon of the equaƟon of the tangent line is y = 0.9983(x −
0) + 0 = 0.9983x; it is graphed in Figure 2.5. The graph seems to imply the
approximaƟon is rather good. ..

Recall from SecƟon 1.3 that lim
x→0

sin x
x

= 1, meaning for values of x near 0,
sin x ≈ x. Since the slope of the line y = x is 1 at x = 0, it should seem rea-
sonable that “the slope of f(x) = sin x” is near 1 at x = 0. In fact, since we
approximated the value of the slope to be 0.9983, we might guess the actual
value is 1. We’ll come back to this later.

Consider again Example 31. To find the derivaƟve of f at x = 1, we needed to
evaluate a limit. To find the derivaƟve of f at x = 3, we needed to again evaluate
a limit. We have this process:

Notes:
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..input specific
number c

. do something
to f and c

. return
number f ′(c)

This process describes a funcƟon; given one input (the value of c), we return
exactly one output (the value of f ′(c)). The “do something” box is where the
tedious work (taking limits) of this funcƟon occurs.

Instead of applying this funcƟon repeatedly for different values of c, let us
apply it just once to the variable x. We then take a limit just once. The process
now looks like:

..input variable x. do something
to f and x

. return
funcƟon f ′(x)

The output is the “derivaƟve funcƟon,” f ′(x). The f ′(x) funcƟon will take a
number c as input and return the derivaƟve of f at c. This calls for a definiƟon.

..
DefiniƟon 10 DerivaƟve FuncƟon

Let f be a differenƟable funcƟon on an open interval I. The funcƟon

f ′(x) = lim
h→0

f(x+ h)− f(x)
h

is the derivaƟve of f.

NotaƟon:
Let y = f(x). The following notaƟon all represents the derivaƟve:

f ′(x) = y′ =
dy
dx

=
df
dx

=
d
dx

(f) =
d
dx

(y).

Important: The notaƟon
dy
dx

is one symbol; it is not the fracƟon “dy/dx”. The
notaƟon, while somewhat confusing at first, was chosen with care. A fracƟon–
looking symbol was chosen because the derivaƟve has many fracƟon–like prop-
erƟes. Among other places, we see these properƟes atworkwhenwe talk about
the units of the derivaƟve, when we discuss the Chain Rule, and when we learn
about integraƟon (topics that appear in later secƟons and chapters).

Examples will help us understand this definiƟon.

.. Example 35 ..Finding the derivaƟve of a funcƟon
Let f(x) = 3x2 + 5x− 7 as in Example 31. Find f ′(x).

Notes:
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SÊ½çã®ÊÄ We apply DefiniƟon 10.

f ′(x) = lim
h→0

f(x+ h)− f(x)
h

= lim
x→0

3(x+ h)2 + 5(x+ h)− 7− (3x2 + 5x− 7)
h

= lim
x→0

3h2 + 6xh+ 5h
h

= lim
x→0

3h+ 6x+ 5

= 6x+ 5

So f ′(x) = 6x+5. Recall earlier we found that f ′(1) = 11 and f ′(3) = 23. Note
our new computaƟon of f ′(x) affirm these facts. ...

.. Example 36 ..Finding the derivaƟve of a funcƟon
Let f(x) =

1
x+ 1

. Find f ′(x).

SÊ½çã®ÊÄ We apply DefiniƟon 10.

f ′(x) = lim
h→0

f(x+ h)− f(x)
h

= lim
h→0

1
x+h+1 −

1
x+1

h

Now find common denominator then subtract; pull 1/h out front to facilitate
reading.

= lim
h→0

1
h
·
(

x+ 1
(x+ 1)(x+ h+ 1)

− x+ h+ 1
(x+ 1)(x+ h+ 1)

)
= lim

h→0

1
h
·
(
x+ 1− (x+ h+ 1)
(x+ 1)(x+ h+ 1)

)

= lim
h→0

1
h
·
(

−h
(x+ 1)(x+ h+ 1)

)
= lim

h→0

−1
(x+ 1)(x+ h+ 1)

=
−1

(x+ 1)(x+ 1)

=
−1

(x+ 1)2

Notes:
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Figure 2.6: The absolute value funcƟon,
f(x) = |x|. NoƟce how the slope of
the lines (and hence the tangent lines)
abruptly changes at x = 0.
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So f ′(x) =
−1

(x+ 1)2
. To pracƟce our notaƟon, we could also state

d
dx

(
1

x+ 1

)
=

−1
(x+ 1)2

....

.. Example 37 Finding the derivaƟve of a funcƟon
Find the derivaƟve of f(x) = sin x.

SÊ½çã®ÊÄ Before applying DefiniƟon 10, note that once this is found,
we can find the actual tangent line to f(x) = sin x at x = 0, whereas we seƩled
for an approximaƟon in Example 34.

f ′(x) = lim
h→0

sin(x+ h)− sin x
h

(
Use trig idenƟty

sin(x + h) = sin x cos h + cos x sin h

)
= lim

h→0

sin x cos h+ cos x sin h− sin x
h

(regroup)

= lim
h→0

sin x(cos h− 1) + cos x sin h
h

(split into two fracƟons)

= lim
h→0

(
sin x(cos h− 1)

h
+

cos x sin h
h

) (
use lim

h→0

cos h − 1
h

= 0 and lim
h→0

sin h
h

= 1
)

= sin x · 0+ cos x · 1
= cos x !

We have found that when f(x) = sin x, f ′(x) = cos x. This should be somewhat
surprising; the result of a tedious limit process and the sine funcƟon is a nice
funcƟon. Then again, perhaps this is not enƟrely surprising. The sine funcƟon
is periodic – it repeats itself on regular intervals. Therefore its rate of change
also repeats itself on the same regular intervals. We should have known the
derivaƟve would be periodic; we now know exactly which periodic funcƟon it is.

Thinking back to Example 34, we can find the slope of the tangent line to
f(x) = sin x at x = 0 using our derivaƟve. We approximated the slope as 0.9983;
we now know the slope is exactly cos 0 = 1. ..

.. Example 38 ..Finding the derivaƟve of a piecewise defined funcƟon
Find the derivaƟve of the absolute value funcƟon,

f(x) = |x| =
{

−x x < 0
x x ≥ 0 .

See Figure 2.6.

SÊ½çã®ÊÄ We need to evaluate lim
h→0

f(x+ h)− f(x)
h

. As f is piecewise–
defined, we need to consider separately the limits when x < 0 and when x > 0.

Notes:
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Figure 2.7: A graph of the derivaƟve of
f(x) = |x|.
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When x < 0:

d
dx
(
− x
)
= lim

h→0

−(x+ h)− (−x)
h

= lim
h→0

−h
h

= lim
h→0

−1

= −1.

When x > 0, a similar computaƟon shows that
d
dx
(
x
)
= 1.

We need to also find the derivaƟve at x = 0. By the definiƟon of the deriva-
Ɵve at a point, we have

f ′(0) = lim
h→0

f(0+ h)− f(0)
h

.

Since x = 0 is the point where our funcƟon’s definiƟon switches from one piece
to other, we need to consider leŌ and right-hand limits. Consider the following,
where we compute the leŌ and right hand limits side by side.

lim
h→0−

f(0+ h)− f(0)
h

=

lim
h→0−

−h− 0
h

=

lim
h→0−

−1 = −1

lim
h→0+

f(0+ h)− f(0)
h

=

lim
h→0+

h− 0
h

=

lim
h→0+

1 = 1

The last lines of each column tell the story: the leŌ and right hand limits are not
equal. Therefore the limit does not exist at 0, and f is not differenƟable at 0. So
we have

f ′(x) =
{

−1 x < 0
1 x > 0 .

At x = 0, f ′(x) does not exist; there is a jump disconƟnuity at 0; see Figure 2.7.
So f(x) = |x| is differenƟable everywhere except at 0. ...

The point of non-differenƟability came where the piecewise defined func-
Ɵon switched from one piece to the other. Our next example shows that this
does not always cause trouble.

.. Example 39 ..Finding the derivaƟve of a piecewise defined funcƟon

Find the derivaƟve of f(x), where f(x) =
{

sin x x ≤ π/2
1 x > π/2 . See Figure 2.8.

Notes:
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SÊ½çã®ÊÄ Using Example 37, we know that when x < π/2, f ′(x) =
cos x. It is easy to verify that when x > π/2, f ′(x) = 0; consider:

lim
x→0

f(x+ h)− f(x)
h

= lim
x→0

1− 1
h

= lim
h→0

0 = 0.

So far we have
f ′(x) =

{
cos x x < π/2
0 x > π/2 .

We sƟll need to find f ′(π/2). NoƟce at x = π/2 that both pieces of f ′ are 0,
meaning we can state that f ′(π/2) = 0.

Being more rigorous, we can again evaluate the difference quoƟent limit at
x = π/2, uƟlizing again leŌ and right–hand limits:

lim
h→0−

f(π/2+ h)− f(π/2)
h

=

lim
h→0−

sin(π/2+ h)− sin(π/2)
h

=

lim
h→0−

sin( π
2 ) cos(h) + sin(h) cos( π

2 )− sin( π
2 )

h
=

lim
h→0−

1 · cos(h) + sin(h) · 0− 1
h

=

0

lim
h→0+

f(π/2+ h)− f(π/2)
h

=

lim
h→0+

1− 1
h

=

lim
h→0+

0
h
=

0

Since both the leŌ and right hand limits are 0 at x = π/2, the limit exists and
f ′(π/2) exists (and is 0). Therefore we can fully write f ′ as

f ′(x) =
{

cos x x ≤ π/2
0 x > π/2 .

See Figure 2.9 for a graph of this funcƟon. ...

Recall we pseudo–defined a conƟnuous funcƟon as one in which we could
sketch its graph without liŌing our pencil. We can give a pseudo–definiƟon for
differenƟability as well: it is a conƟnuous funcƟon that does not have any “sharp
corners.” One such sharp corner is shown in Figure 2.6. Even though the func-
Ɵon f in Example 39 is piecewise–defined, the transiƟon is “smooth” hence it is
differenƟable. Note how in the graph of f in Figure 2.8 it is difficult to tell when
f switches from one piece to the other; there is no “corner.”

This secƟon defined the derivaƟve; in some sense, it answers the quesƟon of
“What is the derivaƟve?” The next secƟon addresses the quesƟon “What does
the derivaƟvemean?”

Notes:
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Exercises 2.1
Terms and Concepts
1. T/F: Let f be a posiƟon funcƟon. The average rate of change

on [a, b] is the slope of the line through the points (a, f(a))
and (b, f(b)).

2. T/F: The definiƟon of the derivaƟve of a funcƟon at a point
involves taking a limit.

3. In your own words, explain the difference between the av-
erage rate of change and instantaneous rate of change.

4. In your own words, explain the difference between Defini-
Ɵons 7 and 10.

5. Let y = f(x). Give three different notaƟons equivalent to
“f ′(x).”

Problems
In Exercises 6 – 12, use the definiƟon of the derivaƟve to com-
pute the derivaƟve of the given funcƟon.

6. f(x) = 6

7. f(x) = 2x

8. h(t) = 4− 3t

9. g(x) = x2

10. f(x) = 3x2 − x+ 4

11. h(x) =
1
x

12. r(s) =
1

s− 2

In Exercises 13 – 19, a funcƟon and an x–value c are given.
(Note: these funcƟons are the same as those given in Exer-
cises 6 through 12.)

(a) Find the tangent line to the graph of the funcƟon at c.

(b) Find the normal line to the graph of the funcƟon at c.

13. f(x) = 6, at x = −2.

14. f(x) = 2x, at x = 3.

15. h(x) = 4− 3x, at x = 7.

16. g(x) = x2, at x = 2.

17. f(x) = 3x2 − x+ 4, at x = −1.

18. h(x) =
1
x
, at x = −2.

19. r(x) =
1

x− 2
, at x = 3.

In Exercises 20 – 23, a funcƟon f and an x–value a is given.
Approximate the equaƟon of the tangent line to the graph of
f at x = a by numerically approximaƟng f ′(a), using h = 0.1.

20. f(x) = x2 + 2x+ 1, x = 3

21. f(x) =
10

x+ 1
, x = 9

22. f(x) = ex, x = 2

23. f(x) = cos x, x = 0

24. The graph of f(x) = x2 − 1 is shown.

(a) Use the graph to approximate the slope of the tan-
gent line to f at the following points: (−1, 0), (0,−1)
and (2, 3).

(b) Using the definiƟon, find f ′(x).

(c) Find the slope of the tangent line at the points
(−1, 0), (0,−1) and (2, 3).
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25. The graph of f(x) =
1

x+ 1
is shown.

(a) Use the graph to approximate the slope of the tan-
gent line to f at the following points: (0, 1) and
(1, 0.5).

(b) Using the definiƟon, find f ′(x).

(c) Find the slope of the tangent line at the points (0, 1)
and (1, 0.5).
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In Exercises 26 – 29, a graph of a funcƟon f(x) is given. Using
the graph, sketch f ′(x).
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30. Using the graph of g(x) below, answer the following ques-
Ɵons.

(a) Where is g(x) > 0?

(b) Where is g(x) < 0?

(c) Where is g(x) = 0?

(d) Where is g′(x) < 0?

(e) Where is g′(x) > 0?

(f) Where is g′(x) = 0?
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Review

31. Approximate lim
x→5

x2 + 2x− 35
x2 − 10.5x+ 27.5

.

32. Use the BisecƟon Method to approximate, accurate to two
decimal places, the root of g(x) = x3 + x2 + x − 1 on
[0.5, 0.6].

33. Give intervals on which each of the following funcƟons are
conƟnuous.

(a)
1

ex + 1

(b)
1

x2 − 1

(c)
√
5− x

(d)
√
5− x2

34. Use the graph of f(x) provided to answer the following.

(a) lim
x→−3−

f(x) =?

(b) lim
x→−3+

f(x) =?

(c) lim
x→−3

f(x) =?

(d) Where is f conƟnu-
ous?
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2.2 InterpretaƟons of the DerivaƟve

2.2 InterpretaƟons of the DerivaƟve

The previous secƟon defined the derivaƟve of a funcƟon and gave examples of
how to compute it using its definiƟon (i.e., using limits). The secƟon also started
with a brief moƟvaƟon for this definiƟon, that is, finding the instantaneous ve-
locity of a falling object given its posiƟon funcƟon. The next secƟon will give us
more accessible tools for compuƟng the derivaƟve, tools that are easier to use
than repeated use of limits.

This secƟon falls in between the “What is the definiƟon of the derivaƟve?”
and “How do I compute the derivaƟve?” secƟons. Here we are concerned with
“What does the derivaƟve mean?”, or perhaps, when read with the right em-
phasis, “What is the derivaƟve?” We offer two interconnected interpretaƟons
of the derivaƟve, hopefully explaining why we care about it and why it is worthy
of study.

InterpretaƟonof theDerivaƟve #1: Instantaneous Rate of Change

The previous secƟon started with an example of using the posiƟon of an
object (in this case, a falling amusement–park rider) to find the object’s veloc-
ity. This type of example is oŌen used when introducing the derivaƟve because
we tend to readily recognize that velocity is the instantaneous rate of change
of posiƟon. In general, if f is a funcƟon of x, then f ′(x) measures the instan-
taneous rate of change of f with respect to x. Put another way, the deriva-
Ɵve answers “When x changes, at what rate does f change?” Thinking back to
the amusement–park ride, we asked “When Ɵme changed, at what rate did the
height change?” and found the answer to be “By−64 feet per second.”

Now imagine driving a car and looking at the speedometer, which reads “60
mph.” Five minutes later, you wonder how far you have traveled. Certainly, lots
of things could have happened in those 5 minutes; you could have intenƟonally
sped up significantly, you might have come to a complete stop, you might have
slowed to 20 mph as you passed through construcƟon. But suppose that you
know, as the driver, none of these things happened. You know you maintained
a fairly consistent speed over those 5 minutes. What is a good approximaƟon of
the distance traveled?

One could argue the only good approximaƟon, given the informaƟon pro-
vided, would be based on “distance = rate × Ɵme.” In this case, we assume a
constant rate of 60 mph with a Ɵme of 5/60 hours. Hence we would approxi-
mate the distance traveled as 5 miles.

Referring back to the falling amusement–park ride, knowing that at t = 2 the
velocity was −64 Ō/s, we could reasonably assume that 1 second later the rid-

Notes:

69



Chapter 2 DerivaƟves

ers’ height would have dropped by about 64 feet. Knowing that the riders were
acceleraƟng as they fell would inform us that this is an under–approximaƟon. If
all we knew was that f(2) = 86 and f ′(2) = −64, we’d know that we’d have to
stop the riders quickly otherwise they would hit the ground!

Units of the DerivaƟve

It is useful to recognize the units of the derivaƟve funcƟon. If y is a funcƟon
of x, i.e., y = f(x) for some funcƟon f, and y is measured in feet and x in seconds,
then the units of y′ = f ′ are “feet per second,” commonly wriƩen as “Ō/s.” In
general, if y is measured in units P and x is measured in units Q, then y′ will be
measured in units “P per Q”, or “P/Q.” Here we see the fracƟon–like behavior
of the derivaƟve in the notaƟon:

the units of
dy
dx

are
units of y
units of x

.

.. Example 40 The meaning of the derivaƟve: World PopulaƟon
Let P(t) represent the world populaƟon t minutes aŌer 12:00 a.m., January 1,
2012. It is fairly accurate to say that P(0) = 7, 028, 734, 178 (www.prb.org). It
is also fairly accurate to state that P′(0) = 156; that is, at midnight on January 1,
2012, the populaƟon of the world was growing by about 156 people per minute
(note the units). Twenty days later (or, 28,800 minutes later) we could reason-
ably assume the populaƟon grew by about 28, 800 ·156 = 4, 492, 800 people. ..

.. Example 41 The meaning of the derivaƟve: Manufacturing

The term widget is an economic term for a generic unit of manufacturing
output. Suppose a company produces widgets, and knows that the market sup-
ports a price of $10 per widget. Let P(n) give the profit, in dollars, earned by
manufacturing and selling n widgets. The company likely cannot make a (pos-
iƟve) profit making just one widget; the start–up costs will likely exceed $10.
MathemaƟcally, we would write this as P(1) < 0.

What do P(1000) = 500 and P′(1000) = 0.25mean? Approximate P(1100).

SÊ½çã®ÊÄ The equaƟon P(1000) = 500 means that selling 1,000 wid-
gets returns a profit of $500. We interpret P′(1000) = 0.25 as meaning that the
profit per widget is increasing at rate of $0.25 per widget (the units are “dollars
perwidget.”) Sincewehave no other informaƟon to use, our best approximaƟon
for P(1100) is:

P(1100) ≈ P(1000) + P′(1000)× 100 = $500+ 100 · 0.25 = $525.

We approximate that selling 1,100 widgets returns a profit of $525. ..

Notes:
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The previous examples made use of an important approximaƟon tool that
we first used in our previous “driving a car at 60 mph” example at the begin-
ning of this secƟon. Five minutes aŌer looking at the speedometer, our best
approximaƟon for distance traveled assumed the rate of change was constant.
In Examples 40 and 41 we made similar approximaƟons. We were given rate of
change informaƟon which we used to approximate total change. NotaƟonally,
we would say that

f(c+ h) ≈ f(c) + f ′(c) · h.

This approximaƟon is best when h is “small.” “Small” is a relaƟve term; when
dealing with the world populaƟon, h = 22 days = 28,800 minutes is small in
comparison to years. When manufacturing widgets, 100 widgets is small when
one plans to manufacture thousands.

The DerivaƟve and MoƟon

One of the most fundamental applicaƟons of the derivaƟve is the study of
moƟon. Let s(t) be a posiƟon funcƟon, where t is Ɵme and s(t) is distance. For
instance, s couldmeasure the height of a projecƟle or the distance an object has
traveled.

Let’s let s(t) measure the distance traveled, in feet, of an object aŌer t sec-
onds of travel. Then s′(t) has units “feet per second,” and s′(t) measures the
instantaneous rate of distance change – it measures velocity.

Now consider v(t), a velocity funcƟon. That is, at Ɵme t, v(t) gives the ve-
locity of an object. The derivaƟve of v, v′(t), gives the instantaneous rate of
velocity change – acceleraƟon. (We oŌen think of acceleraƟon in terms of cars:
a car may “go from 0 to 60 in 4.8 seconds.” This is an average acceleraƟon, a
measurement of how quickly the velocity changed.) If velocity is measured in
feet per second, and Ɵme is measured in seconds, then the units of acceleraƟon
(i.e., the units of v′(t)) are “feet per second per second,” or (Ō/s)/s. We oŌen
shorten this to “feet per second squared,” or Ō/s2, but this tends to obscure the
meaning of the units.

Perhaps the most well known acceleraƟon is that of gravity. In this text, we
use g = 32Ō/s2 or g = 9.8m/s2. What do these numbers mean?

A constant acceleraƟon of 32(Ō/s)/s means that the velocity changes by
32Ō/s each second. For instance, let v(t)measures the velocity of a ball thrown
straight up into the air, where v has units Ō/s and t is measured in seconds. The
ball will have a posiƟve velocity while traveling upwards and a negaƟve velocity
while falling down. The acceleraƟon is thus −32Ō/s2. If v(1) = 20Ō/s2, then
when t = 2, the velocity will have decreased by 32Ō/s; that is, v(t) = −12Ō/s.
We can conƟnue: v(3) = −44Ō/s, and we can also figure that v(0) = 42Ō/s.

These ideas are so important we write them out as a Key Idea.

Notes:
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..
Key Idea 1 The DerivaƟve and MoƟon

1. Let s(t) be the posiƟon funcƟon of an object. Then s′(t) is the
velocity funcƟon of the object.

2. Let v(t) be the velocity funcƟon of an object. Then v′(t) is the
acceleraƟon funcƟon of the object.

We now consider the second interpretaƟon of the derivaƟve given in this
secƟon. This interpretaƟon is not independent from the first by any means;
many of the same concepts will be stressed, just from a slightly different per-
specƟve.

InterpretaƟon of the DerivaƟve #2: The Slope of the Tangent Line

Given a funcƟon y = f(x), the difference quoƟent
f(c+ h)− f(c)

h
gives a

change in y values divided by a change in x values; i.e., it is a measure of the
“rise over run,” or “slope,” of the line that goes through two points on the graph
of f. As h shrinks to 0, these two points come close together; in the limit we find
f ′(c), the slope of a special line called the tangent line that intersects f only once
near x = c.

Lines have a constant rate of change, their slope. Nonlinear funcƟons do not
have a constant rate of change, but we can measure their instantaneous rate of
change at a given x value c by compuƟng f ′(c). We can get an idea of how f is
behaving by looking at the slopes of its tangent lines. We explore this idea in the
following example.

.. Example 42 ..Understanding the derivaƟve: the rate of change
Consider f(x) = x2 as shown in Figure 2.10. It is clear that at x = 3 the funcƟon
is growing faster than at x = 1; how much faster?

SÊ½çã®ÊÄ Wecananswer this directly aŌer the following secƟon, where
we learn to quickly compute derivaƟves. For now, we will answer graphically,
by considering the slopes of the respecƟve tangent lines.

With pracƟce, one can fairly effecƟvely sketch tangent lines to a curve at a
parƟcular point. In Figure 2.11, we have sketched the tangent lines to f at x = 1
and x = 3, along with a grid to help us measure the slopes of these lines. At
x = 1, the slope is 2; at x = 3, the slope is 6. Thus we can say not only is f

Notes:
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Figure 2.12: Graphs of f and f ′ in Example
43.
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Figure 2.13: Graphs of f and f ′ in Example
43, along with tangent lines.
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Figure 2.14: Zooming in on f at x = 3 for
the funcƟon given in Examples 43 and 44.

2.2 InterpretaƟons of the DerivaƟve

growing faster at x = 3 than at x = 1, it is growing three Ɵmes as fast. ...

.. Example 43 Understanding the graph of the derivaƟve
Consider the graph of f(x) (in blue) and its derivaƟve, f ′(x) (in red) in Figure 2.12.
Use these graphs to find the slopes of the tangent lines to the graph of f at x = 1,
x = 2, and x = 3.

SÊ½çã®ÊÄ To find the appropriate slopes of tangent lines to the graph
of f, we need to look at the corresponding values of f ′.

The slope of the tangent line to f at x = 1 is f ′(1); this looks to be about−1.
The slope of the tangent line to f at x = 2 is f ′(2); this looks to be about 4.
The slope of the tangent line to f at x = 3 is f ′(3); this looks to be about 3.
Using these slopes, the tangent lines to f are sketched in Figure 2.13. In-

cluded on the graph of f ′ in this figure are filled circles where x = 1, x = 2 and
x = 3 to help beƩer visualize the y value of f ′ at those points. ..

.. Example 44 ApproximaƟon with the derivaƟve
Consider again the graph of f(x) and its derivaƟve f ′(x) in Example 43. Use the
tangent line to f at x = 3 to approximate the value of f(3.1).

SÊ½çã®ÊÄ Figure 2.14 shows the graph of f along with its tangent line,
zoomed in at x = 3. NoƟce that near x = 3, the tangent line makes an excellent
approximaƟon of f. Since lines are easy to deal with, oŌen it works well to ap-
proximate a funcƟonwith its tangent line. (This is especially truewhen you don’t
actually know much about the funcƟon at hand, as we don’t in this example.)

While the tangent line to f was drawn in Example 43, it was not explicitly
computed. Recall that the tangent line to f at x = c is y = f ′(c)(x − c) + f(c).
While f is not explicitly given, by the graph it looks like f(3) = 4. Recalling that
f ′(3) = 3, we can compute the tangent line to be y = 3(x − 3) + 4. It is oŌen
useful to leave the tangent line in point–slope form.

To use the tangent line to approximate f(3.1), we simply evaluate y at 3.1
instead of f.

f(3.1) ≈ y(3.1) = 3(3.1− 3) + 4 = .1 ∗ 3+ 4 = 4.3.

We approximate f(3.1) ≈ 4.3. ..

To demonstrate the accuracy of the tangent line approximaƟon, we now
state that in Example 44, f(x) = −x3+ 7x2− 12x+ 4. We can evaluate f(3.1) =
4.279. Had we known f all along, certainly we could have just made this compu-
taƟon. In reality, we oŌen only know two things:

1. What f(c) is, for some value of c, and

Notes:

73



Chapter 2 DerivaƟves

2. what f ′(c) is.

For instance, we can easily observe the locaƟon of an object and its instan-
taneous velocity at a parƟcular point in Ɵme. We do not have a “funcƟon f ”
for the locaƟon, just an observaƟon. This is enough to create an approximaƟng
funcƟon for f.

This last example has a direct connecƟon to our approximaƟon method ex-
plained above aŌer Example 41. We stated there that

f(c+ h) ≈ f(c) + f ′(c) · h.

If we know f(c) and f ′(c) for some value x = c, then compuƟng the tangent
line at (c, f(c)) is easy: y(x) = f ′(c)(x − c) + f(c). In Example 44, we used the
tangent line to approximate a value of f. Let’s use the tangent line at x = c
to approximate a value of f near x = c; i.e., compute y(c + h) to approximate
f(c+ h), assuming again that h is “small.” Note:

y(c+ h) = f ′(c)
(
(c+ h)− c

)
+ f(c) = f ′(c) · h+ f(c).

This is the exact same approximaƟonmethod used above! Not only does itmake
intuiƟve sense, as explained above, it makes analyƟcal sense, as this approxima-
Ɵon method is simply using a tangent line to approximate a funcƟon’s value.

The importanceof understanding thederivaƟve cannot beunderstated. When
f is a funcƟon of x, f ′(x)measures the instantaneous rate of change of fwith re-
spect to x and gives the slope of the tangent line to f at x.

Notes:
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Exercises 2.2
Terms and Concepts
1. What is the instantaneous rate of change of posiƟon

called?

2. Given a funcƟon y = f(x), in your own words describe how
to find the units of f ′(x).

3. What funcƟons have a constant rate of change?

Problems
4. Given f(5) = 10 and f ′(5) = 2, approximate f(6).

5. Given P(100) = −67 and P′(100) = 5, approximate
P(110).

6. Given z(25) = 187 and z′(25) = 17, approximate z(20).

7. Knowing f(10) = 25 and f ′(10) = 5 and the methods de-
scribed in this secƟon, which approximaƟon is likely to be
most accurate: f(10.1), f(11), or f(20)? Explain your rea-
soning.

8. Given f(7) = 26 and f(8) = 22, approximate f ′(7).

9. Given H(0) = 17 and H(2) = 29, approximate H′(2).

10. Let V(x)measure the volume, in decibels, measured inside
a restaurantwith x customers. What are the units ofV′(x)?

11. Let v(t) measure the velocity, in Ō/s, of a car moving in a
straight line t seconds aŌer starƟng. What are the units of
v′(t)?

12. The heightH, in feet, of a river is recorded t hours aŌermid-
night, April 1. What are the units of H′(t)?

13. P is the profit, in thousands of dollars, of producing and sell-
ing c cars.

(a) What are the units of P′(c)?

(b) What is likely true of P(0)?

14. T is the temperature in degrees Fahrenheit, h hours aŌer
midnight on July 4 in Sidney, NE.

(a) What are the units of T′(h)?

(b) Is T′(8) likely greater than or less than 0? Why?

(c) Is T(8) likely greater than or less than 0? Why?

In Exercises 15 – 18, graphs of funcƟons f(x) and g(x) are
given. IdenƟfy which funcƟon is the derivaƟve of the other.)
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Review
In Exercises 19 – 20, use the definiƟon to compute the deriva-
Ɵves of the following funcƟons.

19. f(x) = 5x2

20. f(x) = (x− 2)3

In Exercises 21 – 22, numerically approximate the value of
f ′(x) at the indicated x value.

21. f(x) = cos x at x = π.

22. f(x) =
√
x at x = 9.
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Chapter 2 DerivaƟves

2.3 Basic DifferenƟaƟon Rules
The derivaƟve is a powerful tool but is admiƩedly awkward given its reliance on
limits. Fortunately, one thing mathemaƟcians are good at is abstracƟon. For
instance, instead of conƟnually finding derivaƟves at a point, we abstracted and
found the derivaƟve funcƟon.

Let’s pracƟce abstracƟon on linear funcƟons, y = mx+ b. What is y′? With-
out limits, recognize that linear funcƟon are characterized by being funcƟons
with a constant rate of change (the slope). The derivaƟve, y′, gives the instanta-
neous rate of change; with a linear funcƟon, this is constant,m. Thus y′ = m.

Let’s abstract once more. Let’s find the derivaƟve of the general quadraƟc
funcƟon, f(x) = ax2 + bx+ c. Using the definiƟon of the derivaƟve, we have:

f ′(x) = lim
h→0

a(x+ h)2 + b(x+ h) + c− (ax2 + bx+ c)
h

= lim
h→0

ah2 + 2ahx+ bh
h

= lim
h→0

ah+ 2ax+ b

= 2ax+ b.

So if y = 6x2 + 11x− 13, we can immediately compute y′ = 12x+ 11.

In this secƟon (and in some secƟons to follow) we will learn some of what
mathemaƟcians have already discovered about the derivaƟves of certain func-
Ɵons and how derivaƟves interact with arithmeƟc operaƟons. We start with a
theorem.

..
Theorem 12 DerivaƟves of Common FuncƟons

1. Constant Rule:
d
dx
(
c
)
= 0, where c is a constant.

3.
d
dx

(sin x) = cos x

5.
d
dx

(ex) = ex

2. Power Rule:
d
dx

(xn) = nxn−1, where n is an integer, n > 0.

4.
d
dx

(cos x) = − sin x

6.
d
dx

(ln x) =
1
x

This theorem starts by staƟng an intuiƟve fact: constant funcƟons have no
rate of change as they are constant. Therefore their derivaƟve is 0 (they change

Notes:
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Figure 2.15: A graph of f(x) = x3, along
with its derivaƟve f ′(x) = 3x2 and its tan-
gent line at x = −1.

2.3 Basic DifferenƟaƟon Rules

at the rate of 0). The theorem then states some fairly amazing things. The Power
Rule states that the derivaƟves of Power FuncƟons (of the form y = xn) are very
straighƞorward: mulƟply by the power, then subtract 1 from the power. We see
something incredible about the funcƟon y = ex: it is its own derivaƟve. We also
see a new connecƟon between the sine and cosine funcƟons.

One special case of the Power Rule is when n = 1, i.e., when f(x) = x. What
is f ′(x)? According to the Power Rule,

f ′(x) =
d
dx
(
x
)
=

d
dx
(
x1
)
= 1 · x0 = 1.

In words, we are asking “At what rate does f change with respect to x?” Since f
is x, we are asking “At what rate does x change with respect to x?” The answer
is: 1. They change at the same rate.

Let’s pracƟce using this theorem.

.. Example 45 Using Theorem 12 to find, and use, derivaƟves
Let f(x) = x3.

1. Find f ′(x).

2. Find the equaƟon of the line tangent to the graph of f at x = −1.

3. Use the tangent line to approximate (−1.1)3.

4. Sketch f, f ′ and the found tangent line on the same axis.

SÊ½çã®ÊÄ

1. The Power Rule states that if f(x) = x3, then f ′(x) = 3x2.

2. To find the equaƟon of the line tangent to the graph of f at x = −1, we
need a point and the slope. The point is (−1, f(−1)) = (−1,−1). The
slope is f ′(−1) = 3. Thus the tangent line has equaƟon y = 3(x−(−1))+
(−1) = 3x+ 2.

3. We can use the tangent line to approximate (−1.1)3 as −1.1 is close to
−1. We have

(−1.1)3 ≈ 3(−1.1) + 2 = −1.3.

We can easily find the actual answer; (−1.1)3 = −1.331.

4. See Figure 2.15...

Notes:
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Chapter 2 DerivaƟves

Theorem 12 gives useful informaƟon, but we will need much more. For in-
stance, using the theorem, we can easily find the derivaƟve of y = x3, but it does
not tell how to compute the derivaƟve of y = 2x3, y = x3+sin x nor y = x3 sin x.
The following theorem helps with the first two of these examples (the third is
answered in the next secƟon).

..
Theorem 13 ProperƟes of the DerivaƟve

Let f and g be differenƟable on an open interval I and let c be a real
number. Then:

1. Sum/Difference Rule:
d
dx

(
f(x)± g(x)

)
=

d
dx

(
f(x)
)
± d

dx

(
g(x)

)
= f ′(x)± g′(x)

2. Constant MulƟple Rule:
d
dx

(
c · f(x)

)
= c · d

dx

(
f(x)
)
= c · f ′(x).

Theorem 13 allows us to find the derivaƟves of a wide variety of funcƟons.
It can be used in conjuncƟon with the Power Rule to find the derivaƟves of any
polynomial. Recall in Example 35 that we found, using the limit definiƟon, the
derivaƟve of f(x) = 3x2+5x−7. We cannowfind its derivaƟvewithout expressly
using limits:

d
dx

(
3x2 + 5x+ 7

)
= 3

d
dx

(
x2
)
+ 5

d
dx

(
x
)
+

d
dx

(
7
)

= 3 · 2x+ 5 · 1+ 0
= 6x+ 5.

We were a bit pedanƟc here, showing every step. Normally we would do all

the arithmeƟc and steps in our head and readily find
d
dx

(
3x2+5x+7

)
= 6x+5.

.. Example 46 ..Using the tangent line to approximate a funcƟon value
Let f(x) = sin x+ 2x+ 1. Approximate f(3) using an appropriate tangent line.

SÊ½çã®ÊÄ This problem is intenƟonally ambiguous; we are to approxi-
mate using an appropriate tangent line. How good of an approximaƟon are we
seeking? What does appropriate mean?

In the “real world,” people solving problems deal with these issues all Ɵme.
One must make a judgment using whatever seems reasonable. In this example,
the actual answer is f(3) = sin 3+7, where the real problem spot is sin 3. What
is sin 3?

Notes:
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Note: DefiniƟon 11 comes with the
caveat “Where the corresponding limits
exist.” With f differenƟable on I, it is pos-
sible that f ′ is not differenƟable on all of
I, and so on.

2.3 Basic DifferenƟaƟon Rules

Since 3 is close to π, we can assume sin 3 ≈ sin π = 0. Thus one guess is
f(3) ≈ 7. Can we do beƩer? Let’s use a tangent line as instructed and examine
the results; it seems best to find the tangent line at x = π.

Using Theorem 12 we find f ′(x) = cos x+ 2. The slope of the tangent line is
thus f ′(π) = cos π+ 2 = 1. Also, f(π) = 2π+ 1 ≈ 7.28. So the tangent line to
the graph of f at x = π is y = 1(x−π)+2π+1 = x+π+1 ≈ x+4.14. Evaluated
at x = 3, our tangent line gives y = 3 + 4.14 = 7.14. Using the tangent line,
our final approximaƟon is that f(3) ≈ 7.14.

Using a calculator, we get an answer accurate to 4 places aŌer the decimal:
f(3) = 7.1411. Our iniƟal guesswas 7; our tangent line approximaƟonwasmore
accurate, at 7.14.

The point is not “Here’s a cool way to do some math without a calculator.”
Sure, that might be handy someƟme, but your phone could probably give you
the answer. Rather, the point is to say that tangent lines are a good way of
approximaƟng, and many scienƟsts, engineers and mathemaƟcians oŌen face
problems too hard to solve directly. So they approximate. ...

Higher Order DerivaƟves

The derivaƟve of a funcƟon f is itself a funcƟon, therefore we can take its
derivaƟve. The following definiƟon gives a name to this concept and introduces
its notaƟon.

..
DefiniƟon 11 Higher Order DerivaƟves

Let y = f(x) be a differenƟable funcƟon on I.

1. The second derivaƟve of f is:

f ′′(x) =
d
dx

(
f ′(x)

)
=

d
dx

(
dy
dx

)
=

d2y
dx2

= y′′.

2. The third derivaƟve of f is:

f ′′′(x) =
d
dx

(
f ′′(x)

)
=

d
dx

(
d2y
dx2

)
=

d3y
dx3

= y′′′.

3. The nth derivaƟve of f is:

f (n)(x) =
d
dx

(
f (n−1)(x)

)
=

d
dx

(
d n−1y
dxn−1

)
=

d ny
dxn

= y(n).
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Chapter 2 DerivaƟves

In general, when finding the fourth derivaƟve and on, we resort to the f (4)(x)
notaƟon, not f ′′′′(x); aŌer a while, too many Ɵcks is too confusing.

Let’s pracƟce using this new concept.

.. Example 47 Finding higher order derivaƟves
Find the first four derivaƟves of the following funcƟons:

1. f(x) = 4x2

2. f(x) = sin x

3. f(x) = 5ex

SÊ½çã®ÊÄ

1. Using the Power and Constant MulƟple Rules, we have: f ′(x) = 8x. Con-
Ɵnuing on, we have

f ′′(x) =
d
dx
(
8x
)
= 8; f ′′′(x) = 0; f (4)(x) = 0.

NoƟce how all successive derivaƟves will also be 0.

2. We employ Theorem 12 repeatedly.

f ′(x) = cos x; f ′′(x) = − sin x; f ′′′(x) = − cos x; f (4)(x) = sin x.

Note how we have come right back to f(x) again. (Can you quickly figure
what f (23)(x) is?)

3. Employing Theorem 12 and the Constant MulƟple Rule, we can see that

f ′(x) = f ′′(x) = f ′′′(x) = f (4)(x) = 5ex.
..

InterpreƟng Higher Order DerivaƟves

What do higher order derivaƟves mean? What is the pracƟcal interpreta-
Ɵon?

Our first answer is a bit wordy, but is technically correct and beneficial to
understand. That is,

The second derivaƟve of a funcƟon f is the rate of change of the rate
of change of f.

Notes:
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Oneway to grasp this concept is to let f describe a posiƟon funcƟon. Then, as
stated in Key Idea 1, f ′ describes the rate of posiƟon change: velocity. We now
consider f ′′, which describes the rate of velocity change. Sports car enthusiasts
talk of how fast a car can go from 0 to 60 mph; they are bragging about the
acceleraƟon of the car.

We started this chapter with amusement–park riders free–falling with posi-
Ɵon funcƟon f(t) = −16t2 + 150. It is easy to compute f ′(t) = −32t Ō/s and
f ′′(t) = −32 (Ō/s)/s. We may recognize this laƩer constant; it is the accelera-
Ɵon due to gravity. In keeping with the unit notaƟon introduced in the previous
secƟon, we say the units are “feet per second per second.” This is usually short-
ened to “feet per second squared,” wriƩen as “Ō/s2.”

It can be difficult to consider the meaning of the third, and higher order,
derivaƟves. The third derivaƟve is “the rate of change of the rate of change of
the rate of change of f.” That is essenƟally meaningless to the uniniƟated. In
the context of our posiƟon/velocity/acceleraƟon example, the third derivaƟve
is the “rate of change of acceleraƟon,” commonly referred to as “jerk.”

Make no mistake: higher order derivaƟves have great importance even if
their pracƟcal interpretaƟons are hard (or “impossible”) to understand. The
mathemaƟcal topic of seriesmakes extensive use of higher order derivaƟves.

Notes:
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Exercises 2.3
Terms and Concepts

1. What is the name of the rule which states that
d
dx
(
xn
)
=

nxn−1, where n > 0 is an integer?

2. What is
d
dx
(
ln x
)
?

3. Give an example of a funcƟon f(x) where f ′(x) = f(x).

4. Give an example of a funcƟon f(x) where f ′(x) = 0.

5. The derivaƟve rules introduced in this secƟon explain how
to compute the derivaƟve of which of the following func-
Ɵons?

• f(x) =
3
x2

• g(x) = 3x2 − x+ 17

• h(x) = 5 ln x

• j(x) = sin x cos x

• k(x) = ex
2

• m(x) =
√
x

6. Explain in your own words how to find the third derivaƟve
of a funcƟon f(x).

7. Give an example of a funcƟonwhere f ′(x) ̸= 0 and f ′′(x) =
0.

8. Explain in your own words what the second derivaƟve
“means.”

9. If f(x) describes a posiƟon funcƟon, then f ′(x) describes
what kind of funcƟon? What kind of funcƟon is f ′′(x)?

10. Let f(x) be a funcƟon measured in pounds, where x is mea-
sured in feet. What are the units of f ′′(x)?

Problems
In Exercises 11 – 25, compute the derivaƟve of the given func-
Ɵon.

11. f(x) = 7x2 − 5x+ 7

12. g(x) = 14x3 + 7x2 + 11x− 29

13. m(t) = 9t5 − 1
8 t

3 + 3t− 8

14. f(θ) = 9 sin θ + 10 cos θ

15. f(r) = 6er

16. g(t) = 10t4 − cos t+ 7 sin t

17. f(x) = 2 ln x− x

18. p(s) = 1
4 s

4 + 1
3 s

3 + 1
2 s

2 + s+ 1

19. h(t) = et − sin t− cos t

20. f(x) = ln(5x2)

21. f(t) = ln(17) + e2 + sin π/2

22. g(t) = (1+ 3t)2

23. g(x) = (2x− 5)3

24. f(x) = (1− x)3

25. f(x) = (2− 3x)2

In Exercises 26 – 31, compute the first four derivaƟves of the
given funcƟon.

26. f(x) = x6

27. g(x) = 2 cos x

28. h(t) = t2 − et

29. p(θ) = θ4 − θ3

30. f(θ) = sin θ − cos θ

31. f(x) = 1, 100

In Exercises 32 – 37, find the equaƟons of the tangent and
normal lines to the graph of the funcƟon at the given point.

32. f(x) = x3 − x at x = 1

33. f(t) = et + 3 at t = 0

34. g(x) = ln x at x = 1

35. f(x) = 4 sin x at x = π/2

36. f(x) = −2 cos x at x = π/4

37. f(x) = 2x+ 3 at x = 5

Review
38. Given that e0 = 1, approximate the value of e0.1 using the

tangent line to f(x) = ex at x = 0.

39. Approximate the value of (3.01)4 using the tangent line to
f(x) = x4 at x = 3.
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Figure 2.16: A graph of y = 5x2 sin x and
its tangent line at x = π/2.

2.4 The Product and QuoƟent Rules

2.4 The Product and QuoƟent Rules

The previous secƟon showed that, in some ways, derivaƟves behave nicely. The
Constant MulƟple and Sum/Difference Rules established that the derivaƟve of
f(x) = 5x2 + sin xwas not complicated. We neglected compuƟng the derivaƟve
of things like g(x) = 5x2 sin x and h(x) = 5x2

sin x on purpose; their derivaƟves are
not as straighƞorward. (If you had to guesswhat their respecƟve derivaƟves are,
youwould probably guess wrong.) For these, we need the Product andQuoƟent
Rules, respecƟvely, which are defined in this secƟon.

We begin with the Product Rule.

..
Theorem 14 Product Rule

Let f and g be differenƟable funcƟons on an open interval I. Then fg is a
differenƟable funcƟon on I, and

d
dx

(
f(x)g(x)

)
= f(x)g′(x) + f ′(x)g(x).

We pracƟce using this new rule in an example, followed by an example that
demonstrates why this theorem is true.

.. Example 48 Using the Product Rule
Use the Product Rule to compute the derivaƟve of y = 5x2 sin x. Evaluate the
derivaƟve at x = π/2.

SÊ½çã®ÊÄ To make our use of the Product Rule explicit, let’s set f(x) =
5x2 and g(x) = sin x. We easily compute/recall that f ′(x) = 10x and g′(x) =
cos x. Employing the rule, we have

d
dx

(
5x2 sin x

)
= 5x2 cos x+ 10x sin x.

At x = π/2, we have

y′(π/2) = 5
(π
2

)2
cos
(π
2

)
+ 10

π

2
sin
(π
2

)
= 5π.

We graph y and its tangent line at x = π/2, which has a slope of 5π, in Figure
2.16. While this does not prove that the Produce Rule is the correct way to han-
dle derivaƟves of products, it helps validate its truth. ..

Notes:
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We now invesƟgate why the Product Rule is true.

.. Example 49 A proof of the Product Rule
Use the definiƟon of the derivaƟve to prove Theorem 14.

SÊ½çã®ÊÄ By the limit definiƟon, we have

d
dx

(
f(x)g(x)

)
= lim

h→0

f(x+ h)g(x+ h)− f(x)g(x)
h

.

Wenowdo something a bit unexpected; add 0 to the numerator (so that nothing
is changed) in the form of−f(x+h)g(x)+f(x+h)g(x), then do some regrouping
as shown.

d
dx

(
f(x)g(x)

)
= lim

h→0

f(x+ h)g(x+ h)− f(x)g(x)
h

(now add 0 to the numerator)

= lim
h→0

f(x+ h)g(x+ h)− f(x+ h)g(x) + f(x+ h)g(x)− f(x)g(x)
h

(regroup)

= lim
h→0

(
f(x+ h)g(x+ h)− f(x+ h)g(x)

)
+
(
f(x+ h)g(x)− f(x)g(x)

)
h

= lim
h→0

f(x+ h)g(x+ h)− f(x+ h)g(x)
h

+ lim
h→0

f(x+ h)g(x)− f(x)g(x)
h

(factor)

= lim
h→0

f(x+ h)
g(x+ h)− g(x)

h
+ lim

h→0

f(x+ h)− f(x)
h

g(x) (apply limits)

= f(x)g′(x) + f ′(x)g(x)

..

It is oŌen true that we can recognize that a theorem is true through its proof
yet somehow doubt its applicability to real problems. In the following example,
we compute the derivaƟve of a product of funcƟons in two ways to verify that
the Product Rule is indeed “right.”

.. Example 50 ..Exploring alternate derivaƟve methods
Let y = (x2 + 3x + 1)(2x2 − 3x + 1). Find y′ two ways: first, by expanding
the given product and then taking the derivaƟve, and second, by applying the
Product Rule. Verify that both methods give the same answer.

SÊ½çã®ÊÄ We first expand the expression for y; a liƩle algebra shows
that y = 2x4 + 3x3 − 6x2 + 1. It is easy to compute y′;

y′ = 8x3 + 9x2 − 12x.

Notes:
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Now apply the Product Rule.

y′ = (x2 + 3x+ 1)(4x− 3) + (2x+ 3)(2x2 − 3x+ 1)

=
(
4x3 + 9x2 − 5x− 3

)
+
(
4x3 − 7x+ 3

)
= 8x3 + 9x2 − 12x.

The uninformed usually assume that “the derivaƟve of the product is the
product of the derivaƟves.” Thus we are tempted to say that y′ = (2x+3)(4x−
3) = 8x2 + 6x− 9. Obviously this is not correct. ...

We consider one more example before discussing another derivaƟve rule.

.. Example 51 Using the Product Rule
Find the derivaƟves of the following funcƟons.

1. f(x) = x ln x

2. g(x) = x ln x− x.

SÊ½çã®ÊÄ Recalling that the derivaƟve of ln x is 1/x, we use the Product
Rule to find our answers.

1.
d
dx

(
x ln x

)
= x · 1/x+ 1 · ln x = 1+ ln x.

2. Using the result from above, we compute

d
dx

(
x ln x− x

)
= 1+ ln x− 1 = ln x.

This seems significant; if the natural log funcƟon ln x is an important funcƟon (it
is), it seems worthwhile to know a funcƟon whose derivaƟve is ln x. We have
found one. (We leave it to the reader to find another; a correct answer will be
very similar to this one.) ..

We have learned how to compute the derivaƟves of sums, differences, and
products of funcƟons. We now learn how to find the derivaƟve of a quoƟent of
funcƟons.

Notes:
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..
Theorem 15 QuoƟent Rule

Let f and g be funcƟons defined on an open interval I, where g(x) ̸= 0
on I. Then f/g is differenƟable on I, and

d
dx

(
f(x)
g(x)

)
=

g(x)f ′(x)− f(x)g′(x)
g(x)2

.

The QuoƟent Rule is not hard to use, although it might be a bit tricky to re-
member. A useful mnemonic works as follows. Consider a fracƟon’s numerator
and denominator as “HI” and “LO”, respecƟvely. Then

d
dx

(
HI
LO

)
=

LO· dHI – HI· dLO
LOLO

,

read “low dee high minus high dee low, over low low.” Said fast, that phrase can
roll off the tongue, making it easy to memorize. The “dee high” and “dee low”
parts refer to the derivaƟves of the numerator and denominator, respecƟvely.

Let’s pracƟce using the QuoƟent Rule.

.. Example 52 Using the QuoƟent Rule

Let f(x) =
5x2

sin x
. Find f ′(x).

SÊ½çã®ÊÄ Directly applying the QuoƟent Rule gives:

d
dx

(
5x2

sin x

)
=

sin x · 10x− 5x2 · cos x
sin2 x

=
10x sin x− 5x2 cos x

sin2 x
.

..

TheQuoƟent Rule allows us to fill in holes in our understanding of derivaƟves
of the common trigonometric funcƟons. We start with finding the derivaƟve of
the tangent funcƟon.

.. Example 53 ..Using the QuoƟent Rule to find d
dx

(
tan x

)
.

Find the derivaƟve of y = tan x.

SÊ½çã®ÊÄ At first, one might feel unequipped to answer this quesƟon.

Notes:
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Figure 2.17: A graph of y = tan x along
with its tangent line at x = π/4.

2.4 The Product and QuoƟent Rules

But recall that tan x = sin x/ cos x, so we can apply the QuoƟent Rule.

d
dx

(
tan x

)
=

d
dx

(
sin x
cos x

)
=

cos x cos x− sin x(− sin x)
cos2 x

=
cos2 x+ sin2 x

cos2 x

=
1

cos2 x
= sec2 x.

This is beauƟful result. To confirm its truth, we can find the equaƟon of the
tangent line to y = tan x at x = π/4. The slope is sec2(π/4) = 2; y = tan x,
along with its tangent line, is graphed in Figure 2.17. ...

We include this result in the following theorem about the derivaƟves of the
trigonometric funcƟons. Recall we found the derivaƟve of y = sin x in Example
37 and stated the derivaƟve of the cosine funcƟon in Theorem 12. The deriva-
Ɵves of the cotangent, cosecant and secant funcƟons can all be computed di-
rectly using Theorem 12 and the QuoƟent Rule.

..
Theorem 16 DerivaƟves of Trigonometric FuncƟons

1.
d
dx
(
sin x

)
= cos x

3.
d
dx
(
tan x

)
= sec2 x

5.
d
dx
(
sec x

)
= sec x tan x

2.
d
dx
(
cos x

)
= − sin x

4.
d
dx
(
cot x

)
= − csc2 x

6.
d
dx
(
csc x

)
= − csc x cot x

To remember the above, it may be helpful to keep in mind that the deriva-
Ɵves of the trigonometric funcƟons that start with “c” have aminus sign in them.

.. Example 54 ..Exploring alternate derivaƟve methods

In Example 52 the derivaƟve of f(x) =
5x2

sin x
was found using the QuoƟent Rule.

RewriƟng f as f(x) = 5x2 csc x, find f ′ using Theorem 16 and verify the two
answers are the same.

Notes:
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SÊ½çã®ÊÄ Wefound in Example 52 that the f ′(x) =
10x sin x− 5x2 cos x

sin2 x
.

We now find f ′ using the Product Rule, considering f as f(x) = 5x2 csc x.

f ′(x) =
d
dx

(
5x2 csc x

)
= 5x2(− csc x cot x) + 10x csc x (now rewrite trig funcƟons)

= 5x2 · −1
sin x

· cos x
sin x

+
10x
sin x

=
−5x2 cos x

sin2 x
+

10x
sin x

(get common denominator)

=
10x sin x− 5x2 cos x

sin2 x

Finding f ′ using either method returned the same result. At first, the answers
looked different, but some algebra verified they are the same. In general, there
is not one final form that we seek; the immediate result from the Product Rule is
fine. Work to “simplify” your results into a form that is most readable and useful
to you. ...

The QuoƟent Rule gives other useful results, as show in the next example.

.. Example 55 Using the QuoƟent Rule to expand the Power Rule
Find the derivaƟves of the following funcƟons.

1. f(x) =
1
x

2. f(x) =
1
xn
, where n > 0 is an integer.

SÊ½çã®ÊÄ We employ the QuoƟent Rule.

1. f ′(x) =
x · 0− 1 · 1

x2
= − 1

x2
.

2. f ′(x) =
xn · 0− 1 · nxn−1

(xn)2
= −nxn−1

x2n
= − n

xn+1 .

..

The derivaƟve of y =
1
xn

turned out to be rather nice. It gets beƩer. Con-

Notes:

88
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sider:

d
dx

(
1
xn

)
=

d
dx

(
x−n
)

(apply result from Example 55)

= − n
xn+1 (rewrite algebraically)

= −nx−(n+1)

= −nx−n−1.

This is reminiscent of the Power Rule: mulƟply by the power, then subtract 1
from the power. We now add to our previous Power Rule, which had the re-
stricƟon of n > 0.

..
Theorem 17 Power Rule with Integer Exponents

Let f(x) = xn, where n ̸= 0 is an integer. Then

f ′(x) = n · xn−1.

Taking the derivaƟve of many funcƟons is relaƟvely straighƞorward. It is
clear (with pracƟce) what rules apply and in what order they should be applied.
Other funcƟons present mulƟple paths; different rules may be applied depend-
ing on how the funcƟon is treated. One of the beauƟful things about calculus
is that there is not “the” right way; each path, when applied correctly, leads to
the same result, the derivaƟve. We demonstrate this concept in an example.

.. Example 56 ..Exploring alternate derivaƟve methods

Let f(x) =
x2 − 3x+ 1

x
. Find f ′(x) in each of the following ways:

1. By applying the QuoƟent Rule,

2. by viewing f as f(x) =
(
x2 − 3x + 1

)
· x−1 and applying the Product and

Power Rules, and

3. by “simplifying” first through division.

Verify that all three methods give the same result.

SÊ½çã®ÊÄ

1. Applying the QuoƟent Rule gives:

f ′(x) =
x ·
(
2x− 3

)
−
(
x2 − 3x+ 1

)
· 1

x2
=

x2 − 1
x2

= 1− 1
x2
.

Notes:
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2. By rewriƟng f, we can apply the Product and Power Rules as follows:

f ′(x) =
(
x2 − 3x+ 1

)
· (−1)x−2 +

(
2x− 3

)
· x−1

= −x2 − 3x+ 1
x2

+
2x− 3

x

= −x2 − 3x+ 1
x2

+
2x2 − 3x

x2

=
x2 − 1
x2

= 1− 1
x2
,

the same result as above.

3. As x ̸= 0, we can divide through by x first, giving f(x) = x − 3 +
1
x
. Now

apply the Power Rule.

f ′(x) = 1− 1
x2
,

the same result as before.
...

Example 56 demonstrates three methods of finding f ′. One is hard pressed
to argue for a “best method” as all three gave the same result without toomuch
difficulty, although it is clear that using the Product Rule required more steps.
UlƟmately, the important principle to take away from this is: reduce the answer
to a form that seems “simple” and easy to interpret. In that example, we saw
different expressions for f ′, including:

1− 1
x2

=
x ·
(
2x− 3

)
−
(
x2 − 3x+ 1

)
· 1

x2
=
(
x2 − 3x+ 1

)
· (−1)x−2 +

(
2x− 3

)
· x−1.

They are equal; they are all correct; only the first is “clear.” Work to make an-
swers clear.

Notes:
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Exercises 2.4
Terms and Concepts

1. T/F: The Product Rule states that
d
dx
(
x2 sin x

)
= 2x cos x.

2. T/F: The QuoƟent Rule states that
d
dx

(
x2

sin x

)
=

cos x
2x

.

3. T/F: The derivaƟves of the trigonometric funcƟons that
start with “c” have minus signs in them.

4. What derivaƟve rule is used to extend the Power Rule to
include negaƟve integer exponents?

5. T/F: Regardless of the funcƟon, there is always exactly one
right way of compuƟng its derivaƟve.

6. In your own words, explain what it means to make your an-
swers “clear.”

Problems
In Exercises 7 – 10:

(a) Use the Product Rule to differenƟate the funcƟon.

(b) Manipulate the funcƟon algebraically and differenƟ-
ate without the Product Rule.

(c) Show that the answers from (a) and (b) are equivalent.

7. f(x) = x(x2 + 3x)

8. g(x) = 2x2(5x3)

9. h(s) = (2s− 1)(s+ 4)

10. f(x) = (x2 + 5)(3− x3)

In Exercises 11 – 15:

(a) Use the QuoƟent Rule to differenƟate the funcƟon.

(b) Manipulate the funcƟon algebraically and differenƟ-
ate without the QuoƟent Rule.

(c) Show that the answers from (a) and (b) are equivalent.

11. f(x) =
x2 + 3

x

12. g(x) =
x3 − 2x2

2x2

13. h(s) =
3
4s3

14. f(t) =
t2 − 1
t+ 1

15. f(x) =
x4 + 2x3

x+ 2
In Exercises 16 – 29, compute the derivaƟve of the given func-
Ɵon.

16. f(x) = x sin x

17. f(t) =
1
t2
(csc t− 4)

18. g(x) =
x+ 7√

x

19. g(t) =
t5

cos t− 2t2

20. h(x) = cot x− ex

21. h(t) = 7t2 + 6t− 2

22. f(x) = (16x3 + 24x2 + 3x)
7x− 1

16x3 + 24x2 + 3x
23. f(t) = 5

√
t(sec t+ et)

24. f(x) =
sin x

cos x+ 3
25. g(x) = e2

(
sin(π/4)− 1

)
26. g(t) = 4t3et − sin t cos t

27. h(t) =
2t + 3
3t + 2

28. f(x) = x2ex tan x

29. g(x) = 2x sin x sec x

In Exercises 30 – 33, find the equaƟons of the tangent and
normal lines to the graph of g at the indicated point.

30. g(s) = es(s2 + 2) at (0, 2).

31. g(t) = t sin t at ( 3π2 ,−
3π
2 )

32. g(x) =
x2

x− 1
at (2, 4)

33. g(θ) =
cos θ − 8θ

θ + 1
at (0,−5)

In Exercises 34 – 37, find the x–values where the graph of the
funcƟon has a horizontal tangent line.

34. f(x) = 6x2 − 18x− 24

35. f(x) = x sin x on [−1, 1]

36. f(x) =
x

x+ 1

37. f(x) =
x2

x+ 1
In Exercises 38 – 41, find the requested derivaƟve.

38. f(x) = x sin x; find f ′′(x).

39. f(x) = x sin x; find f (4)(x).

40. f(x) = csc x; find f ′′(x).

41. f(x) = (x3 − 5x+ 2)(x2 + x− 7); find f (8)(x).

In Exercises 42 – 45, use the graph of f(x) to sketch f ′(x).
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2.5 The Chain Rule

2.5 The Chain Rule
We have covered almost all of the derivaƟve rules that deal with combinaƟons
of two (or more) funcƟons. The operaƟons of addiƟon, subtracƟon, mulƟplica-
Ɵon (including by a constant) and division led to the Sum and Difference rules,
the Constant MulƟple Rule, the Power Rule, the Product Rule and the QuoƟent
Rule. To complete the list of differenƟaƟon rules, we look at the last way two (or
more) funcƟons can be combined: the process of composiƟon (i.e. one funcƟon
“inside” another).

Recall the notaƟon for composiƟon, (f◦g)(x) or f(g(x)), read as “f of g of x.”
In shorthand, we simply write f ◦ g or f(g) and read it as “f of g.” Before giving
the corresponding differenƟaƟon rule, we note that the rule extends tomulƟple
composiƟons like f(g(h(x))) or f(g(h(j(x)))), etc.

To moƟvate the rule, let’s look at three derivaƟves we can already compute.

.. Example 57 Exploring similar derivaƟves
Find the derivaƟves of F1(x) = (1 − x)2, F2(x) = (1 − x)3, and F3(x) = (1 −
x)4. (We’ll see later why we are using subscripts for different funcƟons and an
uppercase F.)

SÊ½çã®ÊÄ In order to use the rules we already have, we must first ex-
pand each funcƟon as F1(x) = 1 − 2x + x2, F2(x) = 1 − 3x + 3x2 − x3 and
F3(x) = 1− 4x+ 6x2 − 4x3 + x4.

It is not hard to see that:

F′1(x) = −2+ 2x,
F′2(x) = −3+ 6x− 3x2 and
F′3(x) = −4+ 12x− 12x2 + 4x3.

An interesƟng fact is that these can be rewriƩen as

F′1(x) = −2(x− 1), F′2(x) = −3(1− x)2 and F′3(x) = −4(1− x)3.

A paƩern might jump out at you. Recognize that each of these funcƟons is a
composiƟon:

F1(x) = f1(g(x)), where f1(x) = x2,
F2(x) = f2(g(x)), where f2(x) = x3,
F3(x) = f3(g(x)), where f3(x) = x4.

We’ll come back to this example aŌer giving the formal statements of the
Chain Rule; for now, we are just illustraƟng a paƩern...

Notes:
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..
Theorem 18 The Chain Rule

Let y = f(u) be a differenƟable funcƟon of u and let u = g(x) be a
differenƟable funcƟon of x. Then y = f(g(x)) is a differenƟable funcƟon
of x, and

y′ = f ′(g(x)) · g′(x).

To help understand the Chain Rule, we return to Example 57.

.. Example 58 Using the Chain Rule
Use the Chain Rule to find the derivaƟves of the following funcƟons, as given in
Example 57.

SÊ½çã®ÊÄ Example 57 endedwith the recogniƟon that eachof the given
funcƟonswas actually a composiƟon of funcƟons. To avoid confusion, we ignore
most of the subscripts here.

F1(x) = (1− x)2:

We found that

y = (1− x)2 = f(g(x)), where f(x) = x2 and g(x) = 1− x.

To find y′, we apply the Chain Rule. We need f ′(x) = 2x and g′(x) = −1.
Part of the Chain Rule uses f ′(g(x)). This means subsƟtute g(x) for x in the

equaƟon for f ′(x). That is, f ′(x) = 2(1 − x). Finishing out the Chain Rule we
have

y′ = f ′(g(x)) · g′(x) = 2(1− x) · (−1) = −2(1− x) = 2x− 2.

F2(x) = (1− x)3:

Let y = (1 − x)3 = f(g(x)), where f(x) = x3 and g(x) = (1 − x). We have
f ′(x) = 3x2, so f ′(g(x)) = 3(1− x)2. The Chain Rule then states

y′ = f ′(g(x)) · g′(x) = 3(1− x)2 · (−1) = −3(1− x)2.

F3(x) = (1− x)4:

Finally, when y = (1 − x)4, we have f(x) = x4 and g(x) = (1 − x). Thus
f ′(x) = 4x3 and f ′(g(x)) = 4(1− x)3. Thus

y′ = f ′(g(x)) · g′(x) = 4(1− x)3 · (−1) = −4(1− x)3...

Notes:
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2.5 The Chain Rule

Example 58 demonstrated a parƟcular paƩern: when f(x) = xn, then y′ =
n · (g(x))n−1 · g′(x). This is called the Generalized Power Rule.

..
Theorem 19 Generalized Power Rule

Let g(x) be a differenƟable funcƟon and let n ̸= 0 be an integer. Then

d
dx

(
g(x)n

)
= n ·

(
g(x)

)n−1 · g′(x).

This allows us to quickly find the derivaƟve of funcƟons like y = (3x2 − 5x+
7 + sin x)20. While it may look inƟmidaƟng, the Generalized Power Rule states
that

y′ = 20(3x2 − 5x+ 7+ sin x)19 · (6x− 5+ cos x).

Treat the derivaƟve–taking process step–by–step. In the example just given,
first mulƟply by 20, the rewrite the inside of the parentheses, raising it all to
the 19th power. Then think about the derivaƟve of the expression inside the
parentheses, and mulƟply by that.

We now consider more examples that employ the Chain Rule.

.. Example 59 ..Using the Chain Rule
Find the derivaƟves of the following funcƟons:

1. y = sin 2x 2. y = ln(4x3− 2x2) 3. y = e−x2

SÊ½çã®ÊÄ

1. Consider y = sin 2x. Recognize that this is a composiƟon of funcƟons,
where f(x) = sin x and g(x) = 2x. Thus

y′ = f ′(g(x)) · g′(x) = cos(2x) · 2 = 2 cos 2x.

2. Recognize that y = ln(4x3 − 2x2) is the composiƟon of f(x) = ln x and
g(x) = 4x3 − 2x2. Also, recall that

d
dx

(
ln x
)
=

1
x
.

This leads us to:

y′ =
1

4x3 − 2x2
· (12x2 − 4x) =

12x2 − 4x
4x3 − 2x2

=
4x(3x− 1)
2x(2x2 − x)

=
2(3x− 1)
2x2 − x

.

Notes:
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Figure 2.18: f(x) = cos x2 sketched along
with its tangent line at x = 1.

Chapter 2 DerivaƟves

3. Recognize that y = e−x2 is the composiƟon of f(x) = ex and g(x) = −x2.
Remembering that f ′(x) = ex, we have

y′ = e−x2 · (−2x) = (−2x)e−x2 .

...

.. Example 60 Using the Chain Rule to find a tangent line
Let f(x) = cos x2. Find the equaƟon of the line tangent to the graph of f at x = 1.

SÊ½çã®ÊÄ The tangent line goes through the point (1, f(1)) ≈ (1, 0.54)
with slope f ′(1). To find f ′, we need the Chain Rule.

f ′(x) = − sin(x2) · (2x) = −2x sin x2. Evaluated at x = 1, we have f ′(1) =
−2 sin 1 ≈ −1.68. Thus the equaƟon of the tangent line is

y = −1.68(x− 1) + 0.54.

The tangent line is sketched along with f in Figure 2.18. ..

The Chain Rule is used oŌen in taking derivaƟves. Because of this, one can
become familiar with the basic process and learn paƩerns that facilitate finding
derivaƟves quickly. For instance,

d
dx

(
ln(anything)

)
=

1
anything

· (anything)′ = (anything)′

anything
.

A concrete example of this is

d
dx

(
ln(3x15 − cos x+ ex)

)
=

45x14 + sin x+ ex

3x15 − cos x+ ex
.

While the derivaƟve may look inƟmidaƟng at first, look for the paƩern. The
denominator is the same as what was inside the natural log funcƟon; the nu-
merator is simply its derivaƟve.

This paƩern recogniƟon process can be applied to lots of funcƟons. In gen-
eral, instead of wriƟng “anything”, we use u as a generic funcƟon of x. We then
say

d
dx

(
ln u
)
=

u′

u
.

The following is a short list of how the Chain Rule can be quickly applied to fa-
miliar funcƟons.

Notes:
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2.5 The Chain Rule

1.
d
dx

(
un
)
= n · un−1 · u′.

2.
d
dx

(
eu
)
= u′ · eu.

3.
d
dx

(
sin u

)
= u′ · cos u.

4.
d
dx

(
cos u

)
= −u′ · sin u.

5.
d
dx

(
tan u

)
= u′ · sec2 u.

Of course, the Chain Rule can be applied in conjuncƟonwith any of the other
rules we have already learned. We pracƟce this next.

.. Example 61 Using the Product, QuoƟent and Chain Rules
Find the derivaƟves of the following funcƟons.

1. f(x) = x5 sin 2x3 2. f(x) =
5x3

e−x2 .

SÊ½çã®ÊÄ

1. We must use the Product and Chain Rules. Do not think that you must be
able to “see” the whole answer immediately; rather, just proceed step–
by–step.

f ′(x) = x5
(
6x2 cos 2x3

)
+ 5x4 sin 2x3 = 6x7 cos 2x3 + 5x4 sin 2x3.

2. Wemust employ the QuoƟent Rule along with the Chain Rule. Again, pro-
ceed step–by–step.

f ′(x) =
e−x2(15x2)− 5x3

(
(−2x)e−x2)(

e−x2
)2 =

e−x2(30x4 + 15x2
)

e−2x2

= ex
2(
30x4 + 15x2

)
...

A key to correctly working these problems is to break the problem down
into smaller, more manageable pieces. For instance, when using the Product
and Chain Rules together, just consider the first part of the Product Rule at first:
f(x)g′(x). Just rewrite f(x), then find g′(x). Then move on to the f ′(x)g(x) part.
Don’t aƩempt to figure out both parts at once.

Likewise, using the QuoƟent Rule, approach the numerator in two steps and
handle the denominator aŌer compleƟng that. Only simplify aŌerward.

We can also employ the Chain Rule itself several Ɵmes, as shown in the next
example.

Notes:
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.. Example 62 Using the Chain Rule mulƟple Ɵmes
Find the derivaƟve of y = tan5(6x3 − 7x).

SÊ½çã®ÊÄ Recognize that we have the g(x) = tan(6x3 − 7x) funcƟon
“inside” the f(x) = x5 funcƟon; that is, we have y =

(
tan(6x3−7x)

)5. We begin
using the Generalized Power Rule; in this first step, we do not fully compute the
derivaƟve. Rather, we are approaching this step–by–step.

y′ = 5
(
tan(6x3 − 7x)

)4 · g′(x).
We now find g′(x). We again need the Chain Rule;

g′(x) = sec2(6x3 − 7x) · (18x2 − 7).

Combine this with what we found above to give

y′ = 5
(
tan(6x3 − 7x)

)4 · sec2(6x3 − 7x) · (18x2 − 7)

= (90x2 − 35) sec2(6x3 − 7x) tan4(6x3 − 7x).

This funcƟon is frankly a ridiculous funcƟon, possessing no real pracƟcal
value. It is very difficult to graph, as the tangent funcƟon has many verƟcal
asymptotes and 6x3 − 7x grows so very fast. The important thing to learn from
this is that the derivaƟve can be found. In fact, it is not “hard;” one must take
several simple steps and be careful to keep track of how to apply each of these
steps...

It is tradiƟonal mathemaƟcal exercise to find the derivaƟves of arbitrarily
complicated funcƟons just to demonstrate that it can be done. Just break every-
thing down into smaller pieces.

.. Example 63 ..Using the Product, QuoƟent and Chain Rules

Find the derivaƟve of f(x) =
x cos(x−2)− sin2(e4x)

ln(x2 + 5x4)
.

SÊ½çã®ÊÄ This funcƟon likely has no pracƟcal use outside of demon-
straƟng derivaƟve skills. The answer is given below without simplificaƟon. It
employs the QuoƟent Rule, the Product Rule, and the Chain Rule three Ɵmes.

f ′(x) =

 ln(x2 + 5x4) ·
[(

x · (− sin(x−2)) · (−2x−3) + 1 · cos(x−2)
)
− 2 sin(e4x) · cos(e4x) · (4e4x)

]
−
(
x cos(x−2) − sin2(e4x)

)
· 2x+20x3

x2+5x4


(
ln(x2 + 5x4)

)2 .

Notes:
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Again, in this example, there is no pracƟcal value to finding this derivaƟve.
It just demonstrates that it can be done, no maƩer how arbitrarily complicated
the funcƟon is. ...

The Chain Rule also has theoreƟc value. That is, it can be used to find the
derivaƟves of funcƟons that we have not yet learned as we do in the following
example.

.. Example 64 The Chain Rule and exponenƟal funcƟons
Use the Chain Rule to find the derivaƟve of f(x) = ax where a > 0, a ̸= 1 is
constant.

SÊ½çã®ÊÄ We only know how to find the derivaƟve of one exponenƟal
funcƟon: f(x) = ex; this problem is asking us to find the derivaƟve of funcƟons
such as f(x) = 2x.

This can be accomplished by rewriƟng ax in terms of e. Recalling that ex and
ln x are inverse funcƟons, we can write

a = eln a and so f(x) = ax = eln(a
x).

By the exponent property of logarithms, we can “bring down” the power to
get

f(x) = ax = ex(ln a).

The funcƟon is now the composiƟon y = f(g(x)), with f(x) = ex and g(x) =
x(ln a). Since f ′(x) = ex and g ′(x) = ln a, the Chain Rule gives

f ′(x) = ex(ln a) · ln a.

Now one last look. Does the right hand side look at all familiar? In fact, the right
side contains the original funcƟon itself! We have

f ′(x) = f(x) · ln a = ax · ln a.

The Chain Rule, coupled with the derivaƟve rule of ex, allows us to find the
derivaƟves of all exponenƟal funcƟons. ..

The previous example produced a result worthy of its own “box.”

Notes:
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..
Theorem 20 DerivaƟves of ExponenƟal FuncƟons

Let f(x) = ax, for a > 0, a ̸= 1. Then f is differenƟable for all real
numbers and

f ′(x) = ln a · ax.

Alternate Chain Rule NotaƟon

It is instrucƟve to understand what the Chain Rule “looks like” using “ dydx”
notaƟon instead of y′ notaƟon. Suppose that y = f(u) is a funcƟon of u, where
u = g(x) is a funcƟon of x (as stated in Theorem 18. Then, through the com-
posiƟon f ◦ g, we can think of y as a funcƟon of x, as y = f(g(x)). Thus the
derivaƟve of y with respect to x makes sense; we can talk about dy

dx . This leads
to an interesƟng progression of notaƟon:

y′ = f ′(g(x)) · g′(x)
dy
dx

= y′(u) · u′(x) (since y = f(u) and u = g(x))

dy
dx

=
dy
du

· du
dx

(using “fracƟonal” notaƟon for the derivaƟve)

Here the “fracƟonal” aspect of the derivaƟve notaƟon stands out. On the
right hand side, it seems as though the “du” terms cancel out, leaving

dy
dx

=
dy
dx

.

It is important to realize that we are not canceling these terms; the derivaƟve
notaƟon of dy

dx is one symbol. It is equally important to realize that this notaƟon
was chosen precisely because of this behavior. It makes applying the Chain Rule
easy with mulƟple variables. For instance,

dy
dt

=
dy
d⃝

· d⃝
d△

· d△
dt

.

where⃝ and△ are any variables you’d like to use.
AŌer a while, you get beƩer at recognizing the paƩern and may take the

short cut of not actually wriƟng down the funcƟons that make up the composi-
Ɵon when you apply the Chain Rule. We simply recommend cauƟon and point
out that’s where errors in work can (and oŌen do) occur.

Notes:
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Figure 2.19: A series of gears to demon-
strate the Chain Rule. Note how dy

dx =
dy
du ·

du
dx

2.5 The Chain Rule

One of the most common ways of “visualizing” the Chain Rule is to consider
a set of gears, as shown in Figure 2.19. The gears have 36, 18, and 6 teeth,
respecƟvely. That means for every revoluƟon of the x gear, the u gear revolves
twice. That is: du

dx = 2. Likewise, every revoluƟon of u causes 3 revoluƟons of
y: dy

du = 3. How does y change with respect to x? For each revoluƟon of x, y
revolves 6 Ɵmes; that is,

dy
dx

=
dy
du

· du
dx

= 2 · 3 = 6.

We can then extend the Chain Rule with more variables by adding more gears
to the picture.

Notes:
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Exercises 2.5
Terms and Concepts
1. T/F: The Chain Rule describes how to evaluate the deriva-

Ɵve of a composiƟon of funcƟons.

2. T/F: The Generalized Power Rule states that
d
dx

(
g(x)n

)
=

n
(
g(x)

)n−1.

3. T/F:
d
dx
(
ln(x2)

)
=

1
x2
.

4. T/F:
d
dx
(
3x
)
≈ 1.1 · 3x.

5. T/F:
dx
dy

=
dx
dt

· dt
dy

Problems
In Exercises 6 – 26, compute the derivaƟve of the given func-
Ɵon.

6. f(x) = (4x3 − x)10

7. f(t) = (3t− 2)5

8. g(θ) = (sin θ + cos θ)3

9. h(t) = e3t
2+t−1

10. f(x) =
(
x+ 1

x

)4
11. f(x) = cos(3x)

12. g(x) = tan(5x)

13. h(t) = sin4(2t)

14. p(t) = cos3(t2 + 3t+ 1)

15. f(x) = ln(cos x)

16. f(x) = ln(x2)

17. f(x) = 2 ln(x)

18. g(r) = 4r

19. g(t) = 5cos t

20. g(t) = 152

21. m(w) =
3w

2w

22. m(w) =
3w + 1
2w

23. f(x) =
3x

2
+ x

2x2

24. f(x) = x2 sin(5x)

25. g(t) = cos(t2 + 3t) sin(5t− 7)

26. g(t) = cos( 1t )e
5t2

In Exercises 27 – 30, find the equaƟons of tangent and normal
lines to the graphof the funcƟon at the given point. Note: the
funcƟons here are the same as in Exercises 6 through 9.

27. f(x) = (4x3 − x)10 at x = 0

28. f(t) = (3t− 2)5 at t = 1

29. g(θ) = (sin θ + cos θ)3 at θ = π/2

30. h(t) = e3t
2+t−1 at t = −1

31. Compute
d
dx
(
ln(kx)

)
two ways:

(a) Using the Chain Rule, and

(b) by first using the logarithm rule ln(ab) = ln a+ ln b,
then taking the derivaƟve.

32. Compute
d
dx
(
ln(xk)

)
two ways:

(a) Using the Chain Rule, and

(b) by first using the logarithm rule ln(ap) = p ln a, then
taking the derivaƟve.

Review
33. The “wind chill factor” is a measurement of how cold it

“feels” during cold, windy weather. Let W(w) be the wind
chill factor, in degrees Fahrenheit, when it is 25◦F outside
with a wind of wmph.

(a) What are the units ofW′(w)?

(b) What would you expect the sign ofW′(10) to be?

34. Find the derivaƟves of the following funcƟons.

(a) f(x) = x2ex cot x

(b) g(x) = 2x3x4x
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Figure 2.20: A graph of the implicit func-
Ɵon sin(y) + y3 = 6− x3.

2.6 Implicit DifferenƟaƟon

2.6 Implicit DifferenƟaƟon

In the previous secƟons we learned to find the derivaƟve,
dy
dx

, or y′, when y is
given explicitly as a funcƟon of x. That is, if we know y = f(x) for some funcƟon
f, we can find y′. For example, given y = 3x2 − 7, we can easily find y′ = 6x.
(Here we explicitly state how x and y are related. Knowing x, we can directly find
y.)

SomeƟmes the relaƟonship between y and x is not explicit; rather, it is im-
plicit. For instance, we might know that x2 − y = 4. This equality defines a
relaƟonship between x and y; if we know x, we could figure out y. Can we sƟll
find y′? In this case, sure; we solve for y to get y = x2 − 4 (hence we now know
y explicitly) and then differenƟate to get y′ = 2x.

SomeƟmes the implicit relaƟonship between x and y is complicated. Sup-
pose we are given sin(y)+ y3 = 6− x3. A graph of this implicit funcƟon is given
in Figure 2.20. In this case there is absolutely no way to solve for y in terms of
elementary funcƟons. The surprising thing is, however, that we can sƟll find y′
via a process known as implicit differenƟaƟon.

Implicit differenƟaƟon is a technique based on the Chain Rule that is used to
find a derivaƟve when the relaƟonship between the variables is given implicitly
rather than explicitly (solved for one variable in terms of the other).

We begin by reviewing the Chain Rule. Let f and g be funcƟons of x. Then

d
dx

(
f(g(x))

)
= f ′(g(x)) · g′(x).

Suppose now that y = g(x). We can rewrite the above as

d
dx

(
f(y))

)
= f ′(y)) · y′, or

d
dx

(
f(y))

)
= f ′(y) · dy

dx
. (2.1)

These equaƟons look strange; the key concept to learn here is that we can find
y′ even if we don’t exactly know how y and x relate.

Let’s see how it works with the equaƟon above.

.. Example 65 ..Using Implicit DifferenƟaƟon
Find y′ given that sin(y) + y3 = 6− x3.

SÊ½çã®ÊÄ We start by taking the derivaƟve of both sides (thus main-
taining the equality.) We have :

d
dx

(
sin(y) + y3

)
=

d
dx

(
6− x3

)
.

Notes:

103



Chapter 2 DerivaƟves

The right hand side is easy; it returns−3x2.
The leŌhand side requiresmore consideraƟon. We take thederivaƟve term–

by–term. Using the technique derived from EquaƟon 2.1 above, we can see that

d
dx

(
sin y

)
= cos y · y′.

We apply the same process to the y3 term.

d
dx

(
y3
)
=

d
dx

(
(y)3

)
= 3(y)2 · y′.

Puƫng this together with the right hand side, we have

cos(y)y′ + 3y2y′ = −3x2.

Now solve for y′.

cos(y)y′ + 3y2y′ = −3x2.(
cos y+ 3y2

)
y′ = −3x2

y′ =
−3x2

cos y+ 3y2

This equaƟon for y′ probably seems unusual for it contains both x and y
terms. How is it to be used? We’ll address that next....

Implicit funcƟons are generally harder to deal with than explicit funcƟons.
With an explicit funcƟon, given an x value, we have an explicit formula for com-
puƟng the corresponding y value. With an implicit funcƟon, one oŌen has to
find x and y values at the same Ɵme that saƟsfy the equaƟon. It is much eas-
ier to demonstrate that a given point saƟsfies the equaƟon than to actually find
such a point.

For instance, we can affirm easily that the point ( 3
√
6, 0) lies on the graph of

the implicit funcƟon sin y+ y3 = 6− x3. Plugging in 0 for y, we see the leŌ hand
side is 0. Seƫng x = 3

√
6, we see the right hand side is also 0; the equaƟon is

saƟsfied. The following example finds the equaƟon of the tangent line to this
funcƟon at this point.

.. Example 66 ..Using Implicit DifferenƟaƟon to find a tangent line
Find the equaƟon of the line tangent to the curve of the implicitly defined func-
Ɵon sin y+ y3 = 6− x3 at the point ( 3

√
6, 0).

SÊ½çã®ÊÄ In Example 65 we found that

y′ =
−3x2

cos y+ 3y2
.

Notes:
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Figure 2.21: The funcƟon sin y + y3 =
6 − x3 and its tangent line at the point
( 3
√
6, 0).

2.6 Implicit DifferenƟaƟon

We find the slope of the tangent line at the point ( 3
√
6, 0) by subsƟtuƟng 3

√
6 for

x and 0 for y. Thus at the point ( 3
√
6, 0), we have the slope as

y′ =
−3( 3

√
6)2

cos 0+ 3 · 02
=

−3 3
√
36

1
≈ −9.91.

Therefore the equaƟon of the tangent line to the implicitly defined funcƟon
sin y+ y3 = 6− x3 at the point ( 3

√
6, 0) is

y = −3 3
√
36(x− 3

√
6) + 0 ≈ −9.91x+ 18.

The curve and this tangent line are shown in Figure 2.21. ...

This suggests a general method for implicit differenƟaƟon. For the steps be-
low assume y is a funcƟon of x.

1. Take the derivaƟve of each term in the equaƟon. Treat the x terms like
normal. When taking the derivaƟves of y terms, the usual rules apply
except that, because of the Chain Rule, we need to mulƟply each term
by y′.

2. Get all the y′ terms on one side of the equal sign and put the remaining
terms on the other side.

3. Factor out y′; solve for y′ by dividing.

PracƟcal Note: When working by hand, it may be beneficial to use the symbol
dy
dx instead of y′, as the laƩer can be easily confused for y or y1.

.. Example 67 ..Using Implicit DifferenƟaƟon
Given the implicitly defined funcƟon y3 + x2y4 = 1+ 2x, find y′.

SÊ½çã®ÊÄ Wewill take the implicit derivaƟves termby term. Thederiva-
Ɵve of y3 is 3y2y′.

The second term, x2y4, is a liƩle tricky. It requires the Product Rule as it is the
product of two funcƟons of x: x2 and y4. Its derivaƟve is x2(4y3y′) + 2xy4. The
first part of this expression requires a y′ becausewe are taking the derivaƟve of a
y term. The second part does not require it because we are taking the derivaƟve
of x2.

The derivaƟve of the right hand side is easily found to be 2. In all, we get:

3y2y′ + 4x2y3y′ + 2xy4 = 2.

Move terms around so that the leŌ side consists only of the y′ terms and the
right side consists of all the other terms:

3y2y′ + 4x2y3y′ = 2− 2xy4.

Notes:
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Figure 2.22: A graph of the implicitly de-
fined funcƟon y3 + x2y4 = 1 + 2x along
with its tangent line at the point (0, 1).
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Figure 2.23: A graph of the implicitly de-
fined funcƟon sin(x2y2) + y3 = x+ y.

Chapter 2 DerivaƟves

Factor out y′ from the leŌ side and solve to get

y′ =
2− 2xy4

3y2 + 4x2y3
.

To confirm the validity of our work, let’s find the equaƟon of a tangent line
to this funcƟon at a point. It is easy to confirm that the point (0, 1) lies on the
graph of this funcƟon. At this point, y′ = 2/3. So the equaƟon of the tangent
line is y = 2/3(x−0)+1. The funcƟon and its tangent line are graphed in Figure
2.22.

NoƟce how our funcƟon looks much different than other funcƟons we have
seen. For one, it fails the verƟcal line test. Such funcƟons are important in many
areas of mathemaƟcs, so developing tools to deal with them is also important. ...

.. Example 68 ..Using Implicit DifferenƟaƟon
Given the implicitly defined funcƟon sin(x2y2) + y3 = x+ y, find y′.

SÊ½çã®ÊÄ DifferenƟaƟng term by term, we find the most difficulty in
the first term. It requires both the Chain and Product Rules.

d
dx

(
sin(x2y2)

)
= cos(x2y2) · d

dx

(
x2y2

)
= cos(x2y2) ·

(
x2(2yy′) + 2xy2

)
= 2(x2yy′ + xy2) cos(x2y2).

We leave the derivaƟves of the other terms to the reader. AŌer taking the
derivaƟves of both sides, we have

2(x2yy′ + xy2) cos(x2y2) + 3y2y′ = 1+ y′.

We now have to be careful to properly solve for y′, parƟcularly because of
the product on the leŌ. It is best to mulƟply out the product. Doing this, we get

2x2y cos(x2y2)y′ + 2xy2 cos(x2y2) + 3y2y′ = 1+ y′.

From here we can safely move around terms to get the following:

2x2y cos(x2y2)y′ + 3y2y′ − y′ = 1− 2xy2 cos(x2y2).

Then we can solve for y′ to get

y′ =
1− 2xy2 cos(x2y2)

2x2y cos(x2y2) + 3y2 − 1
.

Notes:
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Figure 2.24: A graph of the implicitly de-
fined funcƟon sin(x2y2) + y3 = x+ y and
certain tangent lines.
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Figure 2.25: The unit circle with its tan-
gent line at (1/2,

√
3/2).

2.6 Implicit DifferenƟaƟon

A graph of this implicit funcƟon is given in Figure 2.23. It is easy to verify that
the points (0, 0), (0, 1) and (0,−1) all lie on the graph. We can find the slopes
of the tangent lines at each of these points using our formula for y′.

At (0, 0), the slope is−1.
At (0, 1), the slope is 1/2.
At (0,−1), the slope is also 1/2.
The tangent lines have been added to the graph of the funcƟon in Figure

2.24. ...

Quite a few “famous” curves have equaƟons that are given implicitly. We can
use implicit differenƟaƟon to find the slope at various points on those curves.
We invesƟgate two such curves in the next examples.

.. Example 69 Finding slopes of tangent lines to a circle
Find the slopeof the tangent line to the circle x2+y2 = 1 at the point (1/2,

√
3/2).

SÊ½çã®ÊÄ Taking derivaƟves, we get 2x+2yy′ = 0. Solving for y′ gives:

y′ =
−x
y
.

This is a clever formula. Recall that the slope of the line through the origin and
the point (x, y) on the circle will be y/x. We have found that the slope of the
tangent line to the circle at that point is the opposite reciprocal of y/x, namely,
−x/y. Hence these two lines are always perpendicular.

At the point (1/2,
√
3/2), we have the tangent line’s slope as

y′ =
−1/2√
3/2

=
−1√
3
≈ −0.577.

A graph of the circle and its tangent line at (1/2,
√
3/2) is given in Figure

2.25, along with a thin dashed line from the origin that is perpendicular to the
tangent line. (It turns out that all normal lines to a circle pass through the center
of the circle.) ..

This secƟon has shown how to find the derivaƟves of implicitly defined func-
Ɵons, whose graphs include a wide variety of interesƟng and unusual shapes.
Implicit differenƟaƟon can also be used to further our understanding of “regu-
lar” differenƟaƟon.

One hole in our current understanding of derivaƟves is this: what is the
derivaƟve of the square root funcƟon? That is,

d
dx
(√

x
)
=

d
dx
(
x1/2

)
= ?

Notes:
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We allude to a possible soluƟon, as we can write the square root funcƟon as
a power funcƟon with a raƟonal (or, fracƟonal) power. We are then tempted to
apply the Power Rule and obtain

d
dx
(
x1/2

)
=

1
2
x−1/2 =

1
2
√
x
.

The trouble with this is that the Power Rule was iniƟally defined only for
posiƟve integer powers, n > 0. While we did not jusƟfy this at the Ɵme, gen-
erally the Power Rule is proved using something called the Binomial Theorem,
which deals only with posiƟve integers. The QuoƟent Rule allowed us to extend
the Power Rule to negaƟve integer powers. Implicit DifferenƟaƟon allows us to
extend the Power Rule to raƟonal powers, as shown below.

Let y = xm/n, wherem and n are integers with no common factors (som = 2
and n = 5 is fine, but m = 2 and n = 4 is not). We can rewrite this explicit
funcƟon implicitly as yn = xm. Now apply implicit differenƟaƟon.

y = xm/n

yn = xm

d
dx
(
yn
)
=

d
dx
(
xm
)

n · yn−1 · y′ = m · xm−1

y′ =
m
n
xm−1

yn−1 (now subsƟtute xm/n for y)

=
m
n

xm−1

(xm/n)n−1 (apply lots of algebra)

=
m
n
x(m−n)/n

=
m
n
xm/n−1

The above derivaƟon is the key to the proof extending the Power Rule to ra-
Ɵonal powers. Using limits, we can extend this once more to include all powers,
including irraƟonal (even transcendental!) powers, giving the following theo-
rem.

..
Theorem 21 Power Rule for DifferenƟaƟon

Let f(x) = xn, where n ̸= 0 is a real number. Then f is a differenƟable
funcƟon, and f ′(x) = n · xn−1.

Notes:
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Figure 2.26: An astroid, traced out by a
point on the smaller circle as it rolls inside
the larger circle.
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Figure 2.27: An astroid with a tangent
line.

2.6 Implicit DifferenƟaƟon

This theorem allows us to say the derivaƟve of xπ is πxπ−1.

We now apply this final version of the Power Rule in the next example, the
second invesƟgaƟon of a “famous” curve.

.. Example 70 Using the Power Rule
Find the slope of x2/3 + y2/3 = 8 at the point (8, 8).

SÊ½çã®ÊÄ This is a parƟcularly interesƟng curve called an astroid. It
is the shape traced out by a point on the edge of a circle that is rolling around
inside of a larger circle, as shown in Figure 2.26.

To find the slope of the astroid at the point (8, 8), we take the derivaƟve
implicitly.

2
3
x−1/3 +

2
3
y−1/3y′ = 0

2
3
y−1/3y′ = −2

3
x−1/3

y′ = −x−1/3

y−1/3

y′ = −y1/3

x1/3

Plugging in x = 8 and y = 8, we get a slope of −1. The astroid, with its
tangent line at (8, 8), is shown in Figure 2.27. ..

Implicit DifferenƟaƟon and the Second DerivaƟve

Wecan use implicit differenƟaƟon to find higher order derivaƟves. In theory,
this is simple: first find dy

dx , then take its derivaƟve with respect to x. In pracƟce,
it is not hard, but it oŌen requires a bit of algebra. We demonstrate this in an
example.

.. Example 71 ..Finding the second derivaƟve

Given x2 + y2 = 1, find
d2y
dx2

= y′′.

SÊ½çã®ÊÄ We found that y′ = dy
dx = −x/y in Example 69. To find y′′,

Notes:
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Figure 2.28: A plot of y = xx.

Chapter 2 DerivaƟves

we apply implicit differenƟaƟon to y′.

y′′ =
d
dx
(
y′
)

=
d
dx

(
−x
y

)
= −y(1)− x(y′)

y2

replace y′ with−x/y:

= −y− x(−x/y)
y2

= −y+ x2/y
y2

While this is not a parƟcularly simple expression, it is usable. We can see that
y′′ > 0 when y < 0 and y′′ < 0 when y > 0. In SecƟon 3.4, we will see how this
relates to the shape of the graph. ...

Logarithmic DifferenƟaƟon

Consider the funcƟon y = xx; it is graphed in Figure 2.28. It is well–defined
for x > 0 and we might be interested in finding equaƟons of lines tangent and
normal to its graph. How do we take its derivaƟve?

The funcƟon is not a power funcƟon: it has a “power” of x, not a constant.
It is not an exponenƟal funcƟon: it has a “base” of x, not a constant.

A differenƟaƟon technique known as logarithmic differenƟaƟon becomes
useful here. The basic principle is this: take the natural log of both sides of an
equaƟon y = f(x), then use implicit differenƟaƟon to find y′. We demonstrate
this in the following example.

.. Example 72 ..Using Logarithmic DifferenƟaƟon
Given y = xx, use logarithmic differenƟaƟon to find y′.

SÊ½çã®ÊÄ As suggested above, we start by taking the natural log of

Notes:
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Figure 2.29: A graph of y = xx and its tan-
gent line at x = 1.5.

2.6 Implicit DifferenƟaƟon

both sides then applying implicit differenƟaƟon.

y = xx

ln(y) = ln(xx) (apply logarithm rule)

ln(y) = x ln x (now use implicit differenƟaƟon)
d
dx

(
ln(y)

)
=

d
dx

(
x ln x

)
y′

y
= ln x+ x · 1

x
y′

y
= ln x+ 1

y′ = y
(
ln x+ 1

)
(subsƟtute y = xx)

y′ = xx
(
ln x+ 1

)
.

To “test” our answer, let’s use it to find the equaƟonof the tangent line at x =
1.5. The point on the graph our tangent linemust pass through is (1.5, 1.51.5) ≈
(1.5, 1.837). Using the equaƟon for y′, we find the slope as

y′ = 1.51.5
(
ln 1.5+ 1

)
≈ 1.837(1.405) ≈ 2.582.

Thus the equaƟon of the tangent line is y = 1.6833(x − 1.5) + 1.837. Figure
2.26 graphs y = xx along with this tangent line. ...

Implicit differenƟaƟon proves to be useful as it allows us to find the instan-
taneous rates of change of a variety of funcƟons. In parƟcular, it extended the
Power Rule to raƟonal exponents, which we then extended to all real numbers.
In the next secƟon, implicit differenƟaƟon will be used to find the derivaƟves of
inverse funcƟons, such as y = sin−1 x.

Notes:
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Exercises 2.6
Terms and Concepts
1. In your own words, explain the difference between implicit

funcƟons and explicit funcƟons.

2. Implicit differenƟaƟon is based on what other differenƟa-
Ɵon rule?

3. T/F: Implicit differenƟaƟon can be used to find the deriva-
Ɵve of y =

√
x.

4. T/F: Implicit differenƟaƟon can be used to find the deriva-
Ɵve of y = x3/4.

Problems
In Exercises 5 – 8, compute the derivaƟve of the given func-
Ɵon.

5. f(x) = 3
√
x

6. f(t) =
√
1− t2

7. g(t) =
√
t sin t

8. h(x) = x1.5

In Exercises 9 – 21, find
dy
dx

using implicit differenƟaƟon.

9. x4 + y2 + y = 7

10. x2/5 + y2/5 = 1

11. cos(x) + sin(y) = 1

12.
x
y
= 10

13.
y
x
= 10

14. x2e2 + 2y = 5

15. x2 tan y = 50

16. (3x2 + 2y3)4 = 2

17. (y2 + 2y− x)2 = 200

18.
x2 + y
x+ y2

= 17

19.
sin(x) + y
cos(y) + x

= 1

20. ln(x2 + y2) = e

21. ln(x2 + xy+ y2) = 1

22. Show that
dy
dx

is the same for each of the following implicitly
defined funcƟons.

(a) xy = 1

(b) x2y2 = 1

(c) sin(xy) = 1

(d) ln(xy) = 1

In Exercises 23 – 27, find the equaƟon of the tangent line to
the graph of the implicitly defined funcƟon at the indicated
points. As a visual aid, each funcƟon is graphed.

23. x2/5 + y2/5 = 1

(a) At (1, 0).

(b) At (0.1, 0.281) (which does not exactly lie on the
curve, but is very close).
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24. x4 + y4 = 1

(a) At (1, 0).

(b) At (
√
0.6,

√
0.8).

(c) At (0, 1).
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25. (x2 + y2 − 4)3 = 108y2

(a) At (0, 4).

(b) At (2,− 4
√
108).
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26. (x2 + y2 + x)2 = x2 + y2

(a) At (0, 1).

(b) At
(
−3
4
,
3
√
3

4

)
.
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27. (x− 2)2 + (y− 3)2 = 9

(a) At
(
7
2
,
6+ 3

√
3

2

)
.

(b) At
(
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√
3

2
,
3
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)
.
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√
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In Exercises 28 – 31, an implicitly defined funcƟon is given.

Find
d2y
dx2

. Note: these are the same problems used in Exer-
cises 9 through 12.

28. x4 + y2 + y = 7

29. x2/5 + y2/5 = 1

30. cos x+ sin y = 1

31.
x
y
= 10

In Exercises 32 – 37, use logarithmic differenƟaƟon to find
dy
dx

, then find the equaƟon of the tangent line at the indicated
x–value.

32. y = (1+ x)1/x, x = 1

33. y = (2x)x
2
, x = 1

34. y =
xx

x+ 1
, x = 1

35. y = xsin(x)+2, x = π/2

36. y =
x+ 1
x+ 2

, x = 1

37. y =
(x+ 1)(x+ 2)
(x+ 3)(x+ 4)

, x = 0
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Figure 2.30: A funcƟon f along with its in-
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Figure 2.31: Corresponding tangent lines
drawn to f and f−1.

Chapter 2 DerivaƟves

2.7 DerivaƟves of Inverse FuncƟons

Recall that a funcƟon y = f(x) is said to be one to one if it passes the horizontal
line test; that is, for twodifferent x values x1 and x2, we do not have f(x1) = f(x2).
In some cases the domain of f must be restricted so that it is one to one. For
instance, consider f(x) = x2. Clearly, f(−1) = f(1), so f is not one to one on its
regular domain, but by restricƟng f to (0,∞), f is one to one.

Now recall that one to one funcƟons have inverses. That is, if f is one to one,
it has an inverse funcƟon, denoted by f−1, such that if f(a) = b, then f−1(b) = a.
The domain of f−1 is the range of f, and vice-versa. For ease of notaƟon, we set
g = f−1 and treat g as a funcƟon of x.

Since f(a) = b implies g(b) = a, when we compose f and g we get a nice
result:

f
(
g(b)

)
= f(a) = b.

In general, f
(
g(x)

)
= x and g

(
f(x)
)
= x. This gives us a convenient way to check

if two funcƟons are inverses of each other: compose them and if the result is x,
then they are inverses (on the appropriate domains.)

When the point (a, b) lies on the graph of f, the point (b, a) lies on the graph
of g. This leads us to discover that the graph of g is the reflecƟon of f across the
line y = x. In Figure 2.30 we see a funcƟon graphed along with its inverse. See
how the point (1, 1.5) lies on one graph, whereas (1.5, 1) lies on the other. Be-
cause of this relaƟonship, whatever we know about f can quickly be transferred
into knowledge about g.

For example, consider Figure 2.31 where the tangent line to f at the point
(a, b) is drawn. That line has slope f ′(a). Through reflecƟon across y = x, we

can see that the tangent line to g at the point (b, a) should have slope
1

f ′(a)
.

This then tells us that g′(b) =
1

f ′(a)
.

Consider:

InformaƟon about f InformaƟon about g = f−1

(−0.5, 0.375) lies on f (0.375,−0.5) lies on g

Slope of tangent line to f
at x = −0.5 is 3/4

Slope of tangent line to
g at x = 0.375 is 4/3

f ′(−0.5) = 3/4 g′(0.375) = 4/3

We have discovered a relaƟonship between f ′ and g′ in a mostly graphical
way. We can realize this relaƟonship analyƟcally as well. Let y = g(x), where
again g = f−1. We want to find y′. Since y = g(x), we know that f(y) = x. Using
the Chain Rule and Implicit DifferenƟaƟon, take the derivaƟve of both sides of

Notes:
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2.7 DerivaƟves of Inverse FuncƟons

this last equality.

d
dx

(
f(y)
)
=

d
dx

(
x
)

f ′(y) · y′ = 1

y′ =
1

f ′(y)

y′ =
1

f ′(g(x))

This leads us to the following theorem.

..
Theorem 22 DerivaƟves of Inverse FuncƟons

Let fbedifferenƟable and one to one on an open interval I, where f ′(x) ̸=
0 for all x in I, let J be the range of f on I, let g be the inverse funcƟon of
f, and let f(a) = b for some a in I. Then g is a differenƟable funcƟon on
J, and in parƟcular,

1.
(
f−1)′ (b) = g′(b) =

1
f ′(a)

and 2.
(
f−1)′ (x) = g′(x) =

1
f ′(g(x))

The results of Theorem 22 are not trivial; the notaƟon may seem confusing
at first. Careful consideraƟon, along with examples, should earn understanding.

In the next example we apply Theorem 22 to the arcsine funcƟon.

.. Example 73 ..Finding the derivaƟve of an inverse trigonometric funcƟon
Let y = arcsin x = sin−1 x. Find y′ using Theorem 22.

SÊ½çã®ÊÄ AdopƟngour previously definednotaƟon, letg(x) = arcsin x
and f(x) = sin x. Thus f ′(x) = cos x. Applying the theorem, we have

g′(x) =
1

f ′(g(x))

=
1

cos(arcsin x)
.

This last expression is not immediately illuminaƟng. Drawing a figure will
help, as shown in Figure 2.33. Recall that the sine funcƟon can be viewed as
taking in an angle and returning a raƟo of sides of a right triangle, specifically,
the raƟo “opposite over hypotenuse.” Thismeans that the arcsine funcƟon takes
as input a raƟo of sides and returns an angle. The equaƟon y = arcsin x can
be rewriƩen as y = arcsin(x/1); that is, consider a right triangle where the

Notes:
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Chapter 2 DerivaƟves

hypotenuse has length 1 and the side opposite of the angle with measure y has
length x. This means the final side has length

√
1− x2, using the Pythagorean

Theorem.

Therefore cos(sin−1 x) = cos y =
√
1− x2/1 =

√
1− x2, resulƟng in

d
dx
(
arcsin x

)
= g′(x) =

1√
1− x2

.

...

Remember that the input x of the arcsine funcƟon is a raƟo of a side of a right
triangle to its hypotenuse; the absolute value of this raƟo will never be greater
than 1. Therefore the inside of the square root will never be negaƟve.

In order tomake y = sin x one to one, we restrict its domain to [−π/2, π/2];
on this domain, the range is [−1, 1]. Therefore the domain of y = arcsin x is
[−1, 1] and the range is [−π/2, π/2]. When x = ±1, note how the derivaƟve of
the arcsine funcƟon is undefined; this corresponds to the fact that as x → ±1,
the tangent lines to arcsine approach verƟcal lines with undefined slopes.

In Figure 2.34 we see f(x) = sin x and f−1 = sin−1 x graphed on their re-
specƟve domains. The line tangent to sin x at the point (π/3,

√
3/2) has slope

cos π/3 = 1/2. The slope of the corresponding point on sin−1 x, the point
(
√
3/2, π/3), is

1√
1− (

√
3/2)2

=
1√

1− 3/4
=

1√
1/4

=
1

1/2
= 2,

verifying yet again that at corresponding points, a funcƟon and its inverse have
reciprocal slopes.

Using similar techniques, we canfind thederivaƟves of all the inverse trigono-
metric funcƟons. In Figure 2.32 we show the restricƟons of the domains of the
standard trigonometric funcƟons that allow them to be inverƟble.

Notes:
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2.7 DerivaƟves of Inverse FuncƟons

FuncƟon Domain Range
Inverse
FuncƟon Domain Range

sin x [−π/2, π/2] [−1, 1] sin−1 x [−1, 1] [−π/2, π/2]

cos x [0, π] [−1, 1] cos−1(x) [−1, 1] [0, π]

tan x (−π/2, π/2) (−∞,∞) tan−1(x) (−∞,∞) (−π/2, π/2)

csc x [−π/2, 0) ∪ (0, π/2] (−∞,−1] ∪ [1,∞) csc−1 x (−∞,−1] ∪ [1,∞) [−π/2, 0) ∪ (0, π/2]

sec x [0, π/2) ∪ (π/2, π] (−∞,−1] ∪ [1,∞) sec−1(x) (−∞,−1] ∪ [1,∞) [0, π/2) ∪ (π/2, π]

cot x (0, π) (−∞,∞) cot−1(x) (−∞,∞) (0, π)

Figure 2.32: Domains and ranges of the trigonometric and inverse trigonometric funcƟons.

..
Theorem 23 DerivaƟves of Inverse Trigonometric FuncƟons

The inverse trigonometric funcƟons are differenƟable on their domains
(as listed in Figure 2.32) and their derivaƟves are as follows:

1.
d
dx
(
sin−1(x)

)
=

1√
1− x2

2.
d
dx
(
sec−1(x)

)
=

1
|x|

√
x2 − 1

3.
d
dx
(
tan−1(x)

)
=

1
1+ x2

4.
d
dx
(
cos−1(x)

)
= − 1√

1− x2

5.
d
dx
(
csc−1(x)

)
= − 1

|x|
√
x2 − 1

6.
d
dx
(
cot−1(x)

)
= − 1

1+ x2

Note how the last three derivaƟves are merely the opposites of the first
three, respecƟvely. Because of this, the first three are used almost exclusively
throughout this text.

In SecƟon 2.3, we stated without proof or explanaƟon that
d
dx
(
ln x
)
=

1
x
.

We can jusƟfy that now using Theorem 22, as shown in the example.

.. Example 74 ..Finding the derivaƟve of y = ln x

Use Theorem 22 to compute
d
dx
(
ln x
)
.

SÊ½çã®ÊÄ View y = ln x as the inverse of y = ex. Therefore, using our
standard notaƟon, let f(x) = ex and g(x) = ln x. Wewish to find g′(x). Theorem

Notes:
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Chapter 2 DerivaƟves

22 gives:

g′(x) =
1

f ′(g(x))

=
1

eln x

=
1
x
....

In this chapter we have defined the derivaƟve, given rules to facilitate its
computaƟon, and given the derivaƟves of a number of standard funcƟons. We
restate the most important of these in the following theorem, intended to be a
reference for further work.

..
Theorem 24 Glossary of DerivaƟves of Elementary FuncƟons

Let u and v be differenƟable funcƟons, and let a, c and n be a real
numbers, a > 0, n ̸= 0.

1. d
dx

(
cu
)
= cu′

3. d
dx

(
u · v

)
= uv′ + u′v

5. d
dx

(
u(v)

)
= u′(v)v′

7. d
dx

(
x
)
= 1

9. d
dx

(
ex
)
= ex

11. d
dx

(
ln x
)
= 1

x

13. d
dx

(
sin x

)
= cos x

15. d
dx

(
csc x

)
= − csc x cot x

17. d
dx

(
tan x

)
= sec2 x

19. d
dx

(
sin−1 x

)
= 1√

1−x2

21. d
dx

(
csc−1 x

)
= − 1

|x|
√
x2−1

23. d
dx

(
tan−1 x

)
= 1

1+x2

2. d
dx

(
u± v

)
= u′ ± v′

4. d
dx

( u
v

)
= u′v−uv′

v2

6. d
dx

(
c
)
= 0

8. d
dx

(
xn
)
= nxn−1

10. d
dx

(
ax
)
= ln a · ax

12. d
dx

(
loga x

)
= 1

ln a ·
1
x

14. d
dx

(
cos x

)
= − sin x

16. d
dx

(
sec x

)
= sec x tan x

18. d
dx

(
cot x

)
= − csc2 x

20. d
dx

(
cos−1 x

)
= − 1√

1−x2

22. d
dx

(
sec−1 x

)
= 1

|x|
√
x2−1

24. d
dx

(
cot−1 x

)
= − 1

1+x2

Notes:
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Exercises 2.7
Terms and Concepts
1. T/F: Every funcƟon has an inverse.

2. In your own words explain what it means for a funcƟon to
be “one to one.”

3. If (1, 10) lies on the graph of y = f(x), what can be said
about the graph of y = f−1(x)?

4. If (1, 10) lies on the graph of y = f(x) and f ′(1) = 5, what
can be said about y = f−1(x)?

Problems
In Exercises 5 – 8, verify that the given funcƟons are inverses.

5. f(x) = 2x+ 6 and g(x) = 1
2 x− 3

6. f(x) = x2 + 6x+ 11, x ≥ 3 and
g(x) =

√
x− 2− 3, x ≥ 2

7. f(x) =
3

x− 5
, x ̸= 5 and

g(x) =
3+ 5x

x
, x ̸= 0

8. f(x) =
x+ 1
x− 1

, x ̸= 1 and g(x) = f(x)

In Exercises 9 – 14, an inverƟble funcƟon f(x) is given along
with a point that lies on its graph. Using Theorem 22, evalu-
ate
(
f−1)′ (x) at the indicated value.

9. f(x) = 5x+ 10
Point= (2, 20)
Evaluate

(
f−1)′ (20)

10. f(x) = x2 − 2x+ 4, x ≥ 1
Point= (3, 7)
Evaluate

(
f−1)′ (7)

11. f(x) = sin 2x,−π/4 ≤ x ≤ π/4
Point= (π/6,

√
3/2)

Evaluate
(
f−1)′ (√3/2)

12. f(x) = x3 − 6x2 + 15x− 2
Point= (1, 8)
Evaluate

(
f−1)′ (8)

13. f(x) =
1

1+ x2
, x ≥ 0

Point= (1, 1/2)
Evaluate

(
f−1)′ (1/2)

14. f(x) = 6e3x

Point= (0, 6)
Evaluate

(
f−1)′ (6)

In Exercises 15 – 24, compute the derivaƟve of the given func-
Ɵon.

15. h(t) = sin−1(2t)

16. f(t) = sec−1(2t)

17. g(x) = tan−1(2x)

18. f(x) = x sin−1 x

19. g(t) = sin t cos−1 t

20. f(t) = ln tet

21. h(x) =
sin−1 x
cos−1 x

22. g(x) = tan−1(
√
x)

23. f(x) = sec−1(1/x)

24. f(x) = sin(sin−1 x)

In Exercises 25 – 27, compute the derivaƟve of the given func-
Ɵon in two ways:

(a) By simplifying first, then taking the derivaƟve, and

(b) by using the Chain Rule first then simplifying.

Verify that the two answers are the same.

25. f(x) = sin(sin−1 x)

26. f(x) = tan−1(tan x)

27. f(x) = sin(cos−1 x)

In Exercises 28 – 29, find the equaƟon of the line tangent to
the graph of f at the indicated x value.

28. f(x) = sin−1 x at x =
√

2
2

29. f(x) = cos−1(2x) at x =
√

3
4

Review
30. Find dy

dx , where x
2y− y2x = 1.

31. Find the equaƟon of the line tangent to the graph of x2 +
y2 + xy = 7 at the point (1, 2).

32. Let f(x) = x3 + x.

Evaluate lim
s→0

f(x+ s)− f(x)
s

.
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Note: The extreme values of a funcƟon
are “y” values, values the funcƟon aƩains,
not the input values.
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Figure 3.1: Graphs of funcƟons with and
without extreme values.
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Our study of limits led to conƟnuous funcƟons, which is a certain class of func-
Ɵons that behave in a parƟcularly nice way. Limits then gave us an even nicer
class of funcƟons, funcƟons that are differenƟable.

This chapter explores many of the ways we can take advantage of the infor-
maƟon that conƟnuous and differenƟable funcƟons provide.

3.1 Extreme Values
Given any quanƟty described by a funcƟon, we are oŌen interested in the largest
and/or smallest values that quanƟty aƩains. For instance, if a funcƟon describes
the speed of an object, it seems reasonable to want to know the fastest/slowest
the object traveled. If a funcƟon describes the value of a stock, we might want
to know how the highest/lowest values the stock aƩained over the past year.
We call such values extreme values.

..
DefiniƟon 12 Extreme Values

Let f be defined on an interval I containing c.

1. f(c) is the minimum (also, absolute minimum) of f on I if f(c) ≤
f(x) for all x in I.

2. f(c) is the maximum (also, absolute maximum) of f on I if f(c) ≥
f(x) for all x in I.

Themaximum andminimum values are the extreme values, or extrema,
of f on I.

Consider Figure 3.1. The funcƟon displayed in (a) has a maximum, but no
minimum, as the interval over which the funcƟon is defined is open. In (b), the
funcƟon has a minimum, but no maximum; there is a disconƟnuity in the “natu-
ral” place for themaximum to occur. Finally, the funcƟon shown in (c) has both a
maximum and a minimum; note that the funcƟon is conƟnuous and the interval
on which it is defined is closed.

It is possible for disconƟnuous funcƟons defined on an open interval to have
both a maximum and minimum value, but we have just seen examples where
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Figure 3.2: A graph of f(x) = 2x3 − 9x2 as
in Example 75.

Note: The terms local minimum and local
maximum are oŌen used as synonyms for
relaƟve minimum and relaƟve maximum.

Chapter 3 The Graphical Behavior of FuncƟons

they did not. On the other hand, conƟnuous funcƟons on a closed interval al-
ways have a maximum and minimum value.

..
Theorem 25 The Extreme Value Theorem

Let f be a conƟnuous funcƟon defined on a closed interval I. Then f has
both a maximum and minimum value on I.

This theorem states that f has extreme values, but it does not offer any ad-
vice about how/where to find these values. The process can seem to be fairly
easy, as the next example illustrates. AŌer the example, we will draw on lessons
learned to formamore general and powerfulmethod for finding extreme values.

.. Example 75 ApproximaƟng extreme values
Consider f(x) = 2x3−9x2 on I = [−1, 5], as graphed in Figure 3.2. Approximate
the extreme values of f.

SÊ½çã®ÊÄ The graph is drawn in such away to draw aƩenƟon to certain
points. It certainly seems that the smallest y value is −27, found when x = 3.
It also seems that the largest y value is 25, found at the endpoint of I, x = 5.
We use the word seems, for by the graph alone we cannot be sure the smallest
value is not less than −27. Since the problem asks for an approximaƟon, we
approximate the extreme values to be 25 and−27. ..

NoƟce how theminimum value came at “the boƩom of a hill,” and themaxi-
mum value came at an endpoint. Also note that while 0 is not an extreme value,
it would be if we narrowed our interval to [−1, 4]. The idea that the point (0, 0)
is the locaƟon of an extreme value for some interval is important, leading us to
a definiƟon.

..
DefiniƟon 13 RelaƟve Minimum and RelaƟve Maximum

Let f be defined on an interval I containing c.

1. If there is an open interval containing c such that f(c) is the minimum value, then
f(c) is a relaƟveminimum of f. We also say that f has a relaƟveminimum at (c, f(c)).

2. If there is an open interval containing c such that f(c) is the maximum value, then
f(c) is a relaƟvemaximum of f. We also say that f has a relaƟvemaximumat (c, f(c)).

The relaƟve maximum and minimum values comprise the relaƟve extrema of f.

Notes:

122



.....

−2

.

−1

.

1

.

2

.

3

. −6.

−4

.

−2

.

2

.

4

.

6

.

x

.

y

Figure 3.3: A graph of f(x) = (3x4−4x3−
12x2 + 5)/5 as in Example 76.
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Figure 3.4: A graph of f(x) = (x−1)2/3+2
as in Example 77.

3.1 Extreme Values

We briefly pracƟce using these definiƟons.

.. Example 76 ApproximaƟng relaƟve extrema
Consider f(x) = (3x4 − 4x3 − 12x2 + 5)/5, as shown in Figure 3.3. Approximate
the relaƟve extrema of f. At each of these points, evaluate f ′.

SÊ½çã®ÊÄ We sƟll do not have the tools to exactly find the relaƟve
extrema, but the graph does allow us to make reasonable approximaƟons. It
seems f has relaƟve minima at x = −1 and x = 2, with values of f(−1) = 0 and
f(2) = −5.4. It also seems that f has a relaƟve maximum at the point (0, 1).

We approximate the relaƟve minima to be 0 and−5.4; we approximate the
relaƟve maximum to be 1.

It is straighƞorward to evaluate f ′(x) = 1
5 (12x

3 − 12x2 − 24x) at x = 0, 1
and 2. In each case, f ′(x) = 0. ..

.. Example 77 ApproximaƟng relaƟve extrema
Approximate the relaƟve extrema of f(x) = (x− 1)2/3 + 2, shown in Figure 3.4.
At each of these points, evaluate f ′.

SÊ½çã®ÊÄ The figure implies that f does not have any relaƟve maxima,
but has a relaƟve minimum at (1, 2). In fact, the graph suggests that not only is
this point a relaƟve minimum, y = f(1) = 2 theminimum value of the funcƟon.

We compute f ′(x) = 2
3 (x− 1)−1/3. When x = 1, f ′ is undefined...

What can we learn from the previous two examples? We were able to vi-
sually approximate relaƟve extrema, and at each such point, the derivaƟve was
either 0 or it was not defined. This observaƟon holds for all funcƟons, leading
to a definiƟon and a theorem.

..
DefiniƟon 14 CriƟcal Numbers and CriƟcal Points

Let f be defined at c. The value c is a criƟcal number (or criƟcal value)
of f if f ′(c) = 0 or f ′(c) is not defined.

If c is a criƟcal number of f, then the point (c, f(c)) is a criƟcal point of f.

Notes:
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Figure 3.6: A graph of f(x) = 2x3 + 3x2 −
12x on [0, 3] as in Example 78.
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..
Theorem 26 RelaƟve Extrema and CriƟcal Points

Let a funcƟon f have a relaƟve extrema at the point (c, f(c)). Then c is a
criƟcal number of f.

Be careful to understand that this theorem states “All relaƟve extrema occur
at criƟcal points.” It does not say “All criƟcal numbers produce relaƟve extrema.”
For instance, consider f(x) = x3. Since f ′(x) = 3x2, it is straighƞorward to de-
termine that x = 0 is a criƟcal number of f. However, f has no relaƟve extrema,
as illustrated in Figure 3.5.

Theorem 25 states that a conƟnuous funcƟon on a closed interval will have
absolute extrema, that is, both an absolutemaximumandan absoluteminimum.
These extrema occur either at the endpoints or at criƟcal values in the interval.
We combine these concepts to offer a strategy for finding extrema.

..
Key Idea 2 Finding Extrema on a Closed Interval

Let f be a conƟnuous funcƟon defined on a closed interval [a, b]. To find
the maximum and minimum values of f on [a, b]:

1. Evaluate f at the endpoints a and b of the interval.

2. Find the criƟcal numbers of f in [a, b].

3. Evaluate f at each criƟcal number.

4. The absolute maximum of f is the largest of these values, and the
absolute minimum of f is the least of these values.

We pracƟce these ideas in the next examples.

.. Example 78 ..Finding extreme values
Find the extreme values of f(x) = 2x3 + 3x2 − 12x on [0, 3], graphed in Figure
3.6.

SÊ½çã®ÊÄ We follow the steps outlined in Key Idea 2. We first evaluate
f at the endpoints:

f(0) = 0 and f(3) = 45.
Next, we find the criƟcal values of f on [0, 3]. f ′(x) = 6x2 + 6x − 12 = 6(x +
2)(x− 1); therefore the criƟcal values of f are x = −2 and x = 1. Since x = −2

Notes:
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x f(x)
0 0
1 −7
3 45

Figure 3.7: Finding the extreme values of
f in Example 78.

x f(x)
−4 25
0 1
2 3

Figure 3.8: Finding the extreme values of
f in Example 79.
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Figure 3.9: A graph of f(x) on [−4, 2] as in
Example 79.

3.1 Extreme Values

does not lie in the interval [0, 3], we ignore it. EvaluaƟng f at the only criƟcal
number in our interval gives: f(1) = −7.

The table in Figure 3.7 gives f evaluated at the “important” x values in [0, 3].
We can easily see the maximum and minimum values of f: the maximum value
is 45 and the minimum value is−7....

Note that all this was done without the aid of a graph; this work followed
an analyƟc algorithm and did not depend on any visualizaƟon. Figure 3.6 shows
f and we can confirm our answer, but it is important to understand that these
answers can be found without graphical assistance.

We pracƟce again.

.. Example 79 Finding extreme values
Find the maximum and minimum values of f on [−4, 2], where

f(x) =
{

(x− 1)2 x ≤ 0
x+ 1 x > 0 .

SÊ½çã®ÊÄ Here f is piecewise–defined, but we can sƟll apply Key Idea
2. EvaluaƟng f at the endpoints gives:

f(−4) = 25 and f(2) = 3.

We now find the criƟcal numbers of f. We have to define f ′ in a piecewise
manner; it is

f ′(x) =
{

2(x− 1) x < 0
1 x > 0 .

Note that while f is defined for all of [−4, 2], f ′ is not, as the derivaƟve of f does
not exist when x = 0. (From the leŌ, the derivaƟve approaches −2; from the
right the derivaƟve is 1.) Thus one criƟcal number of f is x = 0.

We now set f ′(x) = 0. When x > 0, f ′(x) is never 0. When x < 0, f ′(x) is
also never 0. (We may be tempted to say that f ′(x) = 0 when x = 1. However,
this is nonsensical, for we only consider f ′(x) = 2(x− 1)when x < 0, so we will
ignore a soluƟon that says x = 1.

So we have three important x values to consider: x = −4, 2 and 0. Evalu-
aƟng f at each gives, respecƟvely, 25, 3 and 1, shown in Figure 3.8. Thus the
absolute minimum of f is 1; the absolute maximum of f is 25. Our answer is con-
firmed by the graph of f in Figure 3.9. ..

Notes:
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x f(x)
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Figure 3.10: Finding the extrema of
f(x) = cos(x2) in Example 80.
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Figure 3.11: A graph of f(x) = cos(x2) on
[−2, 2] as in Example 80.
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Figure 3.12: A graph of f(x) =
√
1− x2

on [−1, 1] as in Example 81.

x f(x)
−1 0
0 1
1 0

Figure 3.13: Finding the extrema of the
half–circle in Example 81.

Note: We implicitly found the derivaƟve
of x2 + y2 = 1, the unit circle, in Exam-
ple 69 as dy

dx = −x/y. In Example 81, half
of the unit circle is given as y = f(x) =√
1− x2. We found f ′(x) = −x√

1−x2
. Rec-

ognize that the denominator of this frac-
Ɵon is y; that is, we again found f ′(x) =
dy
dx = −x/y.
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.. Example 80 Finding extreme values
Find the extrema of f(x) = cos(x2) on [−2, 2].

SÊ½çã®ÊÄ We again use Key Idea 2. EvaluaƟng f at the endpoints of
the interval gives: f(−2) = f(2) = cos(4) ≈ −0.6536.We now find the criƟcal
values of f.

Applying the Chain Rule, we find f ′(x) = −2x sin(x2). Set f ′(x) = 0 and
solve for x to find the criƟcal values of f.

We have f ′(x) = 0 when x = 0 and when sin(x2) = 0. In general, sin t = 0
when t = . . .− 2π,−π, 0, π, . . . Thus sin(x2) = 0 when x2 = 0, π, 2π, . . . (x2 is
always posiƟve sowe ignore−π, etc.) So sin(x2) = 0when x = 0,±

√
π,±

√
2π, . . ..

The only values to fall in the given interval of [−2, 2] are−
√
π and

√
π, approx-

imately±1.77.
We again construct a table of important values in Figure 3.10. In this example

we have 5 values to consider: x = 0,±2,±
√
π.

From the table it is clear that the maximum value of f on [−2, 2] is 1; the
minimum value is−1. The graph in Figure 3.11 confirms our results. ..

We consider one more example.

.. Example 81 Finding extreme values
Find the extreme values of f(x) =

√
1− x2.

SÊ½çã®ÊÄ A closed interval is not given, so we find the extreme values
of f on its domain. f is defined whenever 1 − x2 ≥ 0; thus the domain of f is
[−1, 1]. EvaluaƟng f at either endpoint returns 0.

Using the Chain Rule, we find f ′(x) =
−x√
1− x2

. The criƟcal points of f are

found when f ′(x) = 0 or when f ′ is undefined. It is straighƞorward to find that
f ′(x) = 0 when x = 0, and f ′ is undefined when x = ±1, the endpoints of the
interval. The table of important values is given in Figure 3.13. ..

We have seen that conƟnuous funcƟons on closed intervals always have a
maximum and minimum value, and we have also developed a technique to find
these values. In the next secƟon, we further our study of the informaƟonwe can
glean from “nice” funcƟons with theMean Value Theorem. On a closed interval,
we can find the average rate of change of a funcƟon (as we did at the beginning
of Chapter 2). We will see that differenƟable funcƟons always have a point at
which their instantaneous rate of change is same as the average rate of change.
This is surprisingly useful, as we’ll see.
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Exercises 3.1
Terms and Concepts
1. Describe what an “extreme value” of a funcƟon is in your

own words.

2. Sketch the graph of a funcƟon f on (−1, 1) that has both a
maximum and minimum value.

3. Describe the difference between and absolute and relaƟve
maximum in your own words.

4. Sketch the graph of a funcƟon f where f has a relaƟve max-
imum at x = 1 and f ′(1) is undefined.

5. T/F: If c is a criƟcal value of a funcƟon f, then f has either a
relaƟve maximum or relaƟve minimum at x = c.

Problems

In Exercises 6 – 7, idenƟfy each of the marked points as being
an absolute maximum or minimum, a relaƟve maximum or
minimum, or none of the above.
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In Exercises 8 – 14, evaluate f ′(x) at the indicated points.

8. f(x) =
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x2 + 1
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14. f(x) =
(x− 2)2/3
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In Exercises 15 – 24, find the extreme values of the funcƟon
on the given interval.

15. f(x) = x2 + x+ 4 on [−1, 2].

16. f(x) = x3 − 9
2
x2 − 30x+ 3 on [0, 6].

17. f(x) = 3 sin x on [π/4, 2π/3].

18. f(x) = x2
√
4− x2 on [−2, 2].

19. f(x) = x+
3
x

on [1, 5].

20. f(x) =
x2

x2 + 5
on [−3, 5].

21. f(x) = ex cos x on [0, π].

22. f(x) = ex sin x on [0, π].

23. f(x) =
ln x
x

on [1, 4].

24. f(x) = x2/3 − x on [0, 2].

Review
25. Find dy

dx , where x
2y− y2x = 1.

26. Find the equaƟon of the line tangent to the graph of x2 +
y2 + xy = 7 at the point (1, 2).

27. Let f(x) = x3 + x.

Evaluate lim
s→0

f(x+ s)− f(x)
s

.

128



3.2 The Mean Value Theorem

3.2 The Mean Value Theorem
We moƟvate this secƟon with the following quesƟon: Suppose you leave your
house and drive to your friend’s house in a city 100 miles away, compleƟng the
trip in two hours. At any point during the trip do you necessarily have to be going
50 miles per hour?

In answering this quesƟon, it is clear that the average speed for the enƟre
trip is 50mph (i.e. 100miles in 2 hours), but the quesƟon is whether or not your
instantaneous speed is ever exactly 50mph. More simply, does your speedome-
ter ever read exactly 50 mph?. The answer, under some very reasonable as-
sumpƟons, is “yes.”

Let’s now see why this situaƟon is in a calculus text by translaƟng it into
mathemaƟcal symbols.

First assume that the funcƟon y = f(t) gives the distance (in miles) traveled
from your home at Ɵme t (in hours) where 0 ≤ t ≤ 2. In parƟcular, this gives
f(0) = 0 and f(2) = 100. The slope of the secant line connecƟng the starƟng
and ending points (0, f(0)) and (2, f(2)) is therefore

∆f
∆t

=
f(2)− f(0)

2− 0
=

100− 0
2

= 50mph.

The slope at any point on the graph itself is given by the derivaƟve f ′(t). So,
since the answer to the quesƟon above is “yes,” this means that at some Ɵme
during the trip, the derivaƟve takes on the value of 50 mph. Symbolically,

f ′(c) =
f(2)− f(0)

2− 0
= 50

for some Ɵme 0 ≤ c ≤ 2.

How about more generally? Given any funcƟon y = f(x) and a range a ≤
x ≤ b does the value of the derivaƟve at some point between a and b have to
match the slope of the secant line connecƟng the points (a, f(a)) and (b, f(b))?
Or equivalently, does the equaƟon f ′(c) = f(b)−f(a)

b−a have to hold for some a <
c < b?

Let’s look at two funcƟons in an example.

.. Example 82 ..Comparing average and instantaneous rates of change
Consider funcƟons

f1(x) =
1
x2

and f2(x) = |x|

with a = −1 and b = 1 as shown in Figure 3.14(a) and (b), respecƟvely. Both
funcƟons have a value of 1 at a and b. Therefore the slope of the secant line

Notes:
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Figure 3.14: A graph of f1(x) = 1/x2 and
f2(x) = |x| in Example 82.
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Figure 3.15: A graph of f(x) = x3 − 5x2 +
3x + 5, where f(a) = f(b). Note the ex-
istence of c, where a < c < b, where
f ′(c) = 0.
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connecƟng the end points is 0 in each case. But if you look at the plots of each
(below), you can see that there are no points on either graph where the tangent
lines have slope zero. Therefore we have found that there is no c in [−1, 1] such
that

f ′(c) =
f(1)− f(−1)
1− (−1)

= 0.
...

Sowhatwent “wrong”? Itmay not be surprising to find that the disconƟnuity
of f1 and the corner of f2 play a role. If our funcƟons had been conƟnuous and
differenƟable, would we have been able to find that special value c? This is our
moƟvaƟon for the following theorem.

..
Theorem 27 The Mean Value Theorem of DifferenƟaƟon

Let y = f(x) be conƟnuous funcƟon on the closed interval [a, b] and
differenƟable on the open interval (a, b). There exists a value c, a < c <
b, such that

f ′(c) =
f(b)− f(a)

b− a
.

That is, there is a value c in (a, b)where the instantaneous rate of change
of f at c is equal to the average rate of change of f on [a, b].

Note that the reasons that the funcƟons in Example 82 fail are indeed that
f1 has a disconƟnuity on the interval [−1, 1] and f2 is not differenƟable at the
origin.

We will give a proof of the Mean Value Theorem below. To do so, we use a
fact, called Rolle’s Theorem, stated here.

..
Theorem 28 Rolle’s Theorem

Let f be conƟnuous on [a, b] and differenƟable on (a, b), where f(a) =
f(b). There is some c in (a, b) such that f ′(c) = 0.

Consider Figure 3.15 where the graph of a funcƟon f is given, where f(a) =
f(b). It shouldmake intuiƟve sense that if f is differenƟable (and hence, conƟnu-
ous) that there would be a value c in (a, b)where f ′(c) = 0; that is, there would
be a relaƟve maximum or minimum of f in (a, b). Rolle’s Theorem guarantees at
least one; there may be more.

Notes:
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3.2 The Mean Value Theorem

Rolle’s Theorem is really just a special case of the Mean Value Theorem. If
f(a) = f(b), then the average rate of change on (a, b) is 0, and the theorem
guarantees some c where f ′(c) = 0. We will prove Rolle’s Theorem, then use it
to prove the Mean Value Theorem.

Proof of Rolle’s Theorem
Let f be differenƟable on (a, b) where f(a) = f(b). We consider two cases.

Case 1: Consider the case when f is constant on [a, b]; that is, f(x) = f(a) = f(b)
for all x in [a, b]. Then f ′(x) = 0 for all x in [a, b], showing there is at least one
value c in (a, b) where f ′(c) = 0.
Case 2: Now assume that f is not constant on [a, b]. The Extreme Value Theorem
guarantees that f has a maximal and minimal value on [a, b], found either at the
endpoints or at a criƟcal value in (a, b). Since f(a) = f(b) and f is not constant, it
is clear that themaximum andminimum cannot both be found at the endpoints.
Assume, without loss of generality, that the maximum of f is not found at the
endpoints. Therefore there is a c in (a, b) such that f(c) is the maximum value
of f. By Theorem 26, cmust be a criƟcal number of f; since f is differenƟable, we
have that f ′(c) = 0, compleƟng the proof of the theorem. □

We can now prove the Mean Value Theorem.

Proof of the Mean Value Theorem
Define the funcƟon

g(x) = f(x)− f(b)− f(a)
b− a

x.

We know g is differenƟable on (a, b) and conƟnuous on [a, b] since f is. We can
show g(a) = g(b) (it is actually easier to show g(b)−g(a) = 0, which suffices).
We can then apply Rolle’s theorem to guarantee the existence of c ∈ (a, b) such
that g′(c) = 0. But note that

0 = g′(c) = f ′(c)− f(b)− f(a)
b− a

;

hence
f ′(c) =

f(b)− f(a)
b− a

,

which is what we sought to prove. □

Going back to the very beginning of the secƟon, we see that the only as-
sumpƟon we would need about our distance funcƟon f(t) is that it be conƟnu-
ous and differenƟable for t from 0 to 2 hours (both reasonable assumpƟons). By
the Mean Value Theorem, we are guaranteed a Ɵme during the trip where our
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Value Theorem in Example 83.
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instantaneous speed is 50 mph. This fact is used in pracƟce. Some law enforce-
ment agencies monitor traffic speeds while in aircraŌ. They do not measure
speed with radar, but rather by Ɵming individual cars as they pass over lines
painted on the highway whose distances apart are known. The officer is able
to measure the average speed of a car between the painted lines; if that aver-
age speed is greater than the posted speed limit, the officer is assured that the
driver exceeded the speed limit at some Ɵme.

Note that the Mean Value Theorem is an existence theorem. It states that a
special value c exists, but it does not give any indicaƟon about how to find it. It
turns out that whenwe need theMean Value Theorem, existence is all we need.

.. Example 83 Using the Mean Value Theorem
Consider f(x) = x3 + 5x+ 5 on [−3, 3]. Find c in [−3, 3] that saƟsfies the Mean
Value Theorem.

SÊ½çã®ÊÄ The average rate of change of f on [−3, 3] is:

f(3)− f(−3)
3− (−3)

=
84
6

= 14.

Wewant to find c such that f ′(c) = 14. We find f ′(x) = 3x2+5. We set this
equal to 14 and solve for x.

f ′(x) = 14

3x2 + 5 = 14

x2 = 3

x = ±
√
3 ≈ ±1.732

We have found 2 values c in [−3, 3] where the instantaneous rate of change
is equal to the average rate of change; the Mean Value Theorem guaranteed at
least one. In Figure 3.16 f is graphed with a dashed line represenƟng the aver-
age rate of change; the lines tangent to f at x = ±

√
3 are also given. Note how

these lines are parallel (i.e., have the same slope) as the dashed line. ..

While the Mean Value Theorem has pracƟcal use (for instance, the speed
monitoring applicaƟon menƟoned before), it is mostly used to advance other
theory. We will use it in the next secƟon to relate the shape of a graph to its
derivaƟve.
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Exercises 3.2
Terms and Concepts
1. Explain in your own words what the Mean Value Theorem

states.

2. Explain in your own words what Rolle’s Theorem states.

Problems
In Exercises 3 – 10, a funcƟon f(x) and interval [a, b] are given.
Check if Rolle’s Theoremcanbe applied to fon [a, b]; if so, find
c in [a, b] such that f ′(c) = 0.

3. f(x) = 6 on [−1, 1].

4. f(x) = 6x on [−1, 1].

5. f(x) = x2 + x− 6 on [−3, 2].

6. f(x) = x2 + x− 2 on [−3, 2].

7. f(x) = x2 + x on [−2, 2].

8. f(x) = sin x on [π/6, 5π/6].

9. f(x) = cos x on [0, π].

10. f(x) =
1

x2 − 2x+ 1
on [0, 2].

In Exercises 11 – 20, a funcƟon f(x) and interval [a, b] are
given. Check if the Mean Value Theorem can be applied to f
on [a, b]; if so, find a value c in [a, b] guaranteed by the Mean
Value Theorem.

11. f(x) = x2 + 3x− 1 on [−2, 2].

12. f(x) = 5x2 − 6x+ 8 on [0, 5].

13. f(x) =
√
9− x2 on [0, 3].

14. f(x) =
√
25− x on [0, 9].

15. f(x) =
x2 − 9
x2 − 1

on [0, 2].

16. f(x) = ln x on [1, 5].

17. f(x) = tan x on [−π/4, π/4].

18. f(x) = x3 − 2x2 + x+ 1 on [−2, 2].

19. f(x) = 2x3 − 5x2 + 6x+ 1 on [−5, 2].

20. f(x) = sin−1 x on [−1, 1].

Review
21. Find the extreme values of f(x) = x2 − 3x+ 9 on [−2, 5].

22. Describe the criƟcal points of f(x) = cos x.

23. Describe the criƟcal points of f(x) = tan x.
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3.3 Increasing and Decreasing FuncƟons

Our study of “nice” funcƟons f in this chapter has so far focused on individual
points: points where f is maximal/minimal, points where f ′(x) = 0 or f ′ does
not exist, and points cwhere f ′(c) is average rate of change of f on some interval.

In this secƟon we begin to study how funcƟons behave between special
points; we begin studying in more detail the shape of their graphs.

We start with an intuiƟve concept. Given the graph in Figure 3.17, where
would you say the funcƟon is increasing? Decreasing? Even though we have
not defined these terms mathemaƟcally, one likely answered that f is increasing
when x > 1 and decreasing when x < 1. We formally define these terms here.

..
DefiniƟon 15 Increasing and Decreasing FuncƟons

Let f be a funcƟon defined on an interval I.

1. f is increasing on I if for every a < b in I, f(a) ≤ f(b).

2. f is decreasing on I if for every a < b in I, f(a) ≥ f(b).

A funcƟon is strictly increasingwhen a < b in I implies f(a) < f(b), with
a similar definiƟon holding for strictly decreasing.

Informally, a funcƟon is increasing if as x gets larger (i.e., looking leŌ to right)
f(x) gets larger.

Our interest lies in finding intervals in the domain of f on which f is either
increasing or decreasing. Such informaƟon should seem useful. For instance, if
f describes the speed of an object, we might want to know when the speed was
increasing or decreasing (i.e., when the object was acceleraƟng vs. decelerat-
ing). If f describes the populaƟon of a city, we should be interested in when the
populaƟon is growing or declining.

To find such intervals, we again consider secant lines. Let f be an increasing
funcƟon on an interval I, such as the one shown in Figure 3.18, and let a < b be
given in I. The secant line on the graph of f from x = a to x = b is drawn; it has
a slope of (f(b)− f(a))/(b− a). But note:

f(b)− f(a)
b− a

⇒ numerator > 0
denominator > 0

⇒ slope of the
secant line> 0

⇒
Average rate of
change of f on
[a, b] is> 0.

We have shownmathemaƟcally whatmay have already been obvious: when
f is increasing, its secant lines will have a posiƟve slope. Now recall the Mean

Notes:
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Note: Theorem 29 also holds if f ′(c) = 0
for a finite number of values of c in I.

3.3 Increasing and Decreasing FuncƟons

Value Theorem guarantees that there is a number c, where a < c < b, such that

f ′(c) =
f(b)− f(a)

b− a
> 0.

By considering all such secant lines in I, we can conclude that f ′(x) > 0 on I. A
similar statement can be made for decreasing funcƟons.

This leads us to a method for finding when funcƟons are increasing and de-
creasing, as stated in the following theorem.

..
Theorem 29 Test For Increasing/Decreasing FuncƟons

Let f be a conƟnuous funcƟon on [a, b] and differenƟable on (a, b).

1. If f ′(c) > 0 for all c in (a, b), then f is increasing on [a, b].

2. If f ′(c) < 0 for all c in (a, b), then f is decreasing on [a, b].

3. If f ′(c) = 0 for all c in (a, b), then f is constant on [a, b].

Let a and b be in I where f ′(a) > 0 and f ′(b) < 0. It follows from the
Intermediate Value Theorem that there must be some value c between a and b
where f ′(c) = 0. This leads us to the following method for finding intervals on
which a funcƟon is increasing or decreasing.

..
Key Idea 3 Finding Intervals on Which f is Increasing or Decreasing

Let f be a differenƟable funcƟon on an interval I. To find intervals on
which f is increasing and decreasing:

1. Find the criƟcal values of f. That is, find all c in I where f ′(c) = 0
or f ′ is not defined.

2. Use the criƟcal values to divide I into subintervals.

3. Pick any point p in each subinterval, and find the sign of f ′(p).

(a) If f ′(p) > 0, then f is increasing on that subinterval.

(b) If f ′(p) < 0, then f is decreasing on that subinterval.

We demonstrate using this process in the following example.

Notes:
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.. Example 84 Finding intervals of increasing/decreasing
Let f(x) = x3 + x2 − x+ 1. Find intervals on which f is increasing or decreasing.

SÊ½çã®ÊÄ Using Key Idea 3, we first find the criƟcal values of f. We
have f ′(x) = 3x2 + 2x − 1 = (3x − 1)(x + 1), so f ′(x) = 0 when x = −1 and
when x = 1/3. f ′ is never undefined.

Since an interval was not specified for us to consider, we consider the en-
Ɵre domain of f which is (−∞,∞). We thus break the whole real line into
three subintervals based on the two criƟcal values we just found: (−∞,−1),
(−1, 1/3) and (1/3,∞). This is shown in Figure 3.19.

..

−1

.

1/3

..
f ′ > 0 incr

.
f ′ < 0 decr

.
f ′ > 0 incr

Figure 3.19: Number line for f in Example 84.

We now pick a value p in each subinterval and find the sign of f ′(p). All we
care about is the sign, so we do not actually have to fully compute f ′(p); pick
“nice” values that make this simple.
Subinterval 1, (−∞,−1): We (arbitrarily) pick p = −2. We can compute
f ′(−2) directly: f ′(−2) = 3(−2)2 + 2(−2)− 1 = 7 > 0. We conclude that f is
increasing on (−∞,−1).

Note we can arrive at the same conclusion without computaƟon. For in-
stance, we could choose p = −100. The first term in f ′(−100), i.e., 3(−100)2 is
clearly posiƟve and very large. The other terms are small in comparison, so we
know f ′(−100) > 0. All we need is the sign.

Subinterval 2, (−1, 1/3): We pick p = 0 since that value seems easy to deal
with. f ′(0) = −1 < 0. We conclude f is decreasing on (−1, 1/3).

Subinterval 3, (1/3,∞): Pick an arbitrarily large value for p > 1/3 and note
that f ′(p) = 3p2 + 2p− 1 > 0. We conclude that f is increasing on (1/3,∞).

We can verify our calculaƟons by considering Figure 3.20, where f is graphed.
The graph also presents f ′ in red; note how f ′ > 0 when f is increasing and
f ′ < 0 when f is decreasing. ..

One is jusƟfied in wondering why so much work is done when the graph
seems to make the intervals very clear. We give three reasons why the above
work is worthwhile.

First, the points at which f switches from increasing to decreasing are not
precisely known given a graph. The graph shows us something significant hap-

Notes:

136



3.3 Increasing and Decreasing FuncƟons

pens near x = −1 and x = 0.3, but we cannot determine exactly where from
the graph.

One could argue that just finding criƟcal values is important; once we know
the significant points are x = −1 and x = 1/3, the graph shows the increas-
ing/decreasing traits just fine. That is true. However, the technique prescribed
here helps reinforce the relaƟonship between increasing/decreasing and the
sign of f ′. Once mastery of this concept (and several others) is obtained, one
finds that either (a) just the criƟcal points are computed and the graph shows
all else that is desired, or (b) a graph is never produced, because determining
increasing/decreasing using f ′ is straighƞorward and the graph is unnecessary.
So our second reason why the above work is worthwhile is this: once mastery
of a subject is gained, one has opƟons for finding needed informaƟon. We are
working to develop mastery.

Finally, our third reason: many problems we face “in the real world” are very
complex. SoluƟons are tractable only through the use of computers to do many
calculaƟons for us. Computers do not solve problems “on their own,” however;
they need to be taught (i.e., programmed) to do the right things. It would be
beneficial to give a funcƟon to a computer and have it return maximum and
minimum values, intervals on which the funcƟon is increasing and decreasing,
the locaƟons of relaƟve maxima, etc. The work that we are doing here is easily
programmable. It is hard to teach a computer to “look at the graph and see if it
is going up or down.” It is easy to teach a computer to “determine if a number
is greater than or less than 0.”

In SecƟon 3.1 we learned the definiƟon of relaƟve maxima and minima and
found that they occur at criƟcal points. We are now learning that funcƟons can
switch from increasing to decreasing (and vice–versa) at criƟcal points. This new
understanding of increasing and decreasing creates a greatmethod of determin-
ing whether a criƟcal point corresponds to a maximum, minimum, or neither.
Imagine a funcƟon increasing unƟl a criƟcal point at x = c, aŌer which it de-
creases. A quick sketch helps confirm that f(c) must be a relaƟve maximum. A
similar statement can be made for relaƟve minimums. We formalize this con-
cept in a theorem.

..
Theorem 30 First DerivaƟve Test

Let f be differenƟable on I and let c be a criƟcal number in I.

1. If the sign of f ′ switches from posiƟve to negaƟve at c, then f(c) is a relaƟve maximum of f.

2. If the sign of f ′ switches from negaƟve to posiƟve at c, then f(c) is a relaƟve minimum of f.

3. If the sign of f ′ does not change at c, then f(c) is not a relaƟve extrema of f.

Notes:
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Note: Strictly speaking, x = 1 is not a crit-
ical value of f as f is not defined at x = 1.
We therefore actually apply Key Idea 3 to
the intervals (−∞, 1) and (1,∞). We
make note of x = 1 on the number line
as we recognize that the behavior of f can
change there, as it is not defined there.
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.. Example 85 ..Using the First DerivaƟve Test
Find the intervals on which f is increasing and decreasing, and use the First
DerivaƟve Test to determine the relaƟve extrema of f, where

f(x) =
x2 + 3
x− 1

.

SÊ½çã®ÊÄ We start by calculaƟng f ′ using the QuoƟent Rule. We find

f ′(x) =
x2 − 2x− 3
(x− 1)2

.

We need to find the criƟcal values of f; we want to know when f ′(x) = 0 and
when f ′ is not defined. That laƩer is straighƞorward: when the denominator of
f ′ is 0, f ′ is undefined. That occurs when x = 1.

f ′(x) = 0 when the numerator of f ′ is 0. That occurs when x2 − 2x − 3 =
(x− 3)(x+ 1) = 0; i.e., when x = −1, 3.

We have found that f has three criƟcal numbers, dividing the real number
line into 4 subintervals:

(−∞,−1), (−1, 1), (1, 3) and (3,∞).

Pick a number p from each subinterval and test the sign of f ′ at p to determine
whether f is increasing or decreasing on that interval. Again, we do well to avoid
complicated computaƟons; noƟce that the denominator of f ′ is always posiƟve
so we can ignore it during our work.
Interval 1, (−∞,−1): Choosing a very small number (i.e., a negaƟve number
with a large magnitude) p returns p2 − 2p − 3 in the numerator of f ′; that will
be posiƟve. Hence f is increasing on (−∞,−1).
Interval 2, (−1, 1): Choosing 0 seems simple: f ′(0) = −3 < 0. We conclude
f is decreasing on (−1, 1).
Interval 3, (1, 3): Choosing 2 seems simple: f ′(2) = −3 < 0. Again, f is
decreasing.
Interval 4, (3,∞): Choosing an very large number p from this subinterval will
give a posiƟve numerator and (of course) a posiƟve denominator. So f is increas-
ing on (3,∞).

In summary, f is increasing on the set (−∞,−1)∪(3,∞) and is decreasing on
the set (−1, 1)∪ (1, 3). Since at x = −1, the sign of f ′ switched from posiƟve to
negaƟve, Theorem 30 states that f(−1) is a relaƟve maximum of f. At x = 3, the
sign of f ′ switched fromnegaƟve to posiƟve,meaning f(3) is a relaƟveminimum.
At x = 1, f is not defined, so there is no relaƟve extrema at x = 1.

This is summarized in the number line shown in Figure 3.21. Also, Figure
3.22 shows a graph of f, confirming our calculaƟons. This figure also shows f ′ in

Notes:
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Figure 3.22: A graph of f(x) in Example
85, showing where f is increasing and de-
creasing.

3.3 Increasing and Decreasing FuncƟons

red, again demonstraƟng that f is increasing when f ′ > 0 and decreasing when
f ′ < 0.

..

−1

.

1

.

3

.
f ′ > 0 incr

.
f ′ < 0 decr

.
f ′ < 0 decr

.
f ′ > 0 incr

.

rel.
max

.

rel.
min

Figure 3.21: Number line for f in Example 85....

One is oŌen tempted to think that funcƟons always alternate “increasing,
decreasing, increasing, decreasing,. . .” around criƟcal values. Our previous ex-
ample demonstrated that this is not always the case. While x = 1 was a criƟcal
value, f was decreasing on “both sides of x = 1.”

We examine one more example.

.. Example 86 ..Using the First DerivaƟve Test
Find the intervals on which f(x) = x8/3 − 4x2/3 is increasing and decreasing and
idenƟfy the relaƟve extrema.

SÊ½çã®ÊÄ We again start with taking derivaƟves. Since we know we
want to solve f ′(x) = 0, we will do some algebra aŌer taking derivaƟves.

f(x) = x
8
3 − 4x

2
3

f ′(x) =
8
3
x

5
3 − 8

3
x−

1
3

=
8
3
x−

1
3

(
x

6
3 − 1

)
=

8
3
x−

1
3 (x2 − 1)

=
8
3
x−

1
3 (x− 1)(x+ 1)

This derivaƟon of f ′ shows that f ′(x) = 0 when x = ±1 and f ′ is not de-
fined when x = 0. Thus we have 3 criƟcal values, breaking the number line into
4 subintervals as shown in Figure 3.23.

Interval 1, (∞,−1): We choose p = −2; we can easily verify that f ′(−2) < 0.
So f is decreasing on (−∞,−1).
Interval 2, (−1, 0): Choose p = −1/2. Once more we pracƟce finding the sign
of f ′(p) without compuƟng an actual value. We have f ′(p) = (8/3)p−1/3(p −

Notes:
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Figure 3.24: A graph of f(x) in Example
86, showing where f is increasing and de-
creasing.
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1)(p+ 1); find the sign of each of the three terms.

f ′(p) =
8
3
· p− 1

3︸︷︷︸
<0

· (p− 1)︸ ︷︷ ︸
<0

(p+ 1)︸ ︷︷ ︸
>0

.

We have a “negaƟve × negaƟve × posiƟve” giving a posiƟve number; f is in-
creasing on (−1, 0).
Interval 3, (0, 1): We do a similar sign analysis as before, using p in (0, 1).

f ′(p) =
8
3
· p− 1

3︸︷︷︸
>0

· (p− 1)︸ ︷︷ ︸
<0

(p+ 1)︸ ︷︷ ︸
>0

.

We have 2 posiƟve factors and one negaƟve factor; f ′(p) < 0 and so f is de-
creasing on (0, 1).
Interval 4, (1,∞): Similar work to the three intervals shows that f ′(x) > 0 on
(1,∞), so f is increasing on this interval.
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Figure 3.23: Number line for f in Example 86.

Weconclude by staƟng that f is increasing on (−1, 0)∪(1,∞) anddecreasing
on (−∞,−1) ∪ (0, 1). The sign of f ′ changes from negaƟve to posiƟve around
x = −1 and x = 1, meaning by Theorem 30 that f(−1) and f(1) are relaƟve
minima of f. As the sign of f ′ changes from posiƟve to negaƟve at x = 0, we
have a relaƟve maximum at f(0). Figure 3.24 shows a graph of f, confirming our
result. Once again f ′ is graphed in red, highlighƟng oncemore that f is increasing
when f ′ > 0 and is decreasing when f ′ < 0. ...
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Exercises 3.3
Terms and Concepts
1. In your own words describe what it means for a funcƟon to

be increasing.

2. What does a decreasing funcƟon “look like”?

3. Sketch a graph of a funcƟon on [0, 2] that is increasing but
not strictly increasing.

4. Give an example of a funcƟon describing a situaƟon where
it is “bad” to be increasing and “good” to be decreasing.

5. A funcƟon f has derivaƟve f ′(x) = (sin x+ 2)ex
2+1, where

f ′(x) > 1 for all x. Is f increasing, decreasing, or can we not
tell from the given informaƟon?

Problems
In Exercises 6 – 13, a funcƟon f(x) is given.

(a) Compute f ′(x).

(b) Graph f and f ′ on the same axes (using technology is
permiƩed) and verify Theorem 29.

6. f(x) = 2x+ 3

7. f(x) = x2 − 3x+ 5

8. f(x) = cos x

9. f(x) = tan x

10. f(x) = x3 − 5x2 + 7x− 1

11. f(x) = 2x3 − x2 + x− 1

12. f(x) = x4 − 5x2 + 4

13. f(x) =
1

x2 + 1

In Exercises 14 – 23, a funcƟon f(x) is given.

(a) Find the criƟcal numbers of f.

(b) Create a number line to determine the intervals on
which f is increasing and decreasing.

(c) Use the First DerivaƟve Test to determine whether
each criƟcal point is a relaƟve maximum, minimum,
or neither.

14. f(x) = x2 + 2x− 3

15. f(x) = x3 + 3x2 + 3

16. f(x) = 2x3 + x2 − x+ 3

17. f(x) = x3 − 3x2 + 3x− 1

18. f(x) =
1

x2 − 2x+ 2

19. f(x) =
x2 − 4
x2 − 1

20. f(x) =
x

x2 − 2x− 8

21. f(x) =
(x− 2)2/3

x
22. f(x) = sin x cos x on (−π, π).

23. f(x) = x5 − 5x

Review
24. Consider f(x) = x2 − 3x + 5 on [−1, 2]; find c guaranteed

by the Mean Value Theorem.

25. Consider f(x) = sin x on [−π/2, π/2]; find c guaranteed by
the Mean Value Theorem.
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Note: We oŌen state that “f is concave
up” instead of “the graph of f is concave
up” for simplicity.
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Figure 3.25: A funcƟon f with a concave
up graph. NoƟce how the slopes of the
tangent lines, when looking from leŌ to
right, are increasing.
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Figure 3.26: A funcƟon f with a concave
down graph. NoƟce how the slopes of the
tangent lines, when looking from leŌ to
right, are increasing.

Note: A mnemonic for remembering
what concave up/down means is: “Con-
cave up is like a cup; concave down is like
a frown.” It is admiƩedly terrible, but it
works.
A mnemonic for remembering how
to pronounce “mnemonic” is to re-
call it begins with the same sound as
“mnemotechnic.”
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3.4 Concavity and the Second DerivaƟve

Our study of “nice” funcƟons conƟnues. The previous secƟon showed how the
first derivaƟve of a funcƟon, f ′, can relay important informaƟon about f. We
now apply the same technique to f ′ itself, and learn what this tells us about f.

The key to studying f ′ is to consider its derivaƟve, namely f ′′, which is the
second derivaƟve of f. When f ′′ > 0, f ′ is increasing. When f ′′ < 0, f ′ is
decreasing. f ′ has relaƟve maxima and minima where f ′′ = 0 or is undefined.

This secƟon explores how knowing informaƟon about f ′′ gives informaƟon
about f.

Concavity

We begin with a definiƟon, then explore its meaning.

..
DefiniƟon 16 Concave Up and Concave Down

Let f be differenƟable on an interval I. The graph of f is concave up on I
if f ′ is increasing. The graph of f is concave down on I if f ′ is decreasing.
If f ′ is constant then the graph of f is said to have no concavity.

The graph of a funcƟon f is concave up when f ′ is increasing. That means
as one looks at a concave up graph from leŌ to right, the slopes of the tangent
lineswill be increasing. Consider Figure 3.25, where a concave up graph is shown
along with some tangent lines. NoƟce how the tangent line on the leŌ is steep,
downward, corresponding to a small value of f ′. On the right, the tangent line
is steep, upward, corresponding to a large value of f ′.

If a funcƟon is decreasing and concave up, then its rate of decrease is slow-
ing; it is “leveling off.” If the funcƟon is increasing and concave up, then the rate
of increase is increasing. The funcƟon is increasing at a faster and faster rate.

Now consider a funcƟon which is concave down. We essenƟally repeat the
above paragraphs with slight variaƟon.

The graph of a funcƟon f is concave downwhen f ′ is decreasing. That means
as one looks at a concave down graph from leŌ to right, the slopes of the tangent
lines will be decreasing. Consider Figure 3.26, where a concave down graph is
shown along with some tangent lines. NoƟce how the tangent line on the leŌ
is steep, upward, corresponding to a large value of f ′. On the right, the tangent
line is steep, downward, corresponding to a small value of f ′.

If a funcƟon is increasing and concave down, then its rate of increase is slow-
ing; it is “leveling off.” If the funcƟon is decreasing and concave down, then the
rate of decrease is decreasing. The funcƟon is decreasing at a faster and faster

Notes:
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f ′′ < 0, c. down
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Figure 3.27: DemonstraƟng the 4 ways
that concavity interacts with increas-
ing/decreasing, along with the relaƟon-
ships with the first and second deriva-
Ɵves.

Note: Geometrically speaking, a funcƟon
is concave up if its graph lies above its tan-
gent lines. A funcƟon is concave down if
its graph lies below its tangent lines.
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Figure 3.28: A graph of a funcƟon with
its inflecƟon points marked. The inter-
vals where concave up/down are also in-
dicated.

3.4 Concavity and the Second DerivaƟve

rate.
Our definiƟon of concave up and concave down is given in terms of when

the first derivaƟve is increasing or decreasing. We can apply the results of the
previous secƟon and to find intervals on which a graph is concave up or down.
That is, we recognize that f ′ is increasing when f ′′ > 0, etc.

..
Theorem 31 Test for Concavity

Let f be twice differenƟable on an interval I. The graph of f is concave up
if f ′′ > 0 on I, and is concave down if f ′′ < 0 on I.

If knowing where a graph is concave up/down is important, it makes sense
that the placeswhere the graph changes fromone to the other is also important.
This leads us to a definiƟon.

..
DefiniƟon 17 Point of InflecƟon

A point of inflecƟon is a point on the graph of f at which the concavity
of f changes.

Figure 3.28 shows a graph of a funcƟon with inflecƟon points labeled.
If the concavity of f changes at a point (c, f(c)), then f ′ is changing from

increasing to decreasing (or, decreasing to increasing) at x = c. That means that
the sign of f ′′ is changing from posiƟve to negaƟve (or, negaƟve to posiƟve) at
x = c. This leads to the following theorem.

..
Theorem 32 Points of InflecƟon

If (c, f(c)) is a point of inflecƟon on the graph of f, then either f ′′ = 0 or
f ′′ is not defined at c.

We have idenƟfied the concepts of concavity and points of inflecƟon. It is
now Ɵme to pracƟce using these concepts; given a funcƟon, we should be able
to find its points of inflecƟon and idenƟfy intervals on which it is concave up or
down. We do so in the following examples.

.. Example 87 ..Finding intervals of concave up/down, inflecƟon points
Let f(x) = x3 − 3x+ 1. Find the inflecƟon points of f and the intervals on which

Notes:
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Figure 3.29: A number line determining
the concavity of f in Example 87.
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Figure 3.30: A graph of f(x) used in Exam-
ple 87.

Chapter 3 The Graphical Behavior of FuncƟons

it is concave up/down.

SÊ½çã®ÊÄ We start by finding f ′(x) = 3x2 − 3 and f ′′(x) = 6x. To find
the inflecƟon points, we use Theorem 32 and find where f ′′(x) = 0 or where
f ′′ is undefined. We find f ′′ is always defined, and is 0 only when x = 0. So the
point (0, 1) is the only possible point of inflecƟon.

This possible inflecƟon point divides the real line into two intervals, (−∞, 0)
and (0,∞). We use a process similar to the one used in the previous secƟon to
determine increasing/decreasing. Pick any c < 0; f ′′(c) < 0 so f is concave
down on (−∞, 0). Pick any c > 0; f ′′(c) > 0 so f is concave up on (0,∞). Since
the concavity changes at x = 0, the point (0, 1) is an inflecƟon point.

The number line in Figure 3.29 illustrates the process of determining concav-
ity; Figure 3.30 shows a graph of f and f ′′, confirming our results. NoƟce how f
is concave down precisely when f ′′(x) < 0 and concave up when f ′′(x) > 0.

...

.. Example 88 ..Finding intervals of concave up/down, inflecƟon points
Let f(x) = x/(x2 − 1). Find the inflecƟon points of f and the intervals on which
it is concave up/down.

SÊ½çã®ÊÄ We need to find f ′ and f ′′. Using the QuoƟent Rule and sim-
plifying, we find

f ′(x) =
−(1+ x2)
(x2 − 1)2

and f ′′(x) =
2x(x2 + 3)
(x2 − 1)3

.

To find the possible points of inflecƟon, we seek to findwhere f ′′(x) = 0 and
where f ′′ is not defined. Solving f ′′(x) = 0 reduces to solving 2x(x2+3) = 0; we
find x = 0. Wefind the f ′′ is not definedwhen x = ±1, for then thedenominator
of f ′′ is 0.

The possible points of inflecƟon x = −1, x = 0 and x = 1 split the number
line into four intervals, as shown in Figure 3.31. We determine the concavity
on each. Keep in mind that all we are concerned with is the sign of f ′′ on the
interval.

Interval 1, (−∞,−1): Select a number c in this interval with a large magnitude
(for instance, c = −100). The denominator will be posiƟve. In the numerator,
the (c2+3)will be posiƟve and the 2c termwill be negaƟve. Thus the numerator
is negaƟve and f ′′(c) is negaƟve. We conclude f is concave down on (−∞,−1).
Interval 2, (−1, 0): For any number c in this interval, ) < c2 < 1, so the denom-
inator is negaƟve. Thus the denominator will be negaƟve; in the numerator, the
2c term will be negaƟve whereas the (c2+ 3) is always posiƟve. Thus f ′′(c) > 0
and f is concave up on this interval.

Notes:
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Figure 3.32: A graph of f(x) and f ′′(x) in
Example 88.
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Figure 3.33: A graphof S(t) in Example 89,
modeling the sale of a product over Ɵme.

3.4 Concavity and the Second DerivaƟve

Interval 3, (0, 1): Any number c in this interval will be posiƟve and “small.” Thus
the numerator is posiƟve while the denominator is negaƟve. Thus f ′′(c) < 0
and f is concave down on this interval.
Interval 4, (1,∞): Choose a large value for c. It is evident that f ′′(c) > 0, so we
conclude that f is concave up on (1,∞).
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Figure 3.31: Number line for f in Example 88.

We conclude that f is concave up on (−1, 0) ∪ (1∞) and concave down on
(−∞,−1)∪(0, 1). There is only one point of inflecƟon, (0, 0), as f is not defined
at x = ±1. Our work is confirmed by the graph of f in Figure 3.32. Again, f is
drawn in blue and f ′′ is drawn in red. NoƟce how f is concave up whenever f ′′
is posiƟve, and concave down when f ′′ is negaƟve. ...

Recall that relaƟve maxima and minima of f are found at criƟcal points of
f; that is, they are found when f ′(x) = 0 or when f ′ is undefined. Likewise,
the relaƟve maxima and minima of f ′ are found when f ′′(x) = 0 or when f ′′ is
undefined; note that these are the inflecƟon points of f.

What does a “relaƟve maximum of f ′ ”mean? The derivaƟve measures the
rate of change of f; maximizing f ′ means finding the where f is increasing the
most – where f has the steepest tangent line. A similar statement can be made
for minimizing f ′; it corresponds to where f has the steepest negaƟvely–sloped
tangent line.

We uƟlize this concept in the next example.

.. Example 89 ..Understanding inflecƟon points
The sales of a certain product over a three-year span are modeled by S(t) =
t4 − 8t2 + 20, where t is the Ɵme in years, shown in Figure 3.33. Over the first
two years, sales are decreasing. Find the point at which sales are decreasing at
their greatest rate.

SÊ½çã®ÊÄ We want to maximize the rate of decrease, which is to say,
we want to find where S′ has a minimum. To do this, we find where S′′ is 0. We
find S′(t) = 4t3 − 16t and S′′(t) = 12t2 − 16. Seƫng S′′(t) = 0 and solving, we
get t =

√
4/3 ≈ 1.16 (we ignore the negaƟve value of t since it does not lie in

the domain of our funcƟon S).
This is both the inflecƟon point and the point of maximum decrease. This

is the point at which things first start looking up for the company. AŌer the
inflecƟon point, it will sƟll take some Ɵme before sales start to increase, but at
least sales are not decreasing quite as quickly as they had been.

Notes:
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Figure 3.34: A graph of S(t) in Example 89
along with S′(t) in red.
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Figure 3.35: A graphof f(x) = x4. Clearly f
is always concave up, despite the fact that
f ′′(x) = 0 when x = 0. It this exam-
ple, the possible point of inflecƟon (0, 0)
is not a point of inflecƟon.
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Figure 3.36: DemonstraƟng the fact that
relaƟve maxima occur when the graph is
concave down and relaƟve minima occur
when the graph is concave up.
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A graph of S(t) and S′(t) is given in Figure 3.34. When S′(t) < 0, sales are
decreasing; note how at t ≈ 1.16, S′(t) is minimized. That is, sales are decreas-
ing at the fastest rate at t ≈ 1.16. On the interval of (1.16, 2), S is decreasing
but concave up, so the decline in sales is “leveling off.” ...

Not every criƟcal point corresponds to a relaƟve extrema; f(x) = x3 has a
criƟcal point at (0, 0) but no relaƟve maximum or minimum. Likewise, just be-
cause f ′′(x) = 0 we cannot conclude concavity changes at that point. We were
careful before to use terminology “possible point of inflecƟon” since we needed
to check to see if the concavity changed. The canonical example of f ′′(x) = 0
without concavity changing is f(x) = x4. At x = 0, f ′′(x) = 0 but f is always
concave up, as shown in Figure 3.35.

The Second DerivaƟve Test

The first derivaƟve of a funcƟon gave us a test to find if a criƟcal value cor-
responded to a relaƟve maximum, minimum, or neither. The second derivaƟve
gives us another way to test if a criƟcal point is a local maximum or minimum.
The following theorem officially states something that is intuiƟve: if a criƟcal
value occurs in a region where a funcƟon f is concave up, then that criƟcal value
must correspond to a relaƟve minimum of f, etc. See Figure 3.36 for a visualiza-
Ɵon of this.

..
Theorem 33 The Second DerivaƟve Test

Let c be a criƟcal value of f where f ′′(c) is defined.

1. If f ′′(c) > 0, then f has a local minimum at (c, f(c)).

2. If f ′′(c) < 0, then f has a local maximum at (c, f(c)).

The Second DerivaƟve Test relates to the First DerivaƟve Test in the following
way. If f ′′(c) > 0, then the graph is concave up at a criƟcal point c and f ′ itself
is growing. Since f ′(c) = 0 and f ′ is growing at c, then it must go from negaƟve
to posiƟve at c. This means the funcƟon goes from decreasing to increasing, in-
dicaƟng a local minimum at c.

.. Example 90 ..Using the Second DerivaƟve Test
Let f(x) = 100/x+ x. Find the criƟcal points of f and use the Second DerivaƟve
Test to label them as relaƟve maxima or minima.
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Figure 3.37: A graph of f(x) in Example
90. The second derivaƟve is evaluated
at each criƟcal point. When the graph is
concave up, the criƟcal point represents
a local minimum; when the graph is con-
cave down, the criƟcal point represents a
local maximum.

3.4 Concavity and the Second DerivaƟve

SÊ½çã®ÊÄ We find f ′(x) = −100/x2 + 1 and f ′′(x) = 100/x3.We set
f ′(x) = 0 and solve for x to find the criƟcal values (note that f ′ is not defined at
x = 0, but neither is f so this is not a criƟcal value.) We find the criƟcal values
are x = ±10. EvaluaƟng f ′′ at x = 10 gives 0.1 > 0, so there is a local minimum
at x = 10. EvaluaƟng f ′′(−10) = −0.1 < 0, determining a relaƟve maximum
at x = −10. These results are confirmed in Figure 3.37. ...

We have been learning how the first and second derivaƟves of a funcƟon
relate informaƟon about the graph of that funcƟon. We have found intervals of
increasing and decreasing, intervals where the graph is concave up and down,
along with the locaƟons of relaƟve extrema and inflecƟon points. In Chapter 1
we saw how limits explained asymptoƟc behavior. In the next secƟon we com-
bine all of this informaƟon to produce accurate sketches of funcƟons.
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Exercises 3.4
Terms and Concepts
1. Sketch a graph of a funcƟon f(x) that is concave up on (0, 1)

and is concave down on (1, 2).

2. Sketch a graph of a funcƟon f(x) that is:

(a) Increasing, concave up on (0, 1),
(b) increasing, concave down on (1, 2),
(c) decreasing, concave down on (2, 3) and
(d) increasing, concave down on (3, 4).

3. Is is possible for a funcƟon to be increasing and concave
down on (0,∞) with a horizontal asymptote of y = 1? If
so, give a sketch of such a funcƟon.

4. Is is possible for a funcƟon to be increasing and concave up
on (0,∞) with a horizontal asymptote of y = 1? If so, give
a sketch of such a funcƟon.

Problems
In Exercises 5 – 15, a funcƟon f(x) is given.

(a) Compute f ′′(x).
(b) Graph f and f ′′ on the same axes (using technology is

permiƩed) and verify Theorem 31.

5. f(x) = −7x+ 3

6. f(x) = −4x2 + 3x− 8

7. f(x) = 4x2 + 3x− 8

8. f(x) = x3 − 3x2 + x− 1

9. f(x) = −x3 + x2 − 2x+ 5

10. f(x) = cos x

11. f(x) = sin x

12. f(x) = tan x

13. f(x) =
1

x2 + 1

14. f(x) =
1
x

15. f(x) =
1
x2

In Exercises 16 – 28, a funcƟon f(x) is given.
(a) Find the possible points of inflecƟon of f.
(b) Create a number line to determine the intervals on

which f is concave up or concave down.

16. f(x) = x2 − 2x+ 1

17. f(x) = −x2 − 5x+ 7

18. f(x) = x3 − x+ 1

19. f(x) = 2x3 − 3x2 + 9x+ 5

20. f(x) =
x4

4
+

x3

3
− 2x+ 3

21. f(x) = −3x4 + 8x3 + 6x2 − 24x+ 2

22. f(x) = x4 − 4x3 + 6x2 − 4x+ 1

23. f(x) =
1

x2 + 1

24. f(x) =
x

x2 − 1
25. f(x) = sin x+ cos x on (−π, π)

26. f(x) = x2ex

27. f(x) = x2 ln x

28. f(x) = e−x2

In Exercises 29 – 41, a funcƟon f(x) is given. Find the criƟcal
points of f and use the Second DerivaƟve Test, when possi-
ble, to determine the relaƟve extrema. (Note: these are the
same funcƟons as in Exercises 16 – 28.)

29. f(x) = x2 − 2x+ 1

30. f(x) = −x2 − 5x+ 7

31. f(x) = x3 − x+ 1

32. f(x) = 2x3 − 3x2 + 9x+ 5

33. f(x) =
x4

4
+

x3

3
− 2x+ 3

34. f(x) = −3x4 + 8x3 + 6x2 − 24x+ 2

35. f(x) = x4 − 4x3 + 6x2 − 4x+ 1

36. f(x) =
1

x2 + 1

37. f(x) =
x

x2 − 1
38. f(x) = sin x+ cos x on (−π, π)

39. f(x) = x2ex

40. f(x) = x2 ln x

41. f(x) = e−x2

In Exercises 42 – 54, a funcƟon f(x) is given. Find the x val-
ues where f ′(x) has a relaƟve maximum or minimum. (Note:
these are the same funcƟons as in Exercises 16 – 28.)

42. f(x) = x2 − 2x+ 1

43. f(x) = −x2 − 5x+ 7

44. f(x) = x3 − x+ 1

45. f(x) = 2x3 − 3x2 + 9x+ 5

46. f(x) =
x4

4
+

x3

3
− 2x+ 3

47. f(x) = −3x4 + 8x3 + 6x2 − 24x+ 2

48. f(x) = x4 − 4x3 + 6x2 − 4x+ 1

49. f(x) =
1

x2 + 1

50. f(x) =
x

x2 − 1
51. f(x) = sin x+ cos x on (−π, π)

52. f(x) = x2ex

53. f(x) = x2 ln x

54. f(x) = e−x2
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3.5 Curve Sketching

3.5 Curve Sketching

Wehave been learning howwe can understand the behavior of a funcƟon based
on its first and second derivaƟves. While we have been treaƟng the properƟes
of a funcƟon separately (increasing and decreasing, concave up and concave
down, etc.), we combine themhere to produce an accurate graph of the funcƟon
without ploƫng lots of extraneous points.

Why bother? Graphing uƟliƟes are very accessible, whether on a computer,
a hand–held calculator, or a smartphone. These resources are usually very fast
and accurate. Wewill see that ourmethod is not parƟcularly fast – it will require
Ɵme (but it is not hard). So again: why bother?

We aƩempƟng to understand the behavior of a funcƟon f based on the in-
formaƟon given by its derivaƟves. While all of a funcƟon’s derivaƟves relay in-
formaƟon about it, it turns out that “most” of the behavior we care about is
explained by f ′ and f ′′. Understanding the interacƟons between the graph of f
and f ′ and f ′′ is important. To gain this understanding, one might argue that all
that is needed is to look at lots of graphs. This is true to a point, but is some-
what similar to staƟng that one understands how an engine works aŌer looking
only at pictures. It is true that the basic ideas will be conveyed, but “hands–on”
access increases understanding.

The following Key Idea summarizes what we have learned so far that is ap-
plicable to sketching funcƟon graphs and gives a framework for puƫng that in-
formaƟon together. It is followed by several examples.

..
Key Idea 4 Curve Sketching

To produce an accurate sketch a given funcƟon f, consider the following
steps.

1. Find the domain of f. Generally, we assume that the domain is the
enƟre real line then find restricƟons, such aswhere a denominator
is 0 or where negaƟves appear under the radical.

2. Find the criƟcal values of f.

3. Find the possible points of inflecƟon of f.

4. Find the locaƟon of any verƟcal asymptotes of f (usually done in
conjuncƟon with item 1 above).

5. Consider the limits lim
x→−∞

f(x) and lim
x→∞

f(x) to determine the end
behavior of the funcƟon.

(conƟnued)

Notes:
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Chapter 3 The Graphical Behavior of FuncƟons

..
Key Idea 4 Curve Sketching – ConƟnued

6. Create a number line that includes all criƟcal points, possible
points of inflecƟon, and locaƟons of verƟcal asymptotes. For each
interval created, determine whether f is increasing or decreasing,
concave up or down.

7. Evaluate f at each criƟcal point and possible point of inflecƟon.
Plot these points on a set of axes. Connect these pointswith curves
exhibiƟng the proper concavity. Sketch asymptotes and x and y
intercepts were applicable.

.. Example 91 ..Curve sketching
Use Key Idea 4 to sketch f(x) = 3x3 − 10x2 + 7x+ 5.

SÊ½çã®ÊÄ We follow the steps outlined in the Key Idea.

1. The domain of f is the enƟre real line; there are no values x for which f(x)
is not defined.

2. Find the criƟcal values of f. We compute f ′(x) = 9x2 − 20x+ 7. Use the
QuadraƟc Formula to find the roots of f ′:

x =
20±

√
(−20)2 − 4(9)(7)

2(9)
=

1
9

(
10±

√
37
)
⇒ x ≈ 0.435, 1.787.

3. Find the possible points of inflecƟon of f. Compute f ′′(x) = 18x−20. We
have

f ′′(x) = 0 ⇒ x = 10/9 ≈ 1.111.

4. There are no verƟcal asymptotes.

5. We determine the end behavior using limits as x approaches±infinity.

lim
x→−∞

f(x) = −∞ lim
x→∞

f(x) = ∞.

We do not have any horizontal asymptotes.

6. We place the values x = (10 ±
√
37)/9 and x = 10/9 on a number

line, as shown in Figure 3.38. We mark each subinterval as increasing or

Notes:
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Figure 3.39: Sketching f in Example 91.

3.5 Curve Sketching

decreasing, concave up or down, using the techniques used in SecƟons
3.3 and 3.4.

..
1
9 (10−

√
37)

≈ 0.435

.
10
9 ≈ 1.111

.
1
9 (10+

√
37)

≈ 1.787

.

f ′ > 0 incr
f ′′ < 0 c. down

.

f ′ < 0 decr
f ′′ < 0 c. down

.

f ′ < 0 decr
f ′′ > 0 c. up

.

f ′ > 0 incr
f ′′ < 0 c. up

Figure 3.38: Number line for f in Example 91.

7. We plot the appropriate points on axes as shown in Figure 3.39(a) and
connect the points with straight lines. In Figure 3.39(b) we adjust these
lines to demonstrate the proper concavity. Our curve crosses the y axis at
y = 5 and crosses the x axis near x = −0.424. In Figure 3.39(c) we show a
graph of f drawn with a computer program, verifying the accuracy of our
sketch.

...

.. Example 92 ..Curve sketching

Sketch f(x) =
x2 − x− 2
x2 − x− 6

.

SÊ½çã®ÊÄ We again follow the steps outlined in Key Idea 4.

1. In determining the domain, we assume it is all real numbers and looks for
restricƟons. We find that at x = −2 and x = 3, f(x) is not defined. So the
domain of f is D = {real numbers x | x ̸= −2, 3}.

2. To find the criƟcal values of f, we first find f ′(x). Using the QuoƟent Rule,
we find

f ′(x) =
−8x+ 4

(x2 + x− 6)2
=

−8x+ 4
(x− 3)2(x+ 2)2

.

f ′(x) = 0 when x = 1/2, and f ′ is undefined when x = −2, 3. Since f ′
is undefined only when f is, these are not criƟcal values. The only criƟcal
value is x = 1/2.

3. To find the possible points of inflecƟon, we find f ′′(x), again employing
the QuoƟent Rule:

f ′′(x) =
24x2 − 24x+ 56
(x− 3)3(x+ 2)3

.

Wefind that f ′′(x) is never 0 (seƫng the numerator equal to 0 and solving
for x, we find the only roots to this quadraƟc are imaginary) and f ′′ is

Notes:
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Figure 3.41: Sketching f in Example 92.
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undefined when x = −2, 3. Thus concavity will possibly only change at
x = −2 and x = 3.

4. The verƟcal asymptotes of f are at x = −2 and x = 3, the places where f
is undefined.

5. There is a horizontal asymptote of y = 1, as lim
x→−∞

f(x) = 1 and lim
x→∞

f(x) =
1.

6. We place the values x = 1/2, x = −2 and x = 3 on a number line as
shown in Figure 3.40. We mark in each interval whether f is increasing or
decreasing, concave up or down. We see that f has a relaƟve maximum at
x = 1/2; concavity changes only at the verƟcal asymptotes.

..

−2

.
1
2

.

3

.

f ′ > 0 incr
f ′′ > 0 c. up

.

f ′ > 0 incr
f ′′ < 0 c. down

.

f ′ < 0 decr
f ′′ < 0 c. down

.

f ′ < 0 decr
f ′′ > 0 c. up

Figure 3.40: Number line for f in Example 92.

7. In Figure 3.41(a), we plot the points from the number line on a set of
axes and connect the points with straight lines to get a general idea of
what the funcƟon looks like (these lines effecƟvely only convey increas-
ing/decreasing informaƟon). In Figure 3.41(b), we adjust the graph with
the appropriate concavity. We also show f crossing the x axis at x = −1
and x = 2.

Figure 3.41(c) shows a computer generated graph of f, which verifies the accu-
racy of our sketch....

.. Example 93 ..Curve sketching

Sketch f(x) =
5(x− 2)(x+ 1)
x2 + 2x+ 4

.

SÊ½çã®ÊÄ We again follow Key Idea 4.

1. We assume that the domain of f is all real numbers and consider restric-
Ɵons. The only restricƟons come when the denominator is 0, but this
never occurs. Therefore the domain of f is all real numbers, R.

2. We find the criƟcal values of f by seƫng f ′(x) = 0 and solving for x. We
find

f ′(x) =
15x(x+ 4)

(x2 + 2x+ 4)2
⇒ f ′(x) = 0 when x = −4, 0.

Notes:
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Figure 3.43: Sketching f in Example 93.

3.5 Curve Sketching

3. We find the possible points of inflecƟon by solving f ′′(x) = 0 for x. We
find

f ′′(x) = −30x3 + 180x2 − 240
(x2 + 2x+ 4)3

.

The cubic in the numerator does not factor very “nicely.” We instead ap-
proximate the roots at x = −5.759, x = −1.305 and x = 1.064.

4. There are no verƟcal asymptotes.

5. We have a horizontal asymptote of y = 5, as lim
x→−∞

f(x) = lim
x→∞

f(x) = 5.

6. We place the criƟcal points and possible points on a number line as shown
in Figure 3.42 and mark each interval as increasing/decreasing, concave
up/down appropriately.

..
−5.579

.
−4

.
−1.305

.
0

.
1.064

.

f ′ > 0 incr

f ′′ > 0 c. up
.

f ′ > 0 incr

f ′′ < 0 c. down
.

f ′ < 0 decr

f ′′ < 0 c. down
.

f ′ < 0 decr

f ′′ > 0 c. up
.

f ′ > 0 incr

f ′′ > 0 c. up
.

f ′ > 0 decr

f ′′ < 0 c. down

Figure 3.42: Number line for f in Example 93.

7. In Figure 3.43(a) we plot the significant points from the number line as
well as the two roots of f, x = −1 and x = 2, and connect the points
with straight lines to get a general impression about the graph. In Figure
3.43(b), we add concavity. Figure 3.43(c) shows a computer generated
graph of f, affirming our results.

...

In each of our examples, we found significant points on the graph of f that
corresponding to changes in increasing/decreasing or concavity. We connected
these points with straight lines, then adjusted for concavity, and finished by
showing a very accurate, computer generated graph.

Why are computer graphics so good? It is not because computers are “smarter”
than we are. Rather, it is largely because computers are much faster at comput-
ing than we are. In general, computers graph funcƟons much like most students
dowhen first learning to draw graphs: they plot equally spaced points, then con-
nect the dots using lines. By using lots of points, the connecƟng lines are short
and the graph looks smooth.

This does a fine job of graphing in most cases (in fact, this is the method
used for many graphs in this text). However, in regions where the graph is very
“curvy,” this can generate noƟceable sharp edges on the graph unless a large
number of points are used. High quality computer algebra systems, such as

Notes:
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Chapter 3 The Graphical Behavior of FuncƟons

MathemaƟca, use special algorithms to plot lots of points only where the graph
is “curvy.”

In Figure 3.44, a graph of y = sin x is given, generated by MathemaƟca.
The small points represent each of the places MathemaƟca sampled the func-
Ɵon. NoƟce how at the “bends” of sin x, lots of points are used; where sin x
is relaƟvely straight, fewer points are used. (Many points are also used at the
endpoints to ensure the “end behavior” is accurate.)

1 2 3 4 5 6

-1.0

-0.5

0.5

1.0

Figure 3.44: A graph of y = sin x generated byMathemaƟca.

How doesMathemaƟca know where the graph is “curvy”? Calculus. When
we study curvature in a later chapter, we will see how the first and second
derivaƟves of a funcƟon work together to provide a measurement of “curvi-
ness.” MathemaƟca employs algorithms to determine regions of “high curva-
ture” and plots extra points there.
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Exercises 3.5
Terms and Concepts
1. Why is sketching curves by hand beneficial even though

technology is ubiquitous?

2. What does “ubiquitous” mean?

3. T/F: When sketching graphs of funcƟons, it is useful to find
the criƟcal points.

4. T/F: When sketching graphs of funcƟons, it is useful to find
the possible points of inflecƟon.

5. T/F: When sketching graphs of funcƟons, it is useful to find
the horizontal and verƟcal asymptotes.

Problems
In Exercises 6 – 11, pracƟce using Key Idea 4 by applying the
principles to the given funcƟons with familiar graphs.

6. f(x) = 2x+ 4

7. f(x) = −x2 + 1

8. f(x) = sin x

9. f(x) = ex

10. f(x) =
1
x

11. f(x) =
1
x2

In Exercises 12 – 25, sketch a graph of the given funcƟon using
Key Idea 4. Show all work; check your answer with technol-
ogy.

12. f(x) = x3 − 2x2 + 4x+ 1

13. f(x) = −x3 + 5x2 − 3x+ 2

14. f(x) = x3 + 3x2 + 3x+ 1

15. f(x) = x3 − x2 − x+ 1

16. f(x) = (x− 2) ln(x− 2)

17. f(x) = (x− 2)2 ln(x− 2)

18. f(x) =
x2 − 4
x2

19. f(x) =
x2 − 4x+ 3
x2 − 6x+ 8

20. f(x) =
x2 − 2x+ 1
x2 − 6x+ 8

21. f(x) = x
√
x+ 1

22. f(x) = x2ex

23. f(x) = sin x cos x on [−π, π]

24. f(x) = (x− 3)2/3 + 2

25. f(x) =
(x− 1)2/3

x
In Exercises 26 – 28, a funcƟon with the parameters a and b
are given. Describe the criƟcal points and possible points of
inflecƟon of f in terms of a and b.

26. f(x) =
a

x2 + b2

27. f(x) = sin(ax+ b)

28. f(x) = (x− a)(x− b)

29. Given x2 + y2 = 1, use implicit differenƟaƟon to find dy
dx

and d2y
dx2 . Use this informaƟon to jusƟfy the sketch of the

unit circle.
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Figure 4.1: DemonstraƟng the geometric
concept behind Newton’s Method.
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In Chapter 3, we learned how the first and second derivaƟves of a funcƟon influ-
ence its graph. In this chapter we explore other applicaƟons of the derivaƟve.

4.1 Newton’s Method

Solving equaƟons is one of the most important things we do in mathemaƟcs,
yet we are surprisingly limited in what we can solve analyƟcally. For instance,
equaƟons as simple as x5+ x+1 = 0 or cos x = x cannot be solved by algebraic
methods in terms of familiar funcƟons. Fortunately, there are methods that
can give us approximate soluƟons to equaƟons like these. These methods can
usually give an approximaƟon correct to as many decimal places as we like. In
SecƟon 1.5 we learned about the BisecƟon Method. This secƟon focuses on
another technique (which generally works faster), called Newton’s Method.

Newton’s Method is built around tangent lines. The main idea is that if x is
sufficiently close to a root of f(x), then the tangent line to the graph at (x, f(x))
will cross the x-axis at a point closer to the root than x.

We start Newton’s Method with an iniƟal guess about roughly where the
root is. Call this x0. (See Figure 4.1(a).) Draw the tangent line to the graph at
(x0, f(x0)) and see where it meets the x-axis. Call this point x1. Then repeat the
process – draw the tangent line to the graph at (x1, f(x1)) and seewhere itmeets
the x-axis. (See Figure 4.1(b).) Call this point x2. Repeat the process again to get
x3, x4, etc. This sequence of points will oŌen converge rather quickly to a root
of f.

We can use this geometric process to create an algebraic process. Let’s look
at how we found x1. We started with the tangent line to the graph at (x0, f(x0)).
The slope of this tangent line is f ′(x0) and the equaƟon of the line is

y = f ′(x0)(x− x0) + f(x0).

This line crosses the x-axis when y = 0, and the x–value where it crosses is what
we called x1. So let y = 0 and replace x with x1, giving the equaƟon:

0 = f ′(x0)(x1 − x0) + f(x0).



Note: Newton’s Method is not infalli-
ble. The sequence of approximate values
may not converge, or it may converge so
slowly that one is “tricked” into thinking a
certain approximaƟon is beƩer than it ac-
tually is. These issues will be discussed at
the end of the secƟon.
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Now solve for x1:

x1 = x0 −
f(x0)
f ′(x0)

.

Since we repeat the same geometric process to find x2 from x1, we have

x2 = x1 −
f(x1)
f ′(x1)

.

In general, given an approximaƟon xn, we can find the next approximaƟon, xn+1
as follows:

xn+1 = xn −
f(xn)
f ′(xn)

.

We summarize this process as follows.

..
Key Idea 5 Newton’s Method

Let f be a differenƟable funcƟon on an interval I with a root in I. To ap-
proximate the value of the root, accurate to d decimal places:

1. Choose a value x0 as an iniƟal approximaƟon of the root. (This is
oŌen done by looking at a graph of f.)

2. Create successive approximaƟons iteraƟvely; given an approxima-
Ɵon xn, compute the next approximaƟon xn+1 as

xn+1 = xn −
f(xn)
f ′(xn)

.

3. Stop the iteraƟons when successive approximaƟons do not differ
in the first d places aŌer the decimal point.

Let’s pracƟce Newton’s Method with a concrete example.

.. Example 94 ..Using Newton’s Method
Approximate the real root of x3 − x2 − 1 = 0, accurate to the first 3 places aŌer
the decimal, using Newton’s Method and an iniƟal approximaƟon of x0 = 1.

SÊ½çã®ÊÄ To begin, we compute f ′(x) = 3x2 − 2x. Then we apply the

Notes:
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Figure 4.2: A graph of f(x) = x3 − x2 − 1
in Example 94.

4.1 Newton’s Method

Newton’s Method algorithm, outlined in Key Idea 5.

x1 = 1− f(1)
f ′(1)

= 1− 13 − 12 − 1
3 · 12 − 2 · 1

= 2,

x2 = 2− f(2)
f ′(2)

= 2− 23 − 22 − 1
3 · 22 − 2 · 2

= 1.625,

x3 = 1.625− f(1.625)
f ′(1.625)

= 1.625− 1.6253 − 1.6252 − 1
3 · 1.6252 − 2 · 1.625

≈ 1.48579.

x4 = 1.48579− f(1.48579)
f ′(1.48579)

≈ 1.46596

x5 = 1.46596− f(1.46596)
f ′(1.46596)

≈ 1.46557

We performed 5 iteraƟons of Newton’s Method to find a root accurate to the
first 3 places aŌer the decimal; our final approximaƟon is 1.465. The exact value
of the root, to six decimal places, is 1.465571; It turns out that our x5 is accurate
to more than just 3 decimal places.

A graph of f(x) is given in Figure 4.2. We can see from the graph that our
iniƟal approximaƟon of x0 = 1 was not parƟcularly accurate; a closer guess
would have been x0 = 1.5. Our choice was based on ease of iniƟal calculaƟon,
and shows that Newton’s Method can be robust enough that we do not have to
make a very accurate iniƟal approximaƟon. ...

We can automate this process on a calculator that has an Ans key that re-
turns the result of the previous calculaƟon. Start by pressing 1 and then Enter.
(We have just entered our iniƟal guess, x0 = 1.) Now compute

Ans− f(Ans)
f ′(Ans)

by entering the following and repeatedly press the Enter key:

Ans-(Ans^3-Ans^2-1)/(3*Ans^2-2*Ans)

Each Ɵmewepress the Enter key, we are finding the successive approximaƟons,
x1, x2, …, and each one is geƫng closer to the root. In fact, once we get past
around x7 or so, the approximaƟons don’t appear to be changing. They actually
are changing, but the change is far enough to the right of the decimal point that
it doesn’t show up on the calculator’s display. When this happens, we can be
preƩy confident that we have found an accurate approximaƟon.

Using a calculator in this manner makes the calculaƟons simple; many iter-
aƟons can be computed very quickly.

Notes:
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Figure 4.3: A graph of f(x) = cos x − x
used to find an iniƟal approximaƟon of its
root.
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.. Example 95 Using Newton’s Method to find where funcƟons intersect
Use Newton’s Method to approximate a soluƟon to cos x = x, accurate to 5
places aŌer the decimal.

SÊ½çã®ÊÄ Newton’s Method provides a method of solving f(x) = 0; it
is not (directly) a method for solving equaƟons like f(x) = g(x). However, this is
not a problem; we can rewrite the laƩer equaƟon as f(x) − g(x) = 0 and then
use Newton’s Method.

So we rewrite cos x = x as cos x − x = 0. WriƩen this way, we are finding
a root of f(x) = cos x − x. We compute f ′(x) = − sin x − 1. Next we need a
starƟng value, x0. Consider Figure 4.3, where f(x) = cos x − x is graphed. It
seems that x0 = 0.75 is preƩy close to the root, so we will use that as our x0.
(The figure also shows the graphs of y = cos x and y = x, drawn in red. Note
how they intersect at the same x value as when f(x) = 0.)

We now compute x1, x2, etc. The formula for x1 is

x1 = 0.75− cos(0.75)− 0.75
− sin(0.75)− 1

≈ 0.7391111388.

Apply Newton’s Method again to find x2:

x2 = 0.7391111388− cos(0.7391111388)− 0.7391111388
− sin(0.7391111388)− 1

≈ 0.7390851334.

We can conƟnue this way, but it is really best to automate this process. On a cal-
culator with an Ans key, we would start by pressing 0.75, then Enter, inpuƫng
our iniƟal approximaƟon. We then enter:

Ans - (cos(Ans)-Ans)/(-sin(Ans)-1).

Repeatedly pressing the Enter key gives successive approximaƟons. We
quickly find:

x3 = 0.7390851332
x4 = 0.7390851332.

Our approximaƟons x2 and x3 did not differ for at least the first 5 places aŌer the
decimal, so we could have stopped. However, using our calculator in the man-
ner described is easy, so finding x4 was not hard. It is interesƟng to see how we
found an approximaƟon, accurate to as many decimal places as our calculator
displays, in just 4 iteraƟons. ..

If you know how to program, you can translate the following pseudocode
into your favorite language to perform the computaƟon in this problem.

Notes:
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Figure 4.4: A graph of f(x) = x3 − x2 − 1,
showing why an iniƟal approximaƟon of
x0 = 0 with Newton’s Method fails.
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Figure 4.5: Newton’s Method fails to find
a root of f(x) = x1/3, regardless of the
choice of x0.

4.1 Newton’s Method

x = .75
while true

oldx = x
x = x - (cos(x)-x)/(-sin(x)-1)
print x
if abs(x-oldx) < .0000000001

break

This code calculates x1, x2, etc., storing each result in the variable x. The pre-
vious approximaƟon is stored in the variable oldx. We conƟnue looping unƟl
the difference between two successive approximaƟons, abs(x-oldx), is less
than some small tolerance, in this case, .0000000001.

Convergence of Newton’s Method

What should one use for the iniƟal guess, x0? Generally, the closer to the
actual root the iniƟal guess is, the beƩer. However, some iniƟal guesses should
be avoided. For instance, consider Example 94 where we sought the root to
f(x) = x3− x2−1. Choosing x0 = 0 would have been a parƟcularly poor choice.
Consider Figure 4.4, where f(x) is graphed along with its tangent line at x = 0.
Since f ′(0) = 0, the tangent line is horizontal and does not intersect the x–axis.
Graphically, we see that Newton’s Method fails.

We can also see analyƟcally that it fails. Since

x1 = 0− f(0)
f ′(0)

and f ′(0) = 0, we see that x1 is not well defined.
This problem can also occur if, for instance, it turns out that f ′(x5) = 0.

AdjusƟng the iniƟal approximaƟon x0 will likely ameliorate the problem.
It is also possible forNewton’sMethod to not convergewhile each successive

approximaƟon is well defined. Consider f(x) = x1/3, as shown in Figure 4.5. It
is clear that the root is x = 0, but let’s approximate this with x0 = 0.1. Figure
4.5(a) shows graphically the calculaƟon of x1; noƟce how it is farther from the
root than x0. Figures 4.5(b) and (c) show the calculaƟon of x2 and x3, which are
even farther away; our successive approximaƟons are geƫng worse. (It turns
out that in this parƟcular example, each successive approximaƟon is twice as far
from the true answer as the previous approximaƟon.)

There is no “fix” to this problem; Newton’s Method simply will not work and
another method must be used.

While Newton’s Method does not always work, it does work “most of the
Ɵme,” and it is generally very fast. Once the approximaƟons get close to the root,
Newton’s Method can as much as double the number of correct decimal places

Notes:
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with each successive approximaƟon. A course in Numerical Analysis will intro-
duce the reader to more iteraƟve root finding methods, as well as give greater
detail about the strengths and weaknesses of Newton’s Method.

Notes:
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Exercises 4.1
Terms and Concepts
1. T/F: Given a funcƟon f(x), Newton’s Method produces an

exact soluƟon to f(x) = 0.

2. T/F: In order to get a soluƟon to f(x) = 0 accurate to d
places aŌer the decimal, at least d + 1 iteraƟons of New-
tons’ Method must be used.

Problems
In Exercises 3 – 7, the roots of f(x) are known or are easily
found. Use 5 iteraƟons of Newton’s Method with the given
iniƟal approximaƟon to approximate the root. Compare it to
the known value of the root.

3. f(x) = cos x, x0 = 1.5

4. f(x) = sin x, x0 = 1

5. f(x) = x2 + x− 2, x0 = 0

6. f(x) = x2 − 2, x0 = 1.5

7. f(x) = ln x, x0 = 2

In Exercises 8 – 11, use Newton’s Method to approximate all
roots of the given funcƟons accurate to 3 places aŌer the dec-
imal. If an interval is given, find only the roots that lie in

that interval. Use technology to obtain good iniƟal approx-
imaƟons.

8. f(x) = x3 + 5x2 − x− 1

9. f(x) = x4 + 2x3 − 7x2 − x+ 5

10. f(x) = x17 − 2x13 − 10x8 + 10 on (−2, 2)

11. f(x) = x2 cos x+ (x− 1) sin x on (−3, 3)

In Exercises 12 – 15, use Newton’s Method to approximate
when the given funcƟons are equal, accurate to 3 places af-
ter the decimal. Use technology to obtain good iniƟal approx-
imaƟons.

12. f(x) = x2, g(x) = cos x

13. f(x) = x2 − 1, g(x) = sin x

14. f(x) = ex
2
, g(x) = cos x

15. f(x) = x, g(x) = tan x on [−6, 6]

16. Why does Newton’s Method fail in finding a root of f(x) =
x3 − 3x2 + x+ 3 when x0 = 1?

17. Why does Newton’s Method fail in finding a root of f(x) =
−17x4 + 130x3 − 301x2 + 156x+ 156 when x0 = 1?
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Note: This secƟon relies heavily on im-
plicit differenƟaƟon, so referring back to
SecƟon 2.6 may help.

Chapter 4 ApplicaƟons of the DerivaƟve

4.2 Related Rates

When two quanƟƟes are related by an equaƟon, knowing the value of one quan-
Ɵty can determine the value of the other. For instance, the circumference and
radius of a circle are related by C = 2πr; knowing that C = 6πin determines the
radius must be 3in.

The topic of related rates takes this one step further: knowing the rate
at which one quanƟty is changing can determine the rate at which the other
changes.

We demonstrate the concepts of related rates through examples.

.. Example 96 Understanding related rates
The radius of a circle is growing at a rate of 5in/hr. At what rate is the circumfer-
ence growing?

SÊ½çã®ÊÄ The circumference and radius of a circle are related by C =
2πr. We are given informaƟon about how the length of r changes with respect
to Ɵme; that is, we are told dr

dt = 5in/hr. We want to know how the length of C
changes with respect to Ɵme, i.e., we want to know dC

dt .
Implicitly differenƟate both sides of C = 2πr with respect to t:

C = 2πr
d
dt
(
C
)
=

d
dt
(
2πr
)

dC
dt

= 2π
dr
dt
.

As we know dr
dt = 5in/hr, we know

dC
dt

= 2π5 = 10π ≈ 31.4in/hr.
..

Consider another, similar example.

.. Example 97 ..Finding related rates
Water streams out of a faucet at a rate of 2in3/s onto a flat surface at a constant
rate, forming a circular puddle that is 1/8in deep.

1. At what rate is the area of the puddle growing?

2. At what rate is the radius of the circle growing?

Notes:
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SÊ½çã®ÊÄ

1. We can answer this quesƟon two ways: using “common sense” or related
rates. The common sense method states that the volume of the puddle is
growing by 2in3/s, where

volume of puddle= area of circle× depth.

Since the depth is constant at 1/8in, the area must be growing by 16in2/s.
This approach reveals the underlying related–rates principle. Let V and A
represent the Volume and Area of the puddle. We know V = A× 1

8 . Take
the derivaƟve of both sides with respect to t, employing implicit differen-
ƟaƟon.

V =
1
8
A

d
dt
(
V
)
=

d
dt

(
1
8
A
)

dV
dt

=
1
8
dA
dt

Since dV
dt = 2, we know 2 = 1

8
dA
dt , and hence

dA
dt = 16. The area is growing

by 16in2/s.
..

2. To start, we need an equaƟon that relates what we know to the radius.
We just learned something about the surface area of the circular puddle,
and we know A = πr2. We should be able to learn about the rate at which
the radius is growing with this informaƟon.
Implicitly derive both sides of A = πr2 with respect to t:

A = πr2

d
dt
(
A
)
=

d
dt
(
πr2
)

dA
dt

= 2πr
dr
dt

Our work above told us that dA
dt = 16in2/s. Solving for dr

dt , we have

dr
dt

=
8
πr

.

Note how our answer is not a number, but rather a funcƟon of r. In other
words, the rate at which the radius is growing depends on how big the

Notes:
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Figure 4.6: A sketch of a police car (at bot-
tom) aƩempƟng to measure the speed of
a car (at right) in Example 98.
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circle already is. If the circle is very large, adding 2in3 of water will not
make the circle much bigger at all. If the circle dime–sized, adding the
sameamount ofwaterwillmake a radical change in the radius of the circle.

In someways, our problemwas (intenƟonally) ill–posed. Weneed to spec-
ify a current radius in order to know a rate of change. When the puddle
has a radius of 10in, the radius is growing at a rate of

dr
dt

=
8

10π
=

4
5π

≈ 0.25in/s.

...

.. Example 98 ..Studying related rates
Radar gunsmeasure the rate of distance change between the gun and the object
it is measuring. For instance, a reading of “55mph” means the object is moving
away from the gun at a rate of 55 miles per hour, whereas a measurement of
“−25mph” would mean that the object is approaching the gun at a rate of 25
miles per hour.

If the radar gun is moving (say, aƩached to a police car) then radar readouts
are only immediately understandable if the gun and the object aremoving along
the same line. If a police officer is traveling 60mph and gets a readout of 15mph,
he knows that the car ahead of him is moving away at a rate of 15 miles an hour,
meaning the car is traveling 75mph. (This straight–line principle is one reason
officers park on the side of the highway and try to shoot straight back down the
road. It gives the most accurate reading.)

Suppose an officer is driving due north at 60 mph and sees a car moving
due east, as shown in Figure 4.6. Using his radar gun, he measures a reading of
80mph. By using landmarks, he believes both he and the other car are about
1/2 mile from the intersecƟon of their two roads.

If the speed limit on the other road is 55mph, is the other driver speeding?

SÊ½çã®ÊÄ Using the diagram in Figure 4.6, let’s label what we know
about the situaƟon. As both the police officer and other driver are 1/2 mile
from the intersecƟon, we have A = 1/2, B = 1/2, and through the Pythagorean
Theorem, C = 1/

√
2 ≈ 0.707.

We know the police officer is traveling at 60mph; that is, dA
dt = 60. The radar

measurement is dC
dt = 80. We want to find dB

dt .

We need an equaƟon that contains relates B to A and/or C. The Pythagorean
Theorem seems like a good choice: A2 + B2 = C2. DifferenƟate both sides with

Notes:
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Note: Example 98 is both interesƟng and
impracƟcal. It highlights the difficulty in
using radar in a non–linear fashion, and
explains why “in real life” the police offi-
cer would follow the other driver to de-
termine their speed, and not pull out pen-
cil and paper.
The principles here are important,
though. Many automated vehicles make
judgments about other moving objects
based on perceived distances and radar–
like measurements using related–rates
ideas.

..
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Figure 4.7: Tracking a speeding car (at
leŌ) with a rotaƟng camera.

4.2 Related Rates

respect to t:

A2 + B2 = C2

d
dt
(
A2 + B2

)
=

d
dt
(
C2
)

2A
dA
dt

+ 2B
dB
dt

= 2C
dC
dt

We have values for everything except dB
dt . Solving for this we have

dB
dt

=
C dC

dt − A dA
dt

B
≈ 53.12mph.

The other driver does not appear to be speeding. ...

.. Example 99 ..Studying related rates
A camera is placed on a tripod 10Ō from the side of a road. The camera is to turn
to track a car that is to drive by at 100mph for a promoƟonal video. The video’s
planners want to know what kind of motor the tripod should be equipped with
in order to properly track the car as it passes by. Figure 4.7 shows the proposed
setup.

How fast must the camera be able to turn to track the car?

SÊ½çã®ÊÄ We seek informaƟon about how fast the camera is to turn;
therefore, we need an equaƟon that will relate an angle θ to the posiƟon of the
camera and the speed and posiƟon of the car.

Figure 4.7 suggests we use a trigonometric equaƟon. Leƫng x represent the
distance the car is from the point on the road directly in front of the camera, we
have

tan θ =
x
10

. (4.1)

As the car is moving at 100mph, we have dx
dt = 100mph. We need to convert

the measurements to common units; rewrite 100mph in terms of Ō/s:

dx
dt

= 100
m
h

= 100
m
h

· 5280 f
m

· 1
3600

h
s
= 146.6Ō/s.

Now take the derivaƟve of both sides of EquaƟon (4.1) using implicit differenƟ-

Notes:
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aƟon:

tan θ =
x
10

d
dt
(
tan θ

)
=

d
dt

( x
10

)
sec2 θ

dθ
dt

=
1
10

dx
dt

dθ
dt

=
cos2 θ
10

dx
dt

(4.2)

Wewant to know the fastest the camera has to turn. Common sense tells us this
is when the car is directly in front of the camera (i.e., when θ = 0). Our mathe-
maƟcs bears this out. In EquaƟon (4.2) we see this is when cos2 θ is largest; this
is when cos θ = 1, or when θ = 0.

With dx
dt ≈ 146.67Ō/s, we have

dθ
dt

=
1rad
10Ō

146.67Ō/s = 14.667radians/s.

What does this number mean? Recall that 1 circular revoluƟon goes through 2π
radians, thus 14.667rad/s means 14.667/(2π) ≈ 2.33 revoluƟons per second. ...

We introduced the derivaƟve as a funcƟon that gives the slopes of tangent
lines of funcƟons. This chapter emphasizes using the derivaƟve in other ways.
Newton’s Method uses the derivaƟve to approximate roots of funcƟons; this
secƟon stresses the “rate of change” aspect of the derivaƟve to find a relaƟon-
ship between the rates of change of two related quanƟƟes.

In the next secƟon we use Extreme Value concepts to opƟmize quanƟƟes.

Notes:
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Exercises 4.2
Terms and Concepts
1. T/F: Implicit differenƟaƟon is oŌen used when solving “re-

lated rates” type problems.

2. T/F: A study of related rates is part of the standard police
officer training.

Problems
3. Water flows onto a flat surface at a rate of 5cm3/s forming a

circular puddle 10mm deep. How fast is the radius growing
when the radius is:

(a) 1 cm?

(b) 10 cm?

(c) 100 cm?

4. A circular balloon is inflated with air flowing at a rate of
10cm3/s. How fast is the radius of the balloon increasing
when the radius is:

(a) 1 cm?

(b) 10 cm?

(c) 100 cm?

5. Consider the traffic situaƟon introduced in Example 98.
How fast is the “other car” traveling if the officer and the
other car are each 1/2 mile from the intersecƟon, the offi-
cer is traveling 50mph, and the radar reading is 70mph?

6. Consider the traffic situaƟon introduced in Example 98.
How fast is the “other car” traveling if the officer and the
other car are each 1 mile from the intersecƟon, the officer
is traveling 60mph, and the radar reading is 80mph?

7. An F-22 aircraŌ is flying at 500mph with an elevaƟon of
10,000Ō on a straight–line path thatwill take it directly over
an anƟ–aircraŌ gun.

.

.
.

. θ.

x

.
10,000 Ō

How fast must the gun be able to turn to accurately track
the aircraŌ when the plane is:

(a) 1 mile away?

(b) 1/5 mile away?

(c) Directly overhead?

8. An F-22 aircraŌ is flying at 500mph with an elevaƟon of
100Ō on a straight–line path that will take it directly over
an anƟ–aircraŌ gun as in Exercise 7 (note the lower eleva-
Ɵon here).
How fast must the gun be able to turn to accurately track
the aircraŌ when the plane is:

(a) 1000 feet away?

(b) 100 feet away?

(c) Directly overhead?

9. A 24Ō. ladder is leaning against a house while the base is
pulled away at a constant rate of 1Ō/s.

.
.

.

24
Ō

.
1 Ō/s

At what rate is the top of the ladder sliding down the side
of the house when the base is:

(a) 1 foot from the house?

(b) 10 feet from the house?

(c) 23 feet from the house?

(d) 24 feet from the house?

10. A boat is being pulled into a dock at a constant rate of
30Ō/min by a winch located 10Ō above the deck of the
boat.

. .

.

.

10Ō

At what rate is the boat approaching the dock when the
boat is:

(a) 50 feet out?

(b) 15 feet out?

(c) 1 foot from the dock?

(d) What happens when the length of rope pulling in the
boat is less than 10 feet long?

11. An inverted cylindrical cone, 20Ō deep and 10Ō across at
the top, is being filled with water at a rate of 10Ō3/min. At
what rate is the water rising in the tank when the depth of
the water is:

(a) 1 foot?

(b) 10 feet?

(c) 19 feet?

How long will the tank take to fill when starƟng at empty?
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12. A rope, aƩached to a weight, goes up through a pulley at
the ceiling and back down to a worker. The man holds the
rope at the same height as the connecƟon point between
rope and weight.

..
30

Ō
.

2 Ō/s

Suppose the man stands directly next to the weight (i.e., a
total rope length of 60 Ō) and begins to walk away at a rate
of 2Ō/s. How fast is the weight rising when the man has
walked:

(a) 10 feet?
(b) 40 feet?

How far must the man walk to raise the weight all the way
to the pulley?

13. Consider the situaƟon described in Exercise 12. Suppose
the man starts 40Ō from the weight and begins to walk
away at a rate of 2Ō/s.

(a) How long is the rope?

(b) How fast is theweight rising aŌer theman haswalked
10 feet?

(c) How fast is theweight rising aŌer theman haswalked
40 feet?

(d) How far must themanwalk to raise the weight all the
way to the pulley?

14. A hot air balloon liŌs off from ground rising verƟcally. From
100 feet away, a 5’ woman tracks the path of the balloon.
When her sightlinewith the balloonmakes a 45◦ anglewith
the horizontal, she notes the angle is increasing at about
5◦/min.

(a) What is the elevaƟon of the balloon?

(b) How fast is it rising?

15. A company that produces landscapingmaterials is dumping
sand into a conical pile. The sand is being poured at a rate
of 5Ō3/sec; the physical properƟes of the sand, in conjunc-
Ɵon with gravity, ensure that the cone’s height is roughly
2/3 the length of the diameter of the circular base.
How fast is the cone rising when it has a height of 30 feet?
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Figure 4.8: A sketch of the enclosure in
Example 100.

4.3 OpƟmizaƟon

4.3 OpƟmizaƟon
In SecƟon 3.1 we learned about extreme values – the largest and smallest values
a funcƟon aƩains on an interval. We moƟvated our interest in such values by
discussing how it made sense to want to know the highest/lowest values of a
stock, or the fastest/slowest an object was moving. In this secƟon we apply
the concepts of extreme values to solve “word problems,” i.e., problems stated
in terms of situaƟons that require us to create the appropriate mathemaƟcal
framework in which to solve the problem.

We start with a classic example which is followed by a discussion of the topic
of opƟmizaƟon.

.. Example 100 ..OpƟmizaƟon: perimeter and area
A man has 100 feet of fencing, a large yard, and a small dog. He wants to create
a rectangular enclosure for his dog with the fencing that provides the maximal
area. What dimensions provide the maximal area?

SÊ½çã®ÊÄ One can likely guess the correct answer – that is great. We
will proceed to show how calculus can provide this answer in a context that
proves this answer is correct.

It helps to make a sketch of the situaƟon. Our enclosure is sketched twice in
Figure 4.8, eitherwith green grass and nice fence boards or as a simple rectangle.
Either way, drawing a rectangle forces us to realize that we need to know the
dimensions of this rectangle so we can create an area funcƟon – aŌer all, we are
trying to maximize the area.

We let x and y denote the lengths of the sides of the rectangle. Clearly,

Area = xy.

We do not yet know how to handle funcƟons with 2 variables; we need to
reduce this down to a single variable. We know more about the situaƟon: the
man has 100 feet of fencing. By knowing the perimeter of the rectangle must
be 100, we can create another equaƟon:

Perimeter = 100 = 2x+ 2y.

We now have 2 equaƟons and 2 unknowns. In the laƩer equaƟon, we solve
for y:

y = 50− x.

Now subsƟtute this expression for y in the area equaƟon:

Area = A(x) = x(50− x).

Note we now have an equaƟon of one variable; we can truly call the Area a
funcƟon of x.

Notes:
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Chapter 4 ApplicaƟons of the DerivaƟve

This funcƟon onlymakes sensewhen 0 ≤ x ≤ 50, otherwisewe get negaƟve
values of area. So we find the extreme values of A(x) on the interval [0, 50].

To find the criƟcal points, we take the derivaƟve of A(x) and set it equal to
0, then solve for x.

A(x) = x(50− x)

= 50x− x2

A′(x) = 50− 2x

We solve 50− 2x = 0 to find x = 25; this is the only criƟcal point. We evaluate
A(x) at the endpoints of our interval and at this criƟcal point to find the extreme
values; in this case, all we care about is the maximum.

Clearly A(0) = 0 and A(50) = 0, whereas A(25) = 625Ō2. This is the max-
imum. Since we earlier found y = 50 − x, we find that y is also 25. Thus the
dimensions of the rectangular enclosure with perimeter of 100 Ō. with maxi-
mum area is a square, with sides of length 25 Ō. ...

This example is very simplisƟc and a bit contrived. (AŌer all, most people
create a design then buy fencing to meet their needs, and not buy fencing and
plan later.) But it models well the necessary process: create equaƟons that de-
scribe a situaƟon, reduce an equaƟon to a single variable, then find the needed
extreme value.

“In real life” the problems are much more complex. The equaƟons are of-
ten not reducible to a single variable (hence mulƟ–variable calculus is needed)
and the equaƟons themselves may be difficult to form. Understanding the prin-
ciples here will provide a good foundaƟon for the mathemaƟcs you will likely
encounter later.

We outline here the basic process of solving these opƟmizaƟon problems.

..
Key Idea 6 Solving OpƟmizaƟon Problems

1. Understand the problem. Clearly idenƟfy what quanƟty is to be
maximized or minimized. Make a sketch if helpful.

2. Create equaƟons relevant to the context of the problem, using the
informaƟon given. (One of these should describe the quanƟty to
be opƟmized. We’ll call this the fundamental equaƟon.)

3. If the fundamental equaƟon defines the quanƟty to be opƟmized
as a funcƟon of more than one variable, reduce it to a single vari-
able funcƟon using subsƟtuƟons derived from the other equa-
Ɵons.

(conƟnued). . .

Notes:
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Figure 4.9: A sketch of the enclosure in
Example 101.

4.3 OpƟmizaƟon

..
Key Idea 6 Solving OpƟmizaƟon Problems – ConƟnued

4. IdenƟfy the domain of this funcƟon, keeping in mind the context
of the problem.

5. Find the extreme values of this funcƟon on the determined do-
main.

6. IdenƟfy the values of all relevant quanƟƟes of the problem.

We will use Key Idea 6 in a variety of examples.

.. Example 101 ..OpƟmizaƟon: perimeter and area
Here is another classic calculus problem: A woman has a 100 feet of fencing, a
small dog, and a large yard that contains a stream (that is mostly straight). She
wants to create a rectangular enclosure with maximal area that uses the stream
as one side. (Apparently her dog won’t swim away.) What dimensions provide
the maximal area?

SÊ½çã®ÊÄ We will follow the steps outlined by Key Idea 6.

1. We are maximizing area. A sketch of the region will help; Figure 4.9 gives
two sketches of the proposed enclosed area. A key feature of the sketches
is to acknowledge that one side is not fenced.

2. We want to maximize the area; as in the example before,

Area = xy.

This is our fundamental equaƟon. This defines area as a funcƟon of two
variables, so we need another equaƟon to reduce it to one variable.
We again appeal to the perimeter; here the perimeter is

Perimeter = 100 = x+ 2y.

Note how this is different than in our previous example.

3. We now reduce the fundamental equaƟon to a single variable. In the
perimeter equaƟon, solve for y: y = 50 − 1/2x. We can now write Area
as

Area = A(x) = x(50− 1/2x) = 50x− 1/2x2.

Area is now defined as a funcƟon of one variable.

Notes:
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Figure 4.11: Labeling unknown distances
in Example 102.

Chapter 4 ApplicaƟons of the DerivaƟve

4. Wewant the area to be nonnegaƟve. Since A(x) = x(50−1/2x), we want
x ≥ 0 and 50 − 1/2x ≥ 0. The laƩer inequality implies that x ≤ 100, so
0 ≤ x ≤ 100.

5. We nowfind the extreme values. At the endpoints, theminimum is found,
giving an area of 0.
Find the criƟcal points. We have A′(x) = 50 − x; seƫng this equal to 0
and solving for x returns x = 50. This gives an area of

A(50) = 50(25) = 1250.

6. We earlier set y = 50 − 1/2x; thus y = 25. Thus our rectangle will have
two sides of length 25 and one side of length 50, with a total area of 1250
Ō2.

...

Keep in mind as we do these problems that we are pracƟcing a process; that
is, we are learning to turn a situaƟon into a system of equaƟons. These equa-
Ɵons allow us to write a certain quanƟty as a funcƟon of one variable, which we
then opƟmize.

.. Example 102 ..OpƟmizaƟon: minimizing cost
A power line needs to be run from an power staƟon located on the beach to an
offshore facility. Figure 4.10 shows the distances between the power staƟon to
the facility.

It costs $50/Ō. to run a power line along the land, and $130/Ō. to run a
power line under water. How much of the power line should be run along the
land to minimize the overall cost? What is the minimal cost?

SÊ½çã®ÊÄ We will follow the strategy of Key Idea 6 implicitly, without
specifically numbering steps.

There are two immediate soluƟons that we could consider, each of which we
will reject through “common sense.” First, we could minimize the distance by
directly connecƟng the two locaƟons with a straight line. However, this requires
that all the wire be laid underwater, the most costly opƟon. Second, we could
minimize the underwater length by running a wire all 5000 Ō. along the beach,
directly across from the offshore facility. This has the undesired effect of having
the longest distance of all, probably ensuring a non–minimal cost.

The opƟmal soluƟon likely has the line being run along the ground for a
while, then underwater, as the figure implies. We need to label our unknown
distances – the distance run along the ground and the distance run underwater.
Recognizing that the underwater distance can be measured as the hypotenuse
of a right triangle, we choose to label the distances as shown in Figure 4.11.

Notes:
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4.3 OpƟmizaƟon

By choosing x as we did, wemake the expression under the square root sim-
ple. We now create the cost funcƟon.

Cost = land cost + water cost
$50× land distance + $130× water distance

50(5000− x) + 130
√
x2 + 10002.

So we have c(x) = 50(5000 − x) + 130
√
x2 + 10002. This funcƟon only

makes sense on the interval [0, 5000]. While we are fairly certain the endpoints
will not give a minimal cost, we sƟll evaluate c(x) at each to verify.

c(0) = 380, 000 c(5000) ≈ 662, 873.

We now find the criƟcal values of c(x). We compute c′(x) as

c′(x) = −50+
130x√

x2 + 10002
.

Recognize that this is never undefined. Seƫng c′(x) = 0 and solving for x,
we have:

−50+
130x√

x2 + 10002
= 0

130x√
x2 + 10002

= 50

1302x2

x2 + 10002
= 502

1302x2 = 502(x2 + 10002)

1302x2 − 502x2 = 502 · 10002

(1302 − 502)x2 = 50, 0002

x2 =
50, 0002

1302 − 502

x =
50, 000√
1302 − 502

x =
50, 000
120

= 416
2
3

EvaluaƟng c(x) at x = 416.67 gives a cost of about $370,000. The distance
the power line is laid along land is 5000− 416.67 = 4583.33 Ō., and the under-
water distance is

√
416.672 + 10002 ≈ 1083 Ō. ...

Notes:
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In the exercises you will see a variety of situaƟons that require you to com-
bine problem–solving skills with calculus. Focus on the process; learn how to
form equaƟons from situaƟons that can be manipulated into what you need.
Eschew memorizing how to do “this kind of problem” as opposed to “that kind
of problem.” Learning a process will benefit one far longer than memorizing a
specific technique.

Notes:
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Exercises 4.3
Terms and Concepts
1. T/F: An “opƟmizaƟon problem” is essenƟally an “extreme

values” problem in a “story problem” seƫng.

2. T/F: This secƟon teaches one to find the extreme values of
funcƟon that have more than one variable.

Problems
3. Find the maximum product of two numbers (not necessar-

ily integers) that have a sum of 100.

4. Find the minimum sum of two numbers whose product is
500.

5. Find the maximum sum of two numbers whose product is
500.

6. Find the maximum sum of two numbers, each of which is
in [0, 300] whose product is 500.

7. Find the maximal area of a right triangle with hypotenuse
of length 1.

8. A rancher has 1000 feet of fencing in which to construct
adjacent, equally sized rectangular pens. What dimensions
should these pens have to maximize the enclosed area?

.

9. A standard soda can is roughly cylindrical and holds 355cm3

of liquid. What dimensions should the cylinder be to min-
imize the material needed to produce the can? Based on
your dimensions, determine whether or not the standard
can is produced to minimize the material costs.

10. Find the dimensions of a cylindrical can with a volume of
206in3 that minimizes the surface area.
The “#10 can”is a standard sized can used by the restau-
rant industry that holds about 206in3 with a diameter of 6
2/16in and height of 7in. Does it seem these dimensions
where chosen with minimizaƟon in mind?

11. The United States Postal Service charges more for boxes
whose combined length and girth exceeds 108” (the
“length” of a package is the length of its longest side; the
girth is the perimeter of the cross secƟon, i.e., 2w+ 2h).
What is the maximum volume of a package with a square
cross secƟon (w = h) that does not exceed the 108” stan-
dard?

12. The strength S of a wooden beam is directly proporƟonal
to its cross secƟonal widthw and the square of its height h;
that is, S = kwh2 for some constant k.

.. 12. h.

w

Given a circular log with diameter of 12 inches, what sized
beam can be cut from the log with maximum strength?

13. A power line is to be run to an offshore facility in the man-
ner described in Example 102. The offshore facility is 2
miles at sea and 5miles along the shoreline from the power
plant. It costs $50,000 per mile to lay a power line under-
ground and $80,000 to run the line underwater.
Howmuch of the power line should be run underground to
minimize the overall costs?

14. A power line is to be run to an offshore facility in the man-
ner described in Example 102. The offshore facility is 5
miles at sea and 2miles along the shoreline from the power
plant. It costs $50,000 per mile to lay a power line under-
ground and $80,000 to run the line underwater.
Howmuch of the power line should be run underground to
minimize the overall costs?

15. A woman throws a sƟck into a lake for her dog to fetch;
the sƟck is 20 feet down the shore line and 15 feet into the
water from there. The dog may jump directly into the wa-
ter and swim, or run along the shore line to get closer to
the sƟck before swimming. The dog runs about 22Ō/s and
swims about 1.5Ō/s.
How far along the shore should the dog run to minimize
the Ɵme it takes to get to the sƟck? (Hint: the figure from
Example 102 can be useful.)

16. A woman throws a sƟck into a lake for her dog to fetch;
the sƟck is 15 feet down the shore line and 30 feet into the
water from there. The dog may jump directly into the wa-
ter and swim, or run along the shore line to get closer to
the sƟck before swimming. The dog runs about 22Ō/s and
swims about 1.5Ō/s.
How far along the shore should the dog run tominimize the
Ɵme it takes to get to the sƟck? (Google “calculus dog” to learn
more about a dog’s ability to minimize Ɵmes.)

17. What are the dimensions of the rectangle with largest area
that can be drawn inside the unit circle?
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Figure 4.12: Graphing f(x) = sin x and its
tangent line at x = π/3 in order to esƟ-
mate sin 1.1.

Chapter 4 ApplicaƟons of the DerivaƟve

4.4 DifferenƟals

In SecƟon 2.2 we explored the meaning and use of the derivaƟve. This secƟon
starts by revisiƟng some of those ideas.

Recall that the derivaƟve of a funcƟon f can be used to find the slopes of
lines tangent to the graph of f. At x = c, the tangent line to the graph of f has
equaƟon

y = f ′(c)(x− c) + f(c).

The tangent line can be used to find good approximaƟons of f(x) for values of x
near c.

For instance, we can approximate sin 1.1 using the tangent line to the graph
of f(x) = sin x at x = π/3 ≈ 1.05. Recall that sin(π/3) =

√
3/2 ≈ 0.866, and

cos(π/3) = 1/2. Thus the tangent line to f(x) = sin x at x = π/3 is:

ℓ(x) =
1
2
(x− π/3) + 0.866.

In Figure 4.12(a), we see a graph of f(x) = sin x graphed along with its tan-
gent line at x = π/3. The small rectangle shows the region that is displayed in
Figure 4.12(b). In this figure, we see how we are approximaƟng sin 1.1 with the
tangent line, evaluated at 1.1. Together, the two figures show how close these
values are.

Using this line to approximate sin 1.1, we have:

ℓ(1.1) =
1
2
(1.1− π/3) + 0.866

=
1
2
(0.053) + 0.866 = 0.8925.

(We leave it to the reader to see how good of an approximaƟon this is.)

We now generalize this concept. Given f(x) and an x–value c, the tangent
line is ℓ(x) = f ′(c)(x− c)+ f(c). Clearly, f(c) = ℓ(c). Let∆x be a small number,
represenƟng a small change in x value. We assert that:

f(c+∆x) ≈ ℓ(c+∆x),

since the tangent line to a funcƟon approximates well the values of that funcƟon
near x = c.

As the x value changes from c to c +∆x, the y value of f changes from f(c)
to f(c+∆x). We call this change of y value∆y. That is:

∆y = f(c+∆x)− f(c).

Notes:
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4.4 DifferenƟals

Replacing f(c+∆x) with its tangent line approximaƟon, we have

∆y ≈ ℓ(c+∆x)− f(c)
= f ′(c)

(
(c+∆x)− c

)
+ f(c)− f(c)

= f ′(c)∆x (4.3)

This final equaƟon is important; we’ll come back to it in a moment.
We introduce two new variables, dx and dy in the context of a formal defini-

Ɵon.

..
DefiniƟon 18 DifferenƟals of x and y.

Let y = f(x) be differenƟable. The differenƟal of x, denoted dx, is any
nonzero real number (usually taken to be a small number). The differ-
enƟal of y, denoted dy, is

dy = f ′(x)dx.

It is helpful to organize our new concepts and notaƟons in one place.

..
Key Idea 7 DifferenƟal NotaƟon

Let y = f(x) be a differenƟable funcƟon.

1. ∆x represents a small, nonzero change in x value.

2. dx represents a small, nonzero change in x value (i.e.,∆x = dx).

3. ∆y is the change in y value as x changes by∆x; hence

∆y = f(x+∆x)− f(x).

4. dy = f ′(x)dx which, by EquaƟon (4.3), is an approximaƟon of the
change in y value as x changes by∆x; dy ≈ ∆y.

What is the value of differenƟals? Like many mathemaƟcal concepts, differ-
enƟals provide both pracƟcal and theoreƟcal benefits. We explore both here.

.. Example 103 ..Finding and using differenƟals
Consider f(x) = x2. Knowing f(3) = 9, approximate f(3.1).

Notes:
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SÊ½çã®ÊÄ The x value is changing from x = 3 to x = 3.1; therefore, we
see that dx = 0.1. If we know howmuch the y value changes from f(3) to f(3.1)
(i.e., if we know∆y), we will know exactly what f(3.1) is (since we already know
f(3)). We can approximate∆y with dy.

∆y ≈ dy
= f ′(3)dx
= 2 · 3 · 0.1 = 0.6.

We expect the y value to change by about 0.6, so we approximate f(3.1) ≈
9.6.

We leave it to the reader to verify this, but the preceding discussion links the
differenƟal to the tangent line of f(x) at x = 3. One can verify that the tangent
line, evaluated at x = 3.1, also gives y = 9.6. ...

Of course, it is easy to compute the actual answer (by hand or with a calcula-
tor): 3.12 = 9.61. (Before we get too cynical and say “Then why bother?”, note
our approximaƟon is really good!)

So why bother?
In “most” real life situaƟons, we do not know the funcƟon that describes

a parƟcular behavior. Instead, we can only take measurements of how things
change – measurements of the derivaƟve.

Imagine water flowing down a winding channel. It is easy to measure the
speed and direcƟon (i.e., the velocity) of water at any locaƟon. It is very hard
to create a funcƟon that describes the overall flow, hence it is hard to predict
where a floaƟng object placed at the beginning of the channel will end up. How-
ever, we can approximate the path of an object using differenƟals. Over small
intervals, the path taken by a floaƟng object is essenƟally linear. DifferenƟals
allow us to approximate the true path by piecing together lots of short, linear
paths. This technique is called Euler’s Method, studied in introductory Differen-
Ɵal EquaƟons courses.

We use differenƟals once more to approximate the value of a funcƟon. Even
though calculators are very accessible, it is neat to see how these techniques can
someƟmes be used to easily compute something that looks rather hard.

.. Example 104 ..Using differenƟals to approximate a funcƟon value
Approximate

√
4.5.

SÊ½çã®ÊÄ We expect
√
4.5 ≈ 2, yet we can do beƩer. Let f(x) =

√
x,

and let c = 4. Thus f(4) = 2. We can compute f ′(x) = 1/(2
√
x), so f ′(4) =

1/4.
We approximate the difference between f(4.5) and f(4) using differenƟals,

Notes:
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4.4 DifferenƟals

with dx = 0.5:

f(4.5)− f(4) = ∆y ≈ dy = f ′(4) · dx = 1/4 · 1/2 = 1/8 = 0.125.

The approximate change in f from x = 4 to x = 4.5 is 0.125, so we approximate√
4.5 ≈ 2.125. ...

DifferenƟals are important when we discuss integraƟon. When we study
that topic, we will use notaƟon such as∫

f(x) dx

quite oŌen. While we don’t discuss here what all of that notaƟon means, note
the existence of the differenƟal dx. Proper handling of integrals comes with
proper handling of differenƟals.

In light of that, we pracƟce finding differenƟals in general.

.. Example 105 Finding differenƟals
In each of the following, find the differenƟal dy.

1. y = sin x 2. y = ex(x2 + 2) 3. y =
√
x2 + 3x− 1

SÊ½çã®ÊÄ

1. y = sin x: As f(x) = sin x, f ′(x) = cos x. Thus

dy = cos(x)dx.

2. y = ex(x2 + 2): Let f(x) = ex(x2 + 2). We need f ′(x), requiring the
Product Rule.
We have f ′(x) = ex(x2 + 2) + 2xex, so

dy = (ex(x2 + 2) + 2xex)dx.

3. y =
√
x2 + 3x− 1: Let f(x) =

√
x2 + 3x− 1; we need f ′(x), requiring

the Chain Rule.

We have f ′(x) =
1
2
(x2 + 3x− 1)−

1
2 (2x+ 3) =

2x+ 3
2
√
x2 + 3x− 1

. Thus

dy =
(2x+ 3)dx

2
√
x2 + 3x− 1

.

..
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Chapter 4 ApplicaƟons of the DerivaƟve

Finding the differenƟal dy of y = f(x) is really no harder than finding the
derivaƟve of f; we justmulƟply f ′(x) by dx. It is important to remember that we
are not simply adding the symbol “dx” at the end.

We have seen a pracƟcal use of differenƟals as they offer a good method of
making certain approximaƟons. Another use is error propagaƟon. Suppose a
length is measured to be x, although the actual value is x+∆x (where we hope
∆x is small). This measurement of xmay be used to compute some other value;
we can think of this as f(x) for some funcƟon f. As the true length is x + ∆x,
one really should have computed f(x + ∆x). The difference between f(x) and
f(x+∆x) is the propagated error.

How close are f(x) and f(x+∆x)? This is a difference in “y” values;

f(x+∆x)− f(x) = ∆y ≈ dy.

We can approximate the propagated error using differenƟals.

.. Example 106 ..Using differenƟals to approximate propagated error
A steel ball bearing is to be manufactured with a diameter of 2cm. The manu-
facturing process has a tolerance of ±0.1mm in the diameter. Given that the
density of steel is about 7.85g/cm3, esƟmate the propagated error in the mass
of the ball bearing.

SÊ½çã®ÊÄ The mass of a ball bearing is found using the equaƟon mass
= volume× density. In this situaƟon themass funcƟon is a product of the radius
of the ball bearing, hence it ism = 7.85 4

3πr
3. The differenƟal of the mass is

dm = 31.4πr2dr.

The radius is to be 1cm; the manufacturing tolerance in the radius is±0.05mm,
or±0.005cm. The propagated error is approximately:

∆m ≈ dm

= 31.4π(1)2(±0.005)
= ±0.493g

Is this error significant? It certainly depends on the applicaƟon, but we can get
an idea by compuƟng the relaƟve error. The raƟo between amount of error to
the total mass is

dm
m

= ± 0.493
7.85 4

3π

= ±0.493
32.88

= ±0.015,

Notes:
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or±1.5%.
We leave it to the reader to confirm this, but if the diameter of the ball was

supposed to be 10cm, the same manufacturing tolerance would give a propa-
gated error inmass of±12.33g, which corresponds to apercent error of±0.188%.
While the amount of error is much greater (12.33 > 0.493), the percent error
is much lower. ...

We first learned of the derivaƟve in the context of instantaneous rates of
change and slopes of tangent lines. We furthered our understanding of the
power of the derivaƟve by studying how it relates to the graph of a funcƟon
(leading to ideas of increasing/decreasing and concavity). This chapter has put
the derivaƟve to yet more uses:

• EquaƟon solving (Newton’s Method)

• Related Rates (furthering our use of the derivaƟve to find instantaneous
rates of change)

• OpƟmizaƟon (applied extreme values), and

• DifferenƟals (useful for various approximaƟons and for something called
integraƟon).

In the next chapters, we will consider the “reverse” problem to compuƟng
the derivaƟve: given a funcƟon f, can we find a funcƟon whose derivaƟve is f?
Be able to do so opens up an incredible world of mathemaƟcs and applicaƟons.

Notes:
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Exercises 4.4
Terms and Concepts
1. T/F: Given a differenƟable funcƟon y = f(x), we are gen-

erally free to choose a value for dx, which then determines
the value of dy.

2. T/F: The symbols “dx” and “∆x” represent the same con-
cept.

3. T/F: The symbols “dy” and “∆y” represent the same con-
cept.

4. T/F: DifferenƟals are important in the study of integraƟon.

5. How are differenƟals and tangent lines related?

Problems
In Exercises 6 – 17, use differenƟals to approximate the given
value by hand.

6. 2.052

7. 5.932

8. 5.13

9. 6.83

10.
√
16.5

11.
√
24

12. 3
√
63

13. 3
√
8.5

14. sin 3

15. cos 1.5

16. e0.1

In Exercises 17 – 29, compute the differenƟal dy.

17. y = x2 + 3x− 5

18. y = x7 − x5

19. y =
1
4x2

20. y = (2x+ sin x)2

21. y = x2e3x

22. y =
4
x4

23. y =
2x

tan x+ 1
24. y = ln(5x)

25. y = ex sin x

26. y = cos(sin x)

27. y =
x+ 1
x+ 2

28. y = 3x ln x

29. y = x ln x− x

30. A set of plasƟc spheres are to be made with a diameter
of 1cm. If the manufacturing process is accurate to 1mm,
what is the propagated error in volume of the spheres?

31. The distance, in feet, a stone drops in t seconds is given by
d(t) = 16t2. The depth of a hole is to be approximated by
dropping a rock and listening for it to hit the boƩom. What
is the propagated error if the Ɵmemeasurement is accurate
to 2/10ths of a second and the measured Ɵme is:

(a) 2 seconds?
(b) 5 seconds?

32. What is the propagated error in the measurement of the
cross secƟonal area of a circular log if the diameter is mea-
sured at 15′′, accurate to 1/4′′?

33. A wall is to be painted that is 8′ high and is measured to
be 10′, 7′′ long. Find the propagated error in the measure-
ment of the wall’s surface area if the measurement is accu-
rate to 1/2′′.

Exercises 34 – 38 explore some issues related to surveying in
which distances are approximated using other measured dis-
tances and measured angles. (Hint: Convert all angles to ra-
dians before compuƟng.)

34. The length l of a long wall is to be approximated. The angle
θ, as shown in the diagram (not to scale), is measured to be
85.2◦, accurate to 1◦. Assume that the triangle formed is a
right triangle.

.. l =?.

θ

.

25′

(a) What is the measured length l of the wall?
(b) What is the propagated error?
(c) What is the percent error?

35. Answer the quesƟons of Exercise 34, but with a measured
angle of 71.5◦, accurate to 1◦, measured from a point 100′

from the wall.
36. The length l of a long wall is to be calculated by measuring

the angle θ shown in the diagram (not to scale). Assume
the formed triangle is an isosceles triangle. The measured
angle is 143◦, accurate to 1◦.

.. l =?.θ .50′

(a) What is the measured length of the wall?
(b) What is the propagated error?
(c) What is the percent error?

37. The length of the walls in Exercises 34 – 36 are essenƟally
the same. Which setup gives the most accurate result?

38. Consider the setup in Exercises 36. This Ɵme, assume the
angle measurement of 143◦ is exact but the measured 50′

from the wall is accurate to 6′′. What is the approximate
percent error?
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We have spent considerable Ɵme considering the derivaƟves of a funcƟon and
their applicaƟons. In the following chapters, we are going to starƟng thinking
in “the other direcƟon.” That is, given a funcƟon f(x), we are going to consider
funcƟons F(x) such that F′(x) = f(x).

5.1 AnƟderivaƟves and Indefinite IntegraƟon

Given a funcƟon y = f(x), a differenƟal equaƟon is one that incorporates y, x,
and the derivaƟves of y. For instance, a simple differenƟal equaƟon is:

y ′ = 2x.

Solving a differenƟal equaƟon amounts to finding a funcƟon y that saƟsfies
the given equaƟon. Take a moment and consider that equaƟon; can you find a
funcƟon y such that y ′ = 2x?

Can you find another?
And yet another?
Hopefully one was able to come upwith at least one soluƟon: y = x2. “Find-

ing another” may have seemed impossible unƟl one realizes that a funcƟon like
y = x2 + 1 also has a derivaƟve of 2x. Once that discovery is made, finding “yet
another” is not difficult; the funcƟon y = x2 + 123, 456, 789 also has a deriva-
Ɵve of 2x. The differenƟal equaƟon y ′ = 2x has many soluƟons. This leads us
to some definiƟons.

..
DefiniƟon 19 AnƟderivaƟves and Indefinite Integrals

Let a funcƟon f(x) be given. An anƟderivaƟve of f(x) is a funcƟon F(x)
such that F ′(x) = f(x).

The set of all anƟderivaƟves of f(x) is the indefinite integral of f, denoted
by ∫

f(x) dx.



Chapter 5 IntegraƟon

Make a note about our definiƟon: we refer to an anƟderivaƟve of f, as op-
posed to the anƟderivaƟve of f, since there is always an infinite number of them.
We oŌen use upper-case leƩers to denote anƟderivaƟves.

Knowing one anƟderivaƟve of f allows us to find infinitely more, simply by
adding a constant. Not only does this give usmore anƟderivaƟves, it gives us all
of them.

..
Theorem 34 AnƟderivaƟve Forms

Let F(x) and G(x) be anƟderivaƟves of f(x). Then there exists a constant
C such that

G(x) = F(x) + C.

Given a funcƟon f and one of its anƟderivaƟves F, we know all anƟderivaƟves
of f have the form F(x)+ C for some constant C. Using DefiniƟon 19, we can say
that ∫

f(x) dx = F(x) + C.

Let’s analyze this indefinite integral notaƟon.

..

∫
f(x) dx = F(x) + C

.

Integrand

.

IntegraƟon
symbol

.

DifferenƟal
of x

.

One
anƟderivaƟve

.

Constant of
integraƟon

Figure 5.1: Understanding the indefinite integral notaƟon.

Figure 5.1 shows the typical notaƟon of the indefinite integral. The integra-
Ɵon symbol,

∫
, is in reality an “elongated S,” represenƟng “take the sum.” We

will later see how sums and anƟderivaƟves are related.
The funcƟon we want to find an anƟderivaƟve of is called the integrand. It

contains the differenƟal of the variable we are integraƟngwith respect to. The
∫

symbol and the differenƟal dx are not “bookends” with a funcƟon sandwiched in
between; rather, the symbol

∫
means “find all anƟderivaƟves of what follows,”

and the funcƟon f(x) and dx are mulƟplied together; the dx does not “just sit
there.”

Let’s pracƟce using this notaƟon.

Notes:
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.. Example 107 EvaluaƟng indefinite integrals

Evaluate
∫

sin x dx.

SÊ½çã®ÊÄ We are asked to find all funcƟons F(x) such that F ′(x) =
sin x. Some thoughtwill lead us to one soluƟon: F(x) = − cos x, because d

dx (− cos x) =
sin x.

The indefinite integral of sin x is thus− cos x, plus a constant of integraƟon.
So: ∫

sin x dx = − cos x+ C...

A commonly asked quesƟon is “What happened to the dx?” The unenlight-
ened response is “Don’t worry about it. It just goes away.” A full understanding
includes the following.

This process of anƟdifferenƟaƟon is really solving a differenƟal quesƟon. The
integral ∫

sin x dx

presents us with a differenƟal, dy = sin x dx. It is asking: “What is y?” We found
lots of soluƟons, all of the form y = − cos x+ C.

Leƫng dy = sin x dx, rewrite∫
sin x dx as

∫
dy.

This is asking: “What funcƟons have a differenƟal of the form dy?” The answer
is “FuncƟons of the form y+ C, where C is a constant.” What is y? We have lots
of choices, all differing by a constant; the simplest choice is y = − cos x.

Understanding all of this is more important later as we try to find anƟderiva-
Ɵves of more complicated funcƟons. In this secƟon, we will simply explore the
rules of indefinite integraƟon, and one can succeed for now with answering
“What happened to the dx?” with “It went away.”

Let’s pracƟce once more before staƟng integraƟon rules.

.. Example 108 ..EvaluaƟng indefinite integrals

Evaluate
∫
(3x2 + 4x+ 5) dx.

SÊ½çã®ÊÄ We seek a funcƟon F(x) whose derivaƟve is 3x2 + 4x + 5.
When taking derivaƟves, we can consider funcƟons term–by–term, so we can
likely do that here.

What funcƟons have a derivaƟve of 3x2? Some thought will lead us to a
cubic, specifically x3 + C1, where C1 is a constant.

Notes:
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What funcƟons have a derivaƟve of 4x? Here the x term is raised to the first
power, so we likely seek a quadraƟc. Some thought should lead us to 2x2 + C2,
where C2 is a constant.

Finally, what funcƟons have a derivaƟve of 5? FuncƟons of the form 5x+C3,
where C3 is a constant.

Our answer appears to be

∫
(3x2 + 4x+ 5) dx = x3 + C1 + 2x2 + C2 + 5x+ C3.

We do not need three separate constants of integraƟon; combine them as one
constant, giving the final answer of

∫
(3x2 + 4x+ 5) dx = x3 + 2x2 + 5x+ C.

It is easy to verify our answer; take the derivaƟve of x3 + 2x3 + 5x + C and
see we indeed get 3x2 + 4x+ 5. ...

This final step of “verifying our answer” is important both pracƟcally and
theoreƟcally. In general, taking derivaƟves is easier than finding anƟderivaƟves
so checking our work is easy and vital as we learn.

We also see that taking the derivaƟve of our answer returns the funcƟon in
the integrand. Thus we can say that:

d
dx

(∫
f(x) dx

)
= f(x).

DifferenƟaƟon “undoes” the work done by anƟdifferenƟaƟon.

Theorem24gave a list of the derivaƟves of common funcƟonswehad learned
at that point. We restate part of that list here to stress the relaƟonship between
derivaƟves and anƟderivaƟves. This list will also be useful as a glossary of com-
mon anƟderivaƟves as we learn.

Notes:
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..
Theorem 35 DerivaƟves and AnƟderivaƟves

Common DifferenƟaƟon Rules

1. d
dx

(
cf(x)

)
= c · f ′(x)

2. d
dx

(
f(x)± g(x)

)
=

f ′(x)± g′(x)

3. d
dx

(
C
)
= 0

4. d
dx

(
x
)
= 1

5. d
dx

(
xn
)
= n · xn−1

6. d
dx

(
sin x

)
= cos x

7. d
dx

(
cos x

)
= − sin x

8. d
dx

(
tan x

)
= sec2 x

9. d
dx

(
csc x

)
= − csc x cot x

10. d
dx

(
sec x

)
= sec x tan x

11. d
dx

(
cot x

)
= − csc2 x

12. d
dx

(
ex
)
= ex

13. d
dx

(
ax
)
= ln a · ax

14. d
dx

(
ln x
)
= 1

x

Common Indefinite Integral Rules

1.
∫
c · f(x) dx = c ·

∫
f(x) dx

2.
∫ (

f(x)± g(x)
)
dx =∫

f(x) dx±
∫
g(x) dx

3.
∫
0 dx = C

4.
∫
1 dx =

∫
dx = x+ C

5.
∫
xn dx = 1

n+1x
n+1 + C (n ̸= −1)

6.
∫
cos x dx = sin x+ C

7.
∫
sin x dx = − cos x+ C

8.
∫
sec2 x dx = tan x+ C

9.
∫
csc x cot x dx = − csc x+ C

10.
∫
sec x tan x dx = sec x+ C

11.
∫
csc2 x dx = − cot x+ C

12.
∫
ex dx = ex + C

13.
∫
ax dx = 1

ln a · a
x + C

14.
∫ 1

x dx = ln |x|+ C

We highlight a few important points from Theorem 35:

• Rule #1 states
∫
c · f(x) dx = c ·

∫
f(x) dx. This is the Constant MulƟple

Rule: we can temporarily ignore constants when finding anƟderivaƟves,
just as we did when compuƟng derivaƟves (i.e., d

dx

(
3x2
)
is just as easy to

compute as d
dx

(
x2
)
). An example:∫

5 cos x dx = 5 ·
∫

cos x dx = 5 · (sin x+ C) = 5 sin x+ C.

In the last step we can consider the constant as also being mulƟplied by

Notes:
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5, but “5 Ɵmes a constant” is sƟll a constant, so we just write “C ”.

• Rule #2 is the Sum/Difference Rule: we can split integrals apart when the
integrand contains terms that are added/subtracted, as we did in Example
108. So: ∫

(3x2 + 4x+ 5) dx =
∫

3x2 dx+
∫

4x dx+
∫

5 dx

= 3
∫

x2 dx+ 4
∫

x dx+
∫

5 dx

= 3 · 1
3
x3 + 4 · 1

2
x2 + 5x+ C

= x3 + 2x2 + 5x+ C

In pracƟce we generally do not write out all these steps, but we demon-
strate them here for completeness.

• Rule #5 is the Power Rule of indefinite integraƟon. There are two impor-
tant things to keep in mind:

1. NoƟce the restricƟon that n ̸= −1. This is important:
∫ 1

x dx ̸=
“ 10x

0 + C”; rather, see Rule #14.
2. We are presenƟng anƟdifferenƟaƟon as the “inverse operaƟon” of

differenƟaƟon. Here is a useful quote to remember:
“Inverse operaƟons do the opposite things in the opposite
order.”

When taking a derivaƟve using the Power Rule, we first mulƟply by
the power, then second subtract 1 from the power. To find the an-
ƟderivaƟve, do the opposite things in the opposite order: first add
one to the power, then second divide by the power.

• Note that Rule #14 incorporates the absolute value of x. The exercises will
work the reader through why this is the case; for now, know the absolute
value is important and cannot be ignored.

IniƟal Value Problems

In SecƟon 2.3 we saw that the derivaƟve of a posiƟon funcƟon gave a veloc-
ity funcƟon, and the derivaƟve of a velocity funcƟon describes the acceleraƟon.
We can now go “the other way:” the anƟderivaƟve of an acceleraƟon funcƟon
gives a velocity funcƟon, etc. While there is just one derivaƟve of a given func-
Ɵon, there are infinite anƟderivaƟves. Therefore we cannot ask “What is the
velocity of an object whose acceleraƟon is−32Ō/s2?”, since there is more than
one answer.

Notes:
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We can find the answer if we provide more informaƟon with the quesƟon,
as done in the following example.

.. Example 109 Solving iniƟal value problems
The acceleraƟon due to gravity of a falling object is −32 Ō/s2. At Ɵme t = 3,
a falling object had a velocity of −10 Ō/s. Find the equaƟon of the object’s
velocity.

SÊ½çã®ÊÄ We want to know a velocity funcƟon, v(t). We know two
things:

• The acceleraƟon, i.e., v′(t) = −32, and

• the velocity at a specific Ɵme, i.e., v(3) = −10.

Using the first piece of informaƟon, we know that v(t) is an anƟderivaƟve of
v′(t) = −32. So we begin by finding the indefinite integral of−32:∫

(−32) dt = −32t+ C = v(t).

Now we use the fact that v(3) = −10 to find C:

v(t) = −32t+ C
v(3) = −10

−32(3) + C = −10
C = 86

Thus v(t) = −32t+ 86. We can use this equaƟon to understand the moƟon
of the object: when t = 0, the object had a velocity of v(0) = 86 Ō/s. Since the
velocity is posiƟve, the object was moving upward.

When did the object begin moving down? Immediately aŌer v(t) = 0:

−32t+ 86 = 0 ⇒ t =
43
16

≈ 2.69s.

Recognize that we are able to determine quite a bit about the path of the object
knowing just its acceleraƟon and its velocity at a single point in Ɵme. ..

.. Example 110 ..Solving iniƟal value problems
Find f(t), given that f ′′(t) = cos t, f ′(0) = 3 and f(0) = 5.

SÊ½çã®ÊÄ We start by finding f ′(t), which is an anƟderivaƟve of f ′′(t):∫
f ′′(t) dt =

∫
cos t dt = sin t+ C = f ′(t).

Notes:
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So f ′(t) = sin t + C for the correct value of C. We are given that f ′(0) = 3,
so:

f ′(0) = 3 ⇒ sin 0+ C = 3 ⇒ C = 3.

Using the iniƟal value, we have found f ′(t) = sin t+ 3.
We now find f(t) by integraƟng again.∫

f ′(t) dt =
∫

(sin t+ 3) dt = − cos t+ 3t+ C.

We are given that f(0) = 5, so

− cos 0+ 3(0) + C = 5
−1+ C = 5

C = 6

Thus f(t) = − cos t+ 3t+ 6. ...

This secƟon introduced anƟderivaƟves and the indefinite integral. We found
they are needed when finding a funcƟon given informaƟon about its deriva-
Ɵve(s). For instance, we found a posiƟon funcƟon given a velocity funcƟon.

In the next secƟon, we will see how posiƟon and velocity are unexpectedly
related by the areas of certain regions on a graph of the velocity funcƟon. Then,
in SecƟon 5.4, wewill see howareas and anƟderivaƟves are closely Ɵed together.

Notes:
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Exercises 5.1
Terms and Concepts
1. Define the term “anƟderivaƟve” in your own words.

2. Is it more accurate to refer to “the” anƟderivaƟve of f(x) or
“an” anƟderivaƟve of f(x)?

3. Use your own words to define the indefinite integral of
f(x).

4. Fill in the blanks: “Inverse operaƟons do the
things in the order.”

5. What is an “iniƟal value problem”?

6. The derivaƟve of a posiƟon funcƟon is a func-
Ɵon.

7. The anƟderivaƟve of an acceleraƟon funcƟon is a
funcƟon.

Problems
In Exercises 8 – 26, evaluate the given indefinite integral.

8.
∫

3x3 dx

9.
∫

x8 dx

10.
∫

(10x2 − 2) dx

11.
∫

dt

12.
∫

1 ds

13.
∫

1
3t2

dt

14.
∫

3
t2

dt

15.
∫

1√
x
dx

16.
∫

sec2 θ dθ

17.
∫

sin θ dθ

18.
∫

(sec x tan x+ csc x cot x) dx

19.
∫

5eθ dθ

20.
∫

3t dt

21.
∫

5t

2
dt

22.
∫

(2t+ 3)2 dt

23.
∫

(t2 + 3)(t3 − 2t) dt

24.
∫

x2x3 dx

25.
∫

eπ dx

26.
∫

t dx

27. This problem invesƟgates why Theorem 35 states that∫
1
x
dx = ln |x|+ C.

(a) What is the domain of y = ln x?

(b) Find d
dx

(
ln x
)
.

(c) What is the domain of y = ln(−x)?

(d) Find d
dx

(
ln(−x)

)
.

(e) You should find that 1/x has two types of anƟderiva-
Ɵves, depending on whether x > 0 or x < 0. In

one expression, give a formula for
∫

1
x
dx that takes

these different domains into account, and explain
your answer.

In Exercises 28 – 38, find f(x) described by the given iniƟal
value problem.

28. f ′(x) = sin x and f(0) = 2

29. f ′(x) = 5ex and f(0) = 10

30. f ′(x) = 4x3 − 3x2 and f(−1) = 9

31. f ′(x) = sec2 x and f(π/4) = 5

32. f ′(x) = 7x and f(2) = 1

33. f ′′(x) = 5 and f ′(0) = 7, f(0) = 3

34. f ′′(x) = 7x and f ′(1) = −1, f(1) = 10

35. f ′′(x) = 5ex and f ′(0) = 3, f(0) = 5

36. f ′′(x) = sin θ and f ′(π) = 2, f(π) = 4

37. f ′′(x) = 24x2 + 2x − cos x and f ′(0) = 5, f(0) = 0

38. f ′′(x) = 0 and f ′(1) = 3, f(1) = 1

Review
39. Use informaƟon gained from the first and second deriva-

Ɵves to sketch f(x) =
1

ex + 1
.

40. Given y = x2ex cos x, find dy.
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Figure 5.3: The total displacement is the
area above the t–axis minus the area be-
low the t–axis.

Chapter 5 IntegraƟon

5.2 The Definite Integral
We start with an easy problem. An object travels in a straight line at a constant
velocity of 5 Ō/s for 10 seconds. How far away from its starƟng point is the
object?

We approach this problemwith the familiar “Distance= Rate× Time” equa-
Ɵon. In this case, Distance = 5Ō/s× 10s= 50 feet.

It is interesƟng to note that this soluƟon of 50 feet can be represented graph-
ically. Consider Figure 5.2, where the constant velocity of 5Ō/s is graphed on the
axes. Shading the area under the line from t = 0 to t = 10 gives a rectangle
with an area of 50 square units; when one considers the units of the axes, we
can say this area represents 50 Ō.

Now consider a slightly harder situaƟon (and not parƟcularly realisƟc): an
object travels in a straight line with a constant velocity of 5Ō/s for 10 seconds,
then instantly reverses course at a rate of 2Ō/s for 4 seconds. (Since the object
is traveling in the opposite direcƟon when reversing course, we say the velocity
is a constant−2Ō/s.) How far away from the starƟng point is the object – what
is its displacement?

Here we use “Distance= Rate1 × Time1 + Rate2 × Time2,” which is

Distance = 5 · 10+ (−2) · 4 = 42 Ō.

Hence the object is 42 feet from its starƟng locaƟon.
We can again depict this situaƟon graphically. In Figure 5.3 we have the

velociƟes graphed as straight lines on [0, 10] and [10, 14], respecƟvely. The dis-
placement of the object is

“Area above the t–axis − Area below the t–axis,”

which is easy to calculate as 50− 8 = 42 feet.
Now consider a more difficult problem.

.. Example 111 ..Finding posiƟon using velocity
The velocity of an object moving straight up/down under the acceleraƟon of
gravity is given as v(t) = −32t+48, where Ɵme t is given in seconds and velocity
is in Ō/s. When t = 0, the object had a height of 0 Ō.

1. What was the iniƟal velocity of the object?

2. What was the maximum height of the object?

3. What was the height of the object at Ɵme t = 2?

SÊ½çã®ÊÄ It is straighƞorward to find the iniƟal velocity; at Ɵme t = 0,
v(0) = −32 · 0+ 48 = 48 Ō/s.

Notes:
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Figure 5.4: A graph of v(t) = −32t +
48; the shaded areas help determine dis-
placement.

5.2 The Definite Integral

To answer quesƟons about the height of the object, we need to find the
object’s posiƟon funcƟon s(t). This is an iniƟal value problem, which we studied
in the previous secƟon. We are told the iniƟal height is 0, i.e., s(0) = 0. We
know s′(t) = v(t) = −32t+ 48. To find s, we find the indefinite integral of v(t):∫

v(t) dt =
∫
(−32t+ 48) dt = −16t2 + 48t+ C = s(t).

Since s(0) = 0, we conclude that C = 0 and s(t) = −16t2 + 48t.
To find the maximum height of the object, we need to find the maximum of

s. Recalling our work finding extreme values, we find the criƟcal points of s by
seƫng its derivaƟve equal to 0 and solving for t:

s′(t) = −32t+ 48 = 0 ⇒ t = 48/32 = 1.5s.

(NoƟce howwe ended just finding when the velocity was 0Ō/s!) The first deriva-
Ɵve test shows this is a maximum, so themaximum height of the object is found
at

s(1.5) = −16(1.5)2 + 48(1.5) = 36Ō.

The height at Ɵme t = 2 is now straighƞorward to compute: it is s(2) = 32Ō.

While we have answered all three quesƟons, let’s look at them again graph-
ically, using the concepts of area that we explored earlier.

Figure 5.4 shows a graph of v(t) on axes from t = 0 to t = 3. It is again
straighƞorward to find v(0). How can we use the graph to find the maximum
height of the object?

Recall how in our previous work that the displacement of the object (in this
case, its height) was found as the area under the velocity curve, as shaded in the
figure. Moreover, the area between the curve and the t–axis that is below the
t–axis counted as “negaƟve” area. That is, it represents the object coming back
toward its starƟng posiƟon. So to find the maximum distance from the starƟng
point – the maximum height – we find the area under the velocity line that is
above the t–axis. This region is a triangle; its area is

Area =
1
2
Base× Height =

1
2
× 1.5s× 48Ō/s = 36Ō.

Finally, find the total signed area under the velocity funcƟon from t = 0 to
t = 2 to find the total displacement of the object. That is,

Displacement = Area above the t–axis− Area below t–axis.

The regions are triangles, and we find

Displacement =
1
2
(1.5s)(48Ō/s)− 1

2
(.5s)(16Ō/s) = 32Ō.

...

Notes:
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Figure 5.5: A graph of f(x) in Example 112.

Chapter 5 IntegraƟon

The above example does not prove a relaƟonship between area under a ve-
locity funcƟon and displacement, but it does imply a relaƟonship exists. SecƟon
5.4 will fully establish fact that the area under a velocity funcƟon is displace-
ment.

..
DefiniƟon 20 The Definite Integral, Total Signed Area

Let y = f(x) be defined on a closed interval [a, b]. The total signed area
from x = a to x = b under f is:

(area under f and above x–axis on [a, b]) – (area above f and under
x–axis on [a, b]).

The definite integral of f on [a, b] is the total signed area of f on [a, b],
denoted ∫ b

a
f(x) dx,

where a and b are the bounds of integraƟon.

The previous secƟon introduced the indefinite integral, which related to an-
ƟderivaƟves. We have now defined the definite integral, which relates to areas
under a funcƟon. The two are very much related, as we’ll see when we learn
the Fundamental Theorem of Calculus in SecƟon 5.4. Recall that earlier we said
that the “

∫
” symbol was an “elongated S” that represented finding a “sum.” In

the context of the definite integral, this notaƟon makes a bit more sense, as we
are adding up areas under the funcƟon f.

We pracƟce using this notaƟon.

.. Example 112 ..EvaluaƟng definite integrals
Consider the funcƟon f given in Figure 5.5.

Find:

1.
∫ 3

0
f(x) dx

2.
∫ 5

3
f(x) dx

3.
∫ 5

0
f(x) dx

4.
∫ 3

0
5f(x) dx

5.
∫ 1

1
f(x) dx

SÊ½çã®ÊÄ

Notes:
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Figure 5.6: A graph of 5f in Example 112.
(Yes, it looks just like the graph of f in Fig-
ure 5.5, just with a different y-scale.)

5.2 The Definite Integral

1.
∫ 3
0 f(x) dx is the area under f on the interval [0, 3]. This region is a triangle,
so the area is 1

2 (3)(1) = 1.5.

2.
∫ 5
3 f(x) dx represents the area of the triangle found under the x–axis on
[3, 5]. The area is 1

2 (2)(1) = 1; since it is found under the x–axis, this is
“negaƟve area.” Therefore

∫ 5
3 f(x) dx = −1.

3.
∫ 5
0 f(x) dx is the total signed area under fon [0, 5]. This is 1.5+(−1) = 0.5.

4.
∫ 3
0 5f(x) dx is the area under 5f on [0, 3]. This is sketched in Figure 5.6.
Again, the region is a triangle, with height 5 Ɵmes that of the height of
the original triangle. Thus the area is

∫ 3
0 5f(x) dx = 15/2 = 7.5.

5.
∫ 1
1 f(x) dx is the area under f on the “interval” [1, 1]. This describes a line
segment, not a region; it has no width. Therefore the area is 0....

This example illustrates some of the properƟes of the definite integral, given
here.

..
Theorem 36 ProperƟes of the Definite Integral

Let f and g be defined on a closed interval I that contains the values a, b
and c, and let k be a constant. The following hold:

1.
∫ a

a
f(x) dx = 0

2.
∫ b

a
f(x) dx+

∫ c

b
f(x) dx =

∫ c

a
f(x) dx

3.
∫ b

a
f(x) dx = −

∫ a

b
f(x) dx

4.
∫ b

a

(
f(x)± g(x)

)
dx =

∫ b

a
f(x) dx±

∫ b

a
g(x) dx

5.
∫ b

a
k · f(x) dx = k ·

∫ b

a
f(x) dx

We give a brief jusƟficaƟon of Theorem 36 here.

1. As demonstrated in Example 112, there is no “area under the curve”when
the region has no width; hence this definite integral is 0.

Notes:
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2. This states that total area is the sum of the areas of subregions. It is easily
considered when we let a < b < c. We can break the interval [a, c] into
two subintervals, [a, b] and [b, c]. The total area over [a, c] is the area over
[a, b] plus the area over [b, c].
It is important to note that this sƟll holds true even if a < b < c is not
true. We discuss this in the next point.

3. This property can be viewed a merely a convenƟon to make other proper-
Ɵesworkwell. (Later wewill see how this property has a jusƟficaƟon all its
own, not necessarily in support of other properƟes.) Suppose b < a < c.
The discussion from the previous point clearly jusƟfies∫ a

b
f(x) dx+

∫ c

a
f(x) dx =

∫ c

b
f(x) dx. (5.1)

However, we sƟll claim that, as originally stated,∫ b

a
f(x) dx+

∫ c

b
f(x) dx =

∫ c

a
f(x) dx. (5.2)

How do EquaƟons (5.1) and (5.2) relate? Start with EquaƟon (5.1):∫ a

b
f(x) dx+

∫ c

a
f(x) dx =

∫ c

b
f(x) dx∫ c

a
f(x) dx = −

∫ a

b
f(x) dx+

∫ c

b
f(x) dx

Property (3) jusƟfies changing the sign and switching the bounds of inte-

graƟon on the −
∫ a

b
f(x) dx term; when this is done, EquaƟons (5.1) and

(5.2) are equivalent.

The conclusion is this: by adopƟng the convenƟon of Property (3), Prop-
erty (2) holds no maƩer the order of a, b and c.

4,5. Each of these may be non–intuiƟve. Property (5) states that when one
scales a funcƟon by, for instance, 7, the area of the enclosed region also
is scaled by a factor of 7. Both ProperƟes (4) and (5) can be proved using
geometry. The details are not complicated but are not discussed here.

Notes:
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Figure 5.7: A graph of a funcƟon in Exam-
ple 113.
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Figure 5.8: A graph of f(x) = 2x − 4 in
Example 114.

5.2 The Definite Integral

.. Example 113 EvaluaƟng definite integrals using Theorem 36.
Consider the graph of a funcƟon f(x) shown in Figure 5.7.

Answer the following:

1. Which value is greater:
∫ b

a
f(x) dx or

∫ c

b
f(x) dx?

2. Is
∫ c

a
f(x) dx greater or less than 0?

3. Which value is greater:
∫ b

a
f(x) dx or

∫ b

c
f(x) dx?

SÊ½çã®ÊÄ

1.
∫ b
a f(x) dx has a posiƟve value (since the area is above the x–axis) whereas∫ c
b f(x) dx has a negaƟve value. Hence

∫ b
a f(x) dx is bigger.

2.
∫ c
a f(x) dx is the total signed area under f between x = a and x = c. Since
the region below the x–axis looks to be larger than the region above, we
conclude that the definite integral has a value less than 0.

3. Note how the second integral has the bounds “reversed.” Therefore
∫ b
c f(x)dx

represents a posiƟve number, greater than the area described by the first
definite integral. Hence

∫ b
c f(x) dx is greater.

..

The area definiƟon of the definite integral allows us to compute the definite
integral of some simple funcƟons.

.. Example 114 ..EvaluaƟng definite integrals using geometry
Evaluate the following definite integrals:

1.
∫ 5

−2
(2x− 4) dx 2.

∫ 3

−3

√
9− x2 dx.

SÊ½çã®ÊÄ

1. It is useful to sketch the funcƟon in the integrand, as shown in Figure 5.8.
We see we need to compute the areas of two regions, which we have
labeled R1 and R2. Both are triangles, so the area computaƟon is straight-
forward:

R1 :
1
2
(4)(8) = 16 R2 :

1
2
(3)6 = 9.

Notes:
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Figure 5.11: What is the area below y =
x2 on [0, 3]? The region is not a usual ge-
ometric shape.

Chapter 5 IntegraƟon

Region R1 lies under the x–axis, hence it is counted as negaƟve area (we
can think of the height as being “−8”), so∫ 5

−2
(2x− 4) dx = 9− 16 = −7.

2. Recognize that the integrand of this definite integral is a half circle, as
sketched in Figure 5.9, with radius 3. Thus the area is:∫ 3

−3

√
9− x2 dx =

1
2
πr2 =

9
2
π.

...

.. Example 115 Understanding moƟon given velocity
Consider the graph of a velocity funcƟon of an object moving in a straight line,
given in Figure 5.10, where the numbers in the given regions gives the area of
that region. Assume that the definite integral of a velocity funcƟon gives dis-
placement. Find the maximum speed of the object and its maximum displace-
ment from its starƟng posiƟon.

SÊ½çã®ÊÄ Since the graph gives velocity, finding the maximum speed
is simple: it looks to be 15Ō/s.

At Ɵme t = 0, the displacement is 0; the object is at its starƟng posiƟon. At
Ɵme t = a, the object has moved backward 11 feet. Between Ɵmes t = a and
t = b, the object moves forward 38 feet, bringing it into a posiƟon 27 feet for-
ward of its starƟng posiƟon. From t = b to t = c the object is moving backwards
again, hence its maximum displacement is 27 feet from its starƟng posiƟon. ..

In our examples, we have either found the areas of regions that have nice
geometric shapes (such as rectangles, triangles and circles) or the areas were
given to us. Consider Figure 5.11, where a region below y = x2 is shaded. What
is its area? The funcƟon y = x2 is relaƟvely simple, yet the shape it defines has
an area that is not simple to find geometrically.

In the next secƟon we will explore how to find the areas of such regions.

Notes:
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Exercises 5.2
Terms and Concepts
1. What is “total signed area”?

2. What is “displacement”?

3. What is
∫ 3

3
sin x dx?

4. Give a single definite integral that has the same value as∫ 1

0
(2x+ 3) dx+

∫ 2

1
(2x+ 3) dx.

Problems
In Exercises 5 – 9, a graph of a funcƟon f(x) is given. Using
the geometry of the graph, evaluate the definite integrals.

5.

.....

y = −2x + 4

.

2

.

4

. −4.

−2

.

2

.

4

.

x

.

y

(a)
∫ 1

0
(−2x+ 4) dx

(b)
∫ 2

0
(−2x+ 4) dx

(c)
∫ 3

0
(−2x+ 4) dx

(d)
∫ 3

1
(−2x+ 4) dx

(e)
∫ 4

2
(−2x+ 4) dx

(f)
∫ 1

0
(−6x+ 12) dx

6.

.....
y = f(x)

.

1

.

2

.

3

.

4

.

5

.−2.

−1

.

1

.

2

.

x

.

y

(a)
∫ 2

0
f(x) dx

(b)
∫ 3

0
f(x) dx

(c)
∫ 5

0
f(x) dx

(d)
∫ 5

2
f(x) dx

(e)
∫ 3

5
f(x) dx

(f)
∫ 3

0
−2f(x) dx

7.

.....

y = f(x)

. 1. 2. 3. 4.

2

.

4

.
x

.

y

(a)
∫ 2

0
f(x) dx

(b)
∫ 4

2
f(x) dx

(c)
∫ 4

2
2f(x) dx

(d)
∫ 1

0
4x dx

(e)
∫ 3

2
(2x− 4) dx

(f)
∫ 3

2
(4x− 8) dx

8.

.....

y = x − 1

.

1

.

2

.

3

.

4

.
−1

.

1

.

2

.

3

.

x

.

y

(a)
∫ 1

0
(x− 1) dx

(b)
∫ 2

0
(x− 1) dx

(c)
∫ 3

0
(x− 1) dx

(d)
∫ 3

2
(x− 1) dx

(e)
∫ 4

1
(x− 1) dx

(f)
∫ 4

1

(
(x− 1) + 1

)
dx
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9.

.....

f(x) =
√

4 − (x − 2)2

. 1. 2. 3. 4.

1

.

2

.

3

.
x

.

y

(a)
∫ 2

0
f(x) dx

(b)
∫ 4

2
f(x) dx

(c)
∫ 4

0
f(x) dx

(d)
∫ 4

0
5f(x) dx

In Exercises 10 – 13, a graph of a funcƟon f(x) is given; the
numbers inside the shaded regions give the area of that re-
gion. Evaluate the definite integrals using this area informa-
Ɵon.

10.

.....

y = f(x)

.

59

.

11

.

21

.

1

.

2

.

3

.−100.

−50

.

50

.

x

.

y

(a)
∫ 1

0
f(x) dx

(b)
∫ 2

0
f(x) dx

(c)
∫ 3

0
f(x) dx

(d)
∫ 2

1
−3f(x) dx

11.

.....

f(x) = sin(πx/2)

.

4/π

.

4/π

.

1

.

2

.

3

.

4

.
−1

.

1

.

x

.

y

(a)
∫ 2

0
f(x) dx

(b)
∫ 4

2
f(x) dx

(c)
∫ 4

0
f(x) dx

(d)
∫ 1

0
f(x) dx

12.

.....

f(x) = 3x2 − 3

.

4

.

4

.

−4

.

−2

.

−1

.

1

.

2

. −5.

5

.

10

.

x

.

y

(a)
∫ −1

−2
f(x) dx

(b)
∫ 2

1
f(x) dx

(c)
∫ 1

−1
f(x) dx

(d)
∫ 1

0
f(x) dx

13.

.....

f(x) = x2

. 1/3. 7/3.
1

.
2

.

1

.

2

.

3

.

4

. x.

y

(a)
∫ 2

0
5x2 dx

(b)
∫ 2

0
(x2 + 3) dx

(c)
∫ 3

1
(x− 1)2 dx

(d)
∫ 4

2

(
(x− 2)2 + 5

)
dx

In Exercises 14 – 15, a graph of the velocity funcƟon of an ob-
ject moving in a straight line is given. Answer the quesƟons
based on that graph.

14.

.....

1

.

2

.

3

.−1.

1

.

2

.

t (s)

.

y (Ō/s)

(a) What is the object’s maximum velocity?

(b) What is the object’s maximum displacement?

(c) What is the object’s total displacement on [0, 3]?
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15.

..... 1. 2. 3. 4. 5.

1

.

2

.

3

.
t (s)

.

y (Ō/s)

(a) What is the object’s maximum velocity?

(b) What is the object’s maximum displacement?

(c) What is the object’s total displacement on [0, 5]?

16. An object is thrown straight up with a velocity, in Ō/s, given
by v(t) = −32t + 64, where t is in seconds, from a height
of 48 feet.

(a) What is the object’s maximum velocity?

(b) What is the object’s maximum displacement?

(c) When does the maximum displacement occur?

(d) When will the object reach a height of 0? (Hint: find
when the displacement is−48Ō.)

17. An object is thrown straight up with a velocity, in Ō/s, given
by v(t) = −32t + 96, where t is in seconds, from a height
of 64 feet.

(a) What is the object’s iniƟal velocity?

(b) When is the object’s displacement 0?

(c) How long does it take for the object to return to its
iniƟal height?

(d) When will the object reach a height of 210 feet?

In Exercises 18 – 21, let

•
∫ 2

0
f(x) dx = 5,

•
∫ 3

0
f(x) dx = 7,

•
∫ 2

0
g(x) dx = −3, and

•
∫ 3

2
g(x) dx = 5.

Use these values to evaluate the given definite integrals.

18.
∫ 2

0

(
f(x) + g(x)

)
dx

19.
∫ 3

0

(
f(x)− g(x)

)
dx

20.
∫ 3

2

(
3f(x) + 2g(x)

)
dx

21. Find values for a and b such that∫ 3

0

(
af(x) + bg(x)

)
dx = 0

In Exercises 22 – 25, let

•
∫ 3

0
s(t) dt = 10,

•
∫ 5

3
s(t) dt = 8,

•
∫ 5

3
r(t) dt = −1, and

•
∫ 5

0
r(t) dt = 11.

Use these values to evaluate the given definite integrals.

22.
∫ 3

0

(
s(t) + r(t)

)
dt

23.
∫ 0

5

(
s(t)− r(t)

)
dt

24.
∫ 3

3

(
πs(t)− 7r(t)

)
dt

25. Find values for a and b such that∫ 5

0

(
ar(t) + bs(t)

)
dt = 0

Review
In Exercises 26 – 29, evaluate the given indefinite integral.

26.
∫ (

x3 − 2x2 + 7x− 9
)
dx

27.
∫ (

sin x− cos x+ sec2 x
)
dx

28.
∫ ( 3

√
t+

1
t2

+ 2t
)
dt

29.
∫ (

1
x
− csc x cot x

)
dx
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Figure 5.12: A graph of f(x) = 4x − x2.
What is the area of the shaded region?
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Figure 5.13: ApproximaƟng
∫ 4
0 (4x−x2) dx

using rectangles. The heights of the
rectangles are determined using different
rules.

Chapter 5 IntegraƟon

5.3 Riemann Sums

In the previous secƟon we defined the definite integral of a funcƟon on [a, b] to
be the signed area between the curve and the x–axis. Some areas were simple
to compute; we ended the secƟon with a region whose area was not simple to
compute. In this secƟon we develop a technique to find such areas.

A fundamental calculus technique is to first answer a given problem with an
approximaƟon, then refine that approximaƟon to make it beƩer, then use limits
in the refining process to find the exact answer. That is exactly what we will do
here.

Consider the region given in Figure 5.12, which is the area under y = 4x−x2
on [0, 4]. What is the signed area of this region – i.e., what is

∫ 4
0 (4x− x2) dx?

We start by approximaƟng. We can surround the region with a rectangle
with height and width of 4 and find the area is approximately 16 square units.
This is obviously an over–approximaƟon; we are including area in the rectangle
that is not under the parabola.

We have an approximaƟon of the area, using one rectangle. How can we
refine our approximaƟon tomake it beƩer? The key to this secƟon is this answer:
use more rectangles.

Let’s use 4 rectangles of equal width of 1. This parƟƟons the interval [0, 4]
into 4 subintervals, [0, 1], [1, 2], [2, 3] and [3, 4]. On each subinterval we will
draw a rectangle.

There are three common ways to determine the height of these rectangles:
the LeŌ Hand Rule, the Right Hand Rule, and theMidpoint Rule. The LeŌ Hand
Rule says to evaluate the funcƟon at the leŌ–hand endpoint of the subinterval
and make the rectangle that height. In Figure 5.13, the rectangle drawn on the
interval [2, 3] has height determined by the LeŌ Hand Rule; it has a height of
f(2). (The rectangle is labeled “LHR.”)

The Right Hand Rule says the opposite: on each subinterval, evaluate the
funcƟon at the right endpoint and make the rectangle that height. In the figure,
the rectangle drawn on [0, 1] is drawn using f(1) as its height; this rectangle is
labeled “RHR.”.

The Midpoint Rule says that on each subinterval, evaluate the funcƟon at
the midpoint and make the rectangle that height. The rectangle drawn on [1, 2]
was made using the Midpoint Rule, with a height of f(1.5). That rectangle is
labeled “MPR.”

These are the three most common rules for determining the heights of ap-
proximaƟng rectangles, but one is not forced to use one of these threemethods.
The rectangle on [3, 4] has a height of approximately f(3.53), very close to the
Midpoint Rule. It was chosen so that the area of the rectangle is exactly the area
of the region under f on [3, 4]. (Later you’ll be able to figure how to do this, too.)

The following example will approximate the value of
∫ 4
0 (4x − x2) dx using

Notes:
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Figure 5.14: ApproximaƟng
∫ 4
0 (4x−x2) dx

using the LeŌ Hand Rule in Example 116.
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Figure 5.15: ApproximaƟng
∫ 4
0 (4x−x2) dx

using the Right Hand Rule in Example 116.

.....

1.75

.

3.75

.

3.75

.

1.75

.
1

.
2

.
3

.
4

.

1

.

2

.

3

.

4

.

x

.

y

Figure 5.16: ApproximaƟng
∫ 4
0 (4x−x2) dx

using the Midpoint Rule in Example 116.

5.3 Riemann Sums

these rules.

.. Example 116 Using the LeŌ Hand, Right Hand and Midpoint Rules
Approximate the value of

∫ 4
0 (4x − x2) dx using the LeŌ Hand Rule, the Right

Hand Rule, and the Midpoint Rule, using 4 equally spaced subintervals.

SÊ½çã®ÊÄ We break the interval [0, 4] into four subintervals as before.
In Figure 5.14 we see 4 rectangles drawn on f(x) = 4x− x2 using the LeŌ Hand
Rule. (The areas of the rectangles are given in each figure.)
Note how in the first subinterval, [0, 1], the rectangle has height f(0) = 0. We
add up the areas of each rectangle (height× width) for our LeŌ Hand Rule ap-
proximaƟon:

f(0) · 1+ f(1) · 1+ f(2) · 1+ f(3) · 1 =

0+ 3+ 4+ 3 = 10.

Figure 5.15 shows 4 rectangles drawn under f using the Right Hand Rule;
note how the [3, 4] subinterval has a rectangle of height 0.
In this example, these rectangle seem to be the mirror image of those found
in Figure 5.14. (This is because of the symmetry of our shaded region.) Our
approximaƟon gives the same answer as before, though calculated a different
way:

f(1) · 1+ f(2) · 1+ f(3) · 1+ f(4) · 1 =

3+ 4+ 3+ 0 = 10.

Figure 5.16 shows 4 rectangles drawn under f using the Midpoint Rule.
This gives an approximaƟon of

∫ 4
0 (4x− x2) dx as:

f(0.5) · 1+ f(1.5) · 1+ f(2.5) · 1+ f(3.5) · 1 =

1.75+ 3.75+ 3.75+ 1.75 = 11.

Our three methods provide two approximaƟons of
∫ 4
0 (4x− x2) dx: 10 and 11. ..

SummaƟon NotaƟon

It is hard to tell at this moment which is a beƩer approximaƟon: 10 or 11?
We can conƟnue to refine our approximaƟon by using more rectangles. The
notaƟon can become unwieldy, though, as we add up longer and longer lists of
numbers. We introduce summaƟon notaƟon to ameliorate this problem.

Notes:

205



Chapter 5 IntegraƟon

Suppose we wish to add up a list of numbers a1, a2, a3, …, a9. Instead of
wriƟng

a1 + a2 + a3 + a4 + a5 + a6 + a7 + a8 + a9,

we use summaƟon notaƟon and write

..

9∑
i=1

ai.

.i=index
of summaƟon

. lower
bound

.

upper
bound

.

summand

.

summaƟon
symbol

(an upper case
sigma)

Figure 5.17: Understanding summaƟon notaƟon.

The upper case sigma represents the term “sum.” The index of summaƟon
in this example is i; any symbol can be used. By convenƟon, the index takes on
only the integer values between (and including) the lower and upper bounds.

Let’s pracƟce using this notaƟon.

.. Example 117 ..Using summaƟon notaƟon
Let the numbers {ai} be defined as ai = 2i − 1 for integers i, where i ≥ 1. So
a1 = 1, a2 = 3, a3 = 5, etc. (The output is the posiƟve odd integers). Evaluate
the following summaƟons:

1.
6∑

i=1

ai 2.
7∑

i=3

(3ai − 4) 3.
4∑

i=1

(ai)2

SÊ½çã®ÊÄ

1.
6∑

i=1

ai = a1 + a2 + a3 + a4 + a5 + a6

= 1+ 3+ 5+ 7+ 9+ 11
= 36.

2. Note the starƟng value is different than 1:

7∑
i=3

ai = (3a3 − 4) + (3a4 − 4) + (3a5 − 4) + (3a6 − 4) + (3a7 − 4)

= 11+ 17+ 23+ 29+ 35
= 115.

Notes:
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5.3 Riemann Sums

3.
4∑

i=1

(ai)2 = (a1)2 + (a2)2 + (a3)2 + (a4)2

= 12 + 32 + 52 + 72

= 84

...

It might seem odd to stress a new, concise way of wriƟng summaƟons only
to write each term out as we add them up. It is. The following theorem gives
some of the properƟes of summaƟons that allow us to work with them without
wriƟng individual terms. Examples will follow.

..
Theorem 37 ProperƟes of SummaƟons

1.
n∑

i=1

c = c · n, where c is a constant.

2.
n∑

i=m

(ai ± bi) =
n∑

i=m

ai ±
n∑

i=m

bi

3.
n∑

i=1

c · ai = c ·
n∑

i=1

ai

4.
j∑

i=m

ai +
n∑

i=j+1

ai =
n∑

i=m

ai

5.
n∑

i=1

i =
n(n+ 1)

2

6.
n∑

i=1

i2 =
n(n+ 1)(2n+ 1)

6

7.
n∑

i=1

i3 =
(
n(n+ 1)

2

)2

.. Example 118 ..EvaluaƟng summaƟons using Theorem 37
Revisit Example 117 and, using Theorem 37, evaluate

6∑
i=1

ai =
6∑

i=1

(2i− 1).

Notes:
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Figure 5.18: Dividing [0, 4] into 16 equally
spaced subintervals.

Chapter 5 IntegraƟon

SÊ½çã®ÊÄ

6∑
i=1

(2i− 1) =
6∑

i=1

2i−
6∑

i=1

(1)

=

(
2

6∑
i=1

i

)
− 6

= 2
6(6+ 1)

2
− 6

= 42− 6 = 36

We obtained the same answer without wriƟng out all six terms. When dealing
with small sizes of n, it may be faster to write the terms out by hand. However,
Theorem 37 is incredibly important when dealing with large sums as we’ll soon
see. ...

Riemann Sums

Consider again
∫ 4
0 (4x − x2) dx. We will approximate this definite integral

using 16 equally spaced subintervals and the Right Hand Rule in Example 119.
Before doing so, it will pay to do some careful preparaƟon.

Figure 5.18 shows a number line of [0, 4] divided into 16 equally spaced
subintervals. We denote 0 as x1; we have marked the values of x5, x9, x13 and
x17. We could mark them all, but the figure would get crowded. While it is easy
to figure that x10 = 2.25, in general, wewant amethod of determining the value
of xi without consulƟng the figure. Consider:

..

xi = x1 + (i− 1)∆x

. starƟng
value

.

number of
subintervals

between x1 and xi

. subinterval
size

So x10 = x1 + 9(4/16) = 2.25.
If we had parƟƟoned [0, 4] into 100 equally spaced subintervals, each subin-

terval would have length∆x = 4/100 = 0.04. We could compute x32 as

x32 = x1 + 31(4/100) = 1.24.

(That was far faster than creaƟng a sketch first.)

Notes:
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5.3 Riemann Sums

Given any subdivision of [0, 4], the first subinterval is [x1, x2]; the second is
[x2, x3]; the i th subinterval is [xi, xi+1].

When using the LeŌ Hand Rule, the height of the i th rectangle will be f(xi).

Whenusing theRightHandRule, the height of the i th rectanglewill be f(xi+1).

Whenusing theMidpoint Rule, the height of the i th rectanglewill be f
(
xi + xi+1

2

)
.

Thus approximaƟng
∫ 4
0 (4x− x2) dx with 16 equally spaced subintervals can

be expressed as follows:

LeŌ Hand Rule:
16∑
i=1

f(xi)∆x

Right Hand Rule:
16∑
i=1

f(xi+1)∆x

Midpoint Rule:
16∑
i=1

f
(
xi + xi+1

2

)
∆x

Weuse these formulas in the next two examples. The following example lets
us pracƟce using the Right Hand Rule and the summaƟon formulas introduced
in Theorem 37.

.. Example 119 ..ApproximaƟng definite integrals using sums
Approximate

∫ 4
0 (4x−x2) dx using the Right Hand Rule and summaƟon formulas

with 16 and 1000 equally spaced intervals.

SÊ½çã®ÊÄ Using the formula derived before, using 16 equally spaced
intervals and the Right Hand Rule, we can approximate the definite integral as

16∑
i=1

f(xi+1)∆x.

We have∆x = 4/16 = 0.25. Since xi = 0+ (i− 1)∆x, we have

xi+1 = 0+ (i+ 1− 1)∆x
= i∆x

Notes:
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Figure 5.19: ApproximaƟng
∫ 4
0 (4x−x2) dx

with the Right Hand Rule and 16 evenly
spaced subintervals.

Chapter 5 IntegraƟon

Using the summaƟon formulas, consider:∫ 4

0
(4x− x2) dx ≈

16∑
i=1

f(xi+1)∆x

=
16∑
i=1

f(i∆x)∆x

=
16∑
i=1

(
4i∆x− (i∆x)2

)
∆x

=

16∑
i=1

(4i∆x2 − i2∆x3)

= (4∆x2)
16∑
i=1

i−∆x3
16∑
i=1

i2 (5.3)

= (4∆x2)
16 · 17

2
−∆x3

16(17)(33)
6

= 4 · 0.252 · 136− 0.253 · 1496
= 10.625

We were able to sum up the areas of 16 rectangles with very liƩle computa-
Ɵon. NoƟce EquaƟon (5.3); by changing the 16’s to 1,000’s (and appropriately
changing the value of∆x), we can use that equaƟon to sum up 1000 rectangles!

We do so here, skipping from the original summand to the equivalent of
EquaƟon (5.3) to save space. Note that∆x = 4/1000 = 0.004.∫ 4

0
(4x− x2) dx ≈

1000∑
i=1

f(xi+1)∆x

= (4∆x2)
1000∑
i=1

i−∆x3
1000∑
i=1

i2

= (4∆x2)
1000 · 1001

2
−∆x3

1000(1001)(2001)
6

= 4 · 0.0042 · 500500− 0.0043 · 333, 833, 500
= 10.666656

Usingmany,many rectangles, wehave a likely good approximaƟonof
∫ 4
0 (4x−

x2)∆x. That is, ∫ 4

0
(4x− x2) dx ≈ 10.666656....

Notes:
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Figure 5.20: An example of a general Rie-
mann sum to approximate

∫ 4
0 (4x−x2) dx.

5.3 Riemann Sums

Before the above example, we statedwhat the summaƟons for the LeŌHand,
Right Hand and Midpoint Rules looked like. Each had the same basic structure;
the only difference was at what values to evaluate f. All three are examples of
an evenmore general construcƟon, named aŌermathemaƟcian Georg Friedrich
Bernhard Riemann.

..
DefiniƟon 21 Riemann Sum

Let f be defined on the closed interval [a, b] and let∆x be a parƟƟon of
[a, b], with

a = x1 < x2 < . . . < xn < xn+1 = b.

Let∆xi denote the length of the i th subinterval [xi, xi+1] and let ci denote
any value in the i th subinterval.
The sum

n∑
i=1

f(ci)∆xi

is a Riemann sum of f on [a, b].

In this general form, the subintervals do not have be of equal length, and one
can choose a point ci inside each subinterval any way they choose (and not just
the leŌ endpoint, or the midpoint, etc.) Figure 5.20 shows the approximaƟng
rectangles of a Riemann sum of

∫ 4
0 (4x − x2) dx. (This parƟcular approximaƟon

is of liƩle use; clearly the width and heights of the rectangles were not chosen
“well.”)

“Usually” Riemann sums are calculated using one of the three methods we
have introduced. The uniformity of construcƟon makes computaƟons easier.
Beforeworking another example, let’s summarize someofwhatwehave learned
in a convenient way.

..
Key Idea 8 Riemann Sum Concepts

Consider
∫ b

a
f(x) dx ≈

n∑
i=1

f(ci)∆xi.

1. When the n subintervals have equal length,∆xi = ∆x =
b− a
n

.

2. The i th term of the parƟƟon is xi = a+ (i− 1)∆x. (This makes xn+1 = b.)

(conƟnued . . .)

Notes:
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..
Key Idea 8 Riemann Sum Concepts – ConƟnued

Consider
∫ b

a
f(x) dx ≈

n∑
i=1

f(ci)∆xi.

3. The LeŌ Hand Rule summaƟon is:
n∑

i=1

f(xi)∆x (ci = xi).

4. The Right Hand Rule summaƟon is:
n∑

i=1

f(xi+1)∆x (ci = xi+1).

5. The Midpoint Rule summaƟon is:
n∑

i=1

f
(
xi + xx+1

2

)
∆x (ci = (xi + xi+1)/2).

Let’s do another example.

.. Example 120 ..ApproximaƟng definite integrals with sums
Approximate

∫ 3
−2(5x + 2) dx using the Midpoint Rule and 10 equally spaced

intervals.

SÊ½çã®ÊÄ Following Key Idea 8, we have

∆x =
3− (−2)

10
= 1/2 and xi = (−2) + (1/2)(i− 1) = i/2− 5/2.

As we are using the Midpoint Rule, we will also need xi+1 and
xi + xi+1

2
. Since

xi = i/2− 5/2, xi+1 = (i+ 1)/2− 5/2 = i/2− 2. This gives

xi + xi+1

2
=

(i/2− 5/2) + (i/2− 2)
2

=
i− 9/2

2
= i/2− 9/4.

We now construct the Riemann sum and compute its value using summaƟon

Notes:
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Figure 5.21: ApproximaƟng
∫ 3
−2(5x +

2) dx using the Midpoint Rule and 10
evenly spaced subintervals in Example
120.

5.3 Riemann Sums

formulas. ∫ 3

−2
(5x+ 2) dx ≈

10∑
i=1

f
(
xi + xi+1

2

)
∆x

=

10∑
i=1

f(i/2− 9/4)∆x

=
10∑
i=1

(
5(i/2− 9/4) + 2

)
∆x

= ∆x
10∑
i=1

[(
5
2

)
i− 37

4

]

= ∆x

(
5
2

10∑
i=1

(i)−
10∑
i=1

(
37
4

))

=
1
2

(
5
2
· 10(11)

2
− 10 · 37

4

)
=

45
2

= 22.5

Note the graph of f(x) = 5x + 2 in Figure 5.21. The regions whose area
is computed by the definite integral are triangles, meaning we can find the ex-
act answer without summaƟon techniques. We find that the exact answer is
indeed 22.5. One of the strengths of the Midpoint Rule is that each rectangle
includes area that should not be counted, but misses other area that should.
When the parƟƟon size is small, these two amounts are about equal and these
errors “cancel each other out.”

Note too thatwhen the funcƟon is negaƟve, the rectangles have a “negaƟve”
height. When we compute the area of the rectangle, we use f(ci)∆x; when f is
negaƟve, the area is counted as negaƟve. ...

NoƟce in the previous example that while we used 10 equally spaced inter-
vals, the number “10” didn’t play a big role in the calculaƟons unƟl the very end.
MathemaƟcians love to abstract ideas; let’s approximate another region using n
subintervals, where we do not specify a value of n unƟl the very end.

.. Example 121 ..ApproximaƟngdefinite integralswith a formula, using sums
Revisit

∫ 4
0 (4x−x2)dx yet again. Approximate this definite integral using theRight

Hand Rule with n equally spaced subintervals.

SÊ½çã®ÊÄ Using Key Idea 8, we know∆x = 4−0
n = 4/n. We also find

Notes:
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xi = 0 + ∆x(i − 1) = 4(i − 1)/n. The Right Hand Rule uses xi+1, which is
xi+1 = 4i/n.

We construct the Right Hand Rule Riemann sum as follows:∫ 4

0
(4x− x2) dx ≈

n∑
i=1

f(xi+1)∆x

=
n∑

i=1

f
(
4i
n

)
∆x

=
n∑

i=1

[
4
4i
n
−
(
4i
n

)2
]
∆x

=

n∑
i=1

(
16∆x
n

)
i−

n∑
i=1

(
16∆x
n2

)
i2

=

(
16∆x
n

) n∑
i=1

i−
(
16∆x
n2

) n∑
i=1

i2

=

(
16∆x
n

)
· n(n+ 1)

2
−
(
16∆x
n2

)
n(n+ 1)(2n+ 1)

6
( recall
∆x = 4/n

)
=

32(n+ 1)
n

− 32(n+ 1)(2n+ 1)
3n2

(now simplify)

=
32
3

(
1− 1

n2

)
..

The result is an amazing, easy to use formula. To approximate the definite
integral with 10 equally spaced subintervals and the Right Hand Rule, set n = 10
and compute ∫ 4

0
(4x− x2) dx ≈ 32

3

(
1− 1

102

)
= 10.56.

Recall how earlier we approximated the definite integral with 4 subintervals;
with n = 4, the formula gives 10, our answer as before.

It is noweasy to approximate the integralwith 1,000,000 subintervals! Hand-
held calculators will round off the answer a bit prematurely giving an answer of
10.66666667. (The actual answer is 10.666666666656.)

We now take an important leap. Up to this point, our mathemaƟcs has been
limited to geometry and algebra (finding areas and manipulaƟng expressions).
Now we apply calculus. For any finite n, we know that∫ 4

0
(4x− x2) dx ≈ 32

3

(
1− 1

n2

)
.
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Both common sense and high–level mathemaƟcs tell us that as n gets large, the
approximaƟon gets beƩer. In fact, if we take the limit as n → ∞, we get the
exact area described by

∫ 4
0 (4x− x2) dx. That is,∫ 4

0
(4x− x2) dx = lim

n→∞

32
3

(
1− 1

n2

)
=

32
3

(1− 0)

=
32
3

= 10.6
...

This secƟon started with a fundamental calculus technique: make an ap-
proximaƟon, refine the approximaƟon to make it beƩer, then use limits in the
refining process to get an exact answer. That is precisely what we just did.

Let’s pracƟce this again.

.. Example 122 ..ApproximaƟngdefinite integralswith a formula, using sums
Find a formula that approximates

∫ 5
−1 x

3 dx using the Right Hand Rule and n
equally spaced subintervals, then take the limit as n → ∞ to find the exact
area.

SÊ½çã®ÊÄ Following Key Idea 8, we have ∆x = 5−(−1)
n = 6/n. We

have xi = (−1) + (i − 1)∆x; as the Right Hand Rule uses xi+1, we have xi+1 =
(−1) + i∆x.

The Riemann sum corresponding to the Right Hand Rule is (followed by sim-
plificaƟons):∫ 5

−1
x3 dx ≈

n∑
i=1

f(xi+1)∆x

=
n∑

i=1

f(−1+ i∆x)∆x

=
n∑

i=1

(−1+ i∆x)3∆x

=

n∑
i=1

(
(i∆x)3 − 3(i∆x)2 + 3i∆x− 1

)
∆x (now distribute∆x)

=
n∑

i=1

(
i3∆x4 − 3i2∆x3 + 3i∆x2 −∆x

)
(now split up summaƟon)
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Figure 5.22: ApproximaƟng
∫ 5
−1 x

3 dx us-
ing the Right Hand Rule and 10 evenly
spaced subintervals.

Chapter 5 IntegraƟon

= ∆x4
n∑

i=1

i3 − 3∆x3
n∑

i=1

i2 + 3∆x2
n∑

i=1

i−
n∑

i=1

∆x

= ∆x4
(
n(n+ 1)

2

)2

− 3∆x3
n(n+ 1)(2n+ 1)

6
+ 3∆x2

n(n+ 1)
2

− n∆x

(use∆x = 6/n)

=
1296
n4

· n
2(n+ 1)2

4
− 3

216
n3

· n(n+ 1)(2n+ 1)
6

+ 3
36
n2

n(n+ 1)
2

− 6

(now do a sizable amount of algebra to simplify)

= 156+
378
n

+
216
n2

Once again, we have found a compact formula for approximaƟng the definite
integral with n equally spaced subintervals and the Right Hand Rule. Using 10
subintervals, we have an approximaƟon of 195.96 (these rectangles are shown
in Figure 5.22). Using n = 100 gives an approximaƟon of 159.802.

Now find the exact answer using a limit:∫ 5

−1
x3 dx = lim

n→∞

(
156+

378
n

+
216
n2

)
= 156.

...

Limits of Riemann Sums

We have used limits to evaluate exactly given definite limits. Will this al-
ways work? We will show, given not–very–restricƟve condiƟons, that yes, it will
always work.

The previous two examples demonstrated how an expression such as
n∑

i=1

f(xi+1)∆x

can be rewriƩen as an expression explicitly involving n, such as 32/3(1− 1/n2).
Viewed in this manner, we can think of the summaƟon as a funcƟon of n.

An n value is given (where n is a posiƟve integer), and the sum of areas of n
equally spaced rectangles is returned, using the LeŌ Hand, Right Hand, or Mid-
point Rules.

Given a definite integral
∫ b
a f(x) dx, let:

• SL(n) =
n∑

i=1

f(xi)∆x, the sum of equally spaced rectangles formed using

the LeŌ Hand Rule,
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5.3 Riemann Sums

• SR(n) =
n∑

i=1

f(xi+1)∆x, the sum of equally spaced rectangles formed us-

ing the Right Hand Rule, and

• SM(n) =

n∑
i=1

f
(
xi + xi+1

2

)
∆x, the sum of equally spaced rectangles

formed using the Midpoint Rule.

Recall the definiƟon of a limit as n → ∞: lim
n→∞

SL(n) = K if, given any ε > 0,
there exists N > 0 such that

|SL(n)− K| < ε when n ≥ N.

The following theorem states that we can use any of our three rules to find
the exact value of a definite integral

∫ b
a f(x) dx. It also goes one step further.

Let ∆x represent any parƟƟon of [a, b], and let ∥∆x∥ denote the length of the
longest subinterval of this parƟƟon. The theorem also states that limit of any
Riemann sum of the form

∑n
i=1 f(ci)∆xi, as ∥∆x∥ → 0, also gives the exact

value of the definite integral.

..
Theorem 38 Definite Integrals and the Limit of Riemann Sums

Let f be conƟnuous on the closed interval [a, b] and let SL(n), SR(n) and
SM(n) be defined as before. Then:

1. lim
n→∞

SL(n) = lim
n→∞

SR(n) = lim
n→∞

SM(n),

2. lim
n→∞

SL(n) = lim
∥∆x∥→0

n∑
i=1

f(ci)∆xi, where the laƩer sum is any Rie-

mann sum of f on [a, b], and

3. lim
n→∞

SL(n) =
∫ b

a
f(x) dx.

We summarize what we have learned over the past few secƟons here.

• Knowing the “area under the curve” can be useful. One common example
is: the area under a velocity curve is displacement.

• We have defined the definite integral,
∫ b
a f(x) dx, to be the area under f

on the interval [a, b].

Notes:
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Chapter 5 IntegraƟon

• While we can approximate a definite integral manyways, we have focused
on using rectangleswhose heights can be determined using: the LeŌHand
Rule, the Right Hand Rule and the Midpoint Rule.

• Sums of rectangles of this type are called Riemann sums.

• The exact value of the definite integral can be computed using the limit of
a Riemann sum. We generally use one of the above methods as it makes
the algebra simpler.

We first learned of derivaƟves through limits then learned rules that made
the process simpler. We knowof away to evaluate a definite integral using limits;
in the next secƟonwewill see how the Fundamental Theorem of Calculusmakes
the process simpler. The key feature of this theorem is its connecƟon between
the indefinite integral and the definite integral.
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Exercises 5.3
Terms and Concepts
1. A fundamental calculus technique is to use to re-

fine approximaƟons to get an exact answer.

2. What is the upper bound in the summaƟon
14∑
i=7

(48i −

201)?

3. This secƟon approximates definite integrals using what ge-
ometric shape?

4. T/F: A sum using the Right Hand Rule is an example of a
Riemann Sum.

Problems
In Exercises 5 – 11, write out each term of the summaƟon and
compute the sum.

5.
4∑

i=2

i2

6.
3∑

i=−1

(4i− 2)

7.
2∑

i=−2

sin(πi/2)

8.
5∑

i=1

1
i

9.
6∑

i=1

(−1)ii

10.
4∑

i=1

(
1
i
− 1

i+ 1

)

11.
5∑

i=0

(−1)i cos(πi)

In Exercises 12 – 15, write each sum in summaƟon notaƟon.

12. 3+ 6+ 9+ 12+ 15

13. −1+ 0+ 3+ 8+ 15+ 24+ 35+ 48+ 63

14.
1
2
+

2
3
+

3
4
+

4
5

15. 1− e+ e2 − e3 + e4

In Exercises 16 – 22, evaluate the summaƟon using Theorem
37.

16.
25∑
i=1

i

17.
10∑
i=1

(3i2 − 2i)

18.
15∑
i=1

(2i3 − 10)

19.
10∑
i=1

(−4i3 + 10i2 − 7i+ 11)

20.
10∑
i=1

(i3 − 3i2 + 2i+ 7)

21. 1+ 2+ 3+ . . .+ 99+ 100

22. 1+ 4+ 9+ . . .+ 361+ 400

Theorem 37 states
n∑

i=1

ai =
k∑

i=1

ai +
n∑

i=k+1

ai , so

n∑
i=k+1

ai =
n∑

i=1

ai −
k∑

i=1

ai .

Use this fact, along with other parts of Theorem 37, to eval-
uate the summaƟons given in Exercises 23 – 26.

23.
20∑

i=11

i

24.
25∑

i=16

i3

25.
12∑
i=7

4

26.
10∑
i=5

4i3
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In Exercises 27 – 32, a definite integral∫ b

a
f(x) dx is given.

(a) Graph f(x) on [a, b].
(b) Add to the sketch rectangles using the provided rule.

(c) Approximate
∫ b

a
f(x) dx by summing the areas of the

rectangles.

27.
∫ 3

−3
x2 dx, with 6 rectangles using the LeŌ Hand Rule.

28.
∫ 2

0
(5− x2) dx, with 4 rectangles using the Midpoint Rule.

29.
∫ π

0
sin x dx, with 6 rectangles using the Right Hand Rule.

30.
∫ 3

0
2x dx, with 5 rectangles using the LeŌ Hand Rule.

31.
∫ 2

1
ln x dx, with 3 rectangles using the Midpoint Rule.

32.
∫ 9

1

1
x
dx, with 4 rectangles using the Right Hand Rule.

In Exercises 33 – 38, a definite integral∫ b

a
f(x) dx is given. As demonstrated in Examples 121

and 122, do the following.

(a) Find a formula to approximate
∫ b

a
f(x) dx using n

subintervals and the provided rule.
(b) Evaluate the formula using n = 10, 100 and 1, 000.
(c) Find the limit of the formula, as n → ∞ to find the

exact value of
∫ b

a
f(x) dx.

33.
∫ 1

0
x3 dx, using the Right Hand Rule.

34.
∫ 1

−1
3x2 dx, using the LeŌ Hand Rule.

35.
∫ 3

−1
(3x− 1) dx, using the Midpoint Rule.

36.
∫ 4

1
(2x2 − 3) dx, using the LeŌ Hand Rule.

37.
∫ 10

−10
(5− x) dx, using the Right Hand Rule.

38.
∫ 1

0
(x3 − x2) dx, using the Right Hand Rule.

Review
In Exercises 39 – 44, find an anƟderivaƟve of the given func-
Ɵon.

39. f(x) = 5 sec2 x

40. f(x) =
7
x

41. g(t) = 4t5 − 5t3 + 8

42. g(t) = 5 · 8t

43. g(t) = cos t+ sin t

44. f(x) =
1√
x
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Figure 5.23: The area of the shaded re-
gion is F(x) =

∫ x
a f(t) dt.

5.4 The Fundamental Theorem of Calculus

5.4 The Fundamental Theorem of Calculus

Let f(t)be a conƟnuous funcƟondefinedon [a, b]. The definite integral
∫ b
a f(x)dx

is the “area under f ” on [a, b]. We can turn this into a funcƟon by leƫng the
upper (or lower) bound vary.

Let F(x) =
∫ x
a f(t) dt. It computes the area under f on [a, x] as illustrated

in Figure 5.23. We can study this funcƟon using our knowledge of the definite
integral. For instance, F(a) = 0 since

∫ a
a f(t) dt = 0.

We can also apply calculus ideas to F(x); in parƟcular, we can compute its
derivaƟve. While thismay seem like an innocuous thing to do, it has far–reaching
implicaƟons, as demonstrated by the fact that the result is given as an important
theorem.

..
Theorem 39 The Fundamental Theorem of Calculus, Part 1

Let f be conƟnuous on [a, b] and let F(x) =
∫ x
a f(t) dt. Then F is a differ-

enƟable funcƟon on (a, b), and

F ′(x) = f(x).

IniƟally this seems simple, as demonstrated in the following example.

.. Example 123 Using the Fundamental Theorem of Calculus, Part 1

Let F(x) =
∫ x

−5
(t2 + sin t) dt. What is F ′(x)?

SÊ½çã®ÊÄ Using the Fundamental Theoremof Calculus, wehave F ′(x) =
x2 + sin x. ..

This simple example reveals something incredible: F(x) is an anƟderivaƟve
of x2 + sin x! Therefore, F(x) = 1

3x
3 − cos x + C for some value of C. (We can

find C, but generally we do not care. We know that F(−5) = 0, which allows us
to compute C. In this case, C = cos(−5) + 125

3 .)

We have done more than found a complicated way of compuƟng an an-
ƟderivaƟve. Consider a funcƟon f defined on an open interval containing a, b
and c. Suppose we want to compute

∫ b
a f(t) dt. First, let F(x) =

∫ x
c f(t) dt. Using

Notes:
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Chapter 5 IntegraƟon

the properƟes of the definite integral found in Theorem 36, we know∫ b

a
f(t) dt =

∫ c

a
f(t) dt+

∫ b

c
f(t) dt

= −
∫ a

c
f(t) dt+

∫ b

c
f(t) dt

= −F(a) + F(b)
= F(b)− F(a).

We now see how indefinite integrals and definite integrals are related: we can
evaluate a definite integral using anƟderivaƟves! This is the second part of the
Fundamental Theorem of Calculus.

..
Theorem 40 The Fundamental Theorem of Calculus, Part 2

Let f be conƟnuous on [a, b] and let F be any anƟderivaƟve of f. Then∫ b

a
f(x) dx = F(b)− F(a).

.. Example 124 Using the Fundamental Theorem of Calculus, Part 2
We spent a great deal of Ɵme in the previous secƟon studying

∫ 4
0 (4x − x2) dx.

Using the Fundamental Theorem of Calculus, evaluate this definite integral.

SÊ½çã®ÊÄ We need an anƟderivaƟve of f(x) = 4x− x2. All anƟderiva-
Ɵves of f have the form F(x) = 2x2 − 1

3x
3 + C; for simplicity, choose C = 0.

The Fundamental Theorem of Calculus states∫ 4

0
(4x− x2) dx = F(4)− F(0) =

(
2(4)2 − 1

3
43
)
−
(
0− 0

)
= 32− 64

3
= 32/3.

This is the same answer we obtained using limits in the previous secƟon, just
with much less work. ..

NotaƟon: A special notaƟon is oŌen used in the process of evaluaƟng definite
integrals using the Fundamental Theorem of Calculus. Instead of explicitly writ-

ing F(b) − F(a), the notaƟon F(x)
∣∣∣b
a
is used. Thus the soluƟon to Example 124

would be wriƩen as:∫ 4

0
(4x− x2) dx =

(
2x2 − 1

3
x3
)∣∣∣∣4

0
=
(
2(4)2 − 1

3
43
)
−
(
0− 0

)
= 32/3.
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5.4 The Fundamental Theorem of Calculus

The Constant C: Any anƟderivaƟve F(x) can be chosen when using the Funda-
mental Theorem of Calculus to evaluate a definite integral, meaning any value
of C can be picked. The constant always cancels out of the expression when
evaluaƟng F(b) − F(a), so it does not maƩer what value is picked. This being
the case, we might as well let C = 0.

.. Example 125 Using the Fundamental Theorem of Calculus, Part 2
Evaluate the following definite integrals.

1.
∫ 2

−2
x3 dx 2.

∫ π

0
sin x dx 3.

∫ 5

0
et dt 4.

∫ 9

4

√
u du 5.

∫ 5

1
2 dx

SÊ½çã®ÊÄ

1.
∫ 2

−2
x3 dx =

1
4
x4
∣∣∣∣2
−2

=

(
1
4
24
)
−
(
1
4
(−2)4

)
= 0.

2.
∫ π

0
sin x dx = − cos x

∣∣∣π
0
= − cos π −

(
− cos 0

)
= 1+ 1 = 2.

(This is interesƟng; it says that the area under one “hump” of a sine curve
is 2.)

3.
∫ 5

0
et dt = et

∣∣∣5
0
= e5 − e0 = e5 − 1 ≈ 147.41.

4.
∫ 9

4

√
u du =

∫ 9

4
u

1
2 du =

2
3
u

3
2

∣∣∣∣9
4
=

2
3

(
9

3
2 − 4

3
2

)
=

2
3
(
27− 8

)
=

38
3
.

5.
∫ 5

1
2 dx = 2x

∣∣∣5
1
= 2(5)− 2 = 2(5− 1) = 8.

This integral is interesƟng; the integrand is a constant funcƟon, hence we
are finding the area of a rectangle with width (5 − 1) = 4 and height 2.
NoƟce how the evaluaƟon of the definite integral led to 2(4) = 8.

In general, if c is a constant, then
∫ b
a c dx = c(b− a)...

Understanding MoƟon with the Fundamental Theorem of Calcu-
lus

We established, starƟng with Key Idea 1, that the derivaƟve of a posiƟon
funcƟon is a velocity funcƟon, and the derivaƟve of a velocity funcƟon is an ac-
celeraƟon funcƟon. Now consider definite integrals of velocity and acceleraƟon

funcƟons. Specifically, if v(t) is a velocity funcƟon, what does
∫ b

a
v(t) dtmean?

Notes:
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The Fundamental Theorem of Calculus states that∫ b

a
v(t) dt = V(b)− V(a),

where V(t) is any anƟderivaƟve of v(t). Since v(t) is a velocity funcƟon, V(t)
must be a posiƟon funcƟon, and V(b)− V(a)measures a change in posiƟon, or
displacement.

.. Example 126 Finding displacement
A ball is thrown straight up with velocity given by v(t) = −32t + 20Ō/s, where

t is measured in seconds. Find, and interpret,
∫ 1

0
v(t) dt.

SÊ½çã®ÊÄ Using the Fundamental Theorem of Calculus, we have∫ 1

0
v(t) dt =

∫ 1

0
(−32t+ 20) dt

= −16t2 + 20t
∣∣∣1
0

= 4

Thus if a ball is thrown straight up into the air with velocity v(t) = −32t + 20,
the height of the ball, 1 second later, will be 4 feet above the iniƟal height. (Note
that the ball has traveled much farther. It has gone up to its peak and is falling
down, but the difference between its height at t = 0 and t = 1 is 4Ō.) ..

IntegraƟng an acceleraƟon funcƟon likewise gives a change in velocity. We
donot have a simple term for this analogous to displacement. If a(t) = 5miles/h2
and t is measured in hours, then∫ 3

0
a(t) dt = 15

means the velocity has increased by 15m/h from t = 0 to t = 3.

The Fundamental Theorem of Calculus and the Chain Rule

Part 1 of the Fundamental Theoremof Calculus (FTC) states that given F(x) =∫ x

a
f(t) dt, F′(x) = f(x). Using other notaƟon,

d
dx
(
F(x)

)
= f(x). While we have

just pracƟced evaluaƟng definite integrals, someƟmes finding anƟderivaƟves is
impossible and we need to rely on other techniques to approximate the value

Notes:
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5.4 The Fundamental Theorem of Calculus

of a definite integral. FuncƟons wriƩen as F(x) =
∫ x
a f(t) dt are useful in such

situaƟons.
It may be of further use to compose such a funcƟon with another. As an

example, we may compose F(x) with g(x) to get

F
(
g(x)

)
=

∫ g(x)

a
f(t) dt.

What is the derivaƟve of such a funcƟon? The Chain Rule can be employed to
state

d
dx

(
F
(
g(x)

))
= F′

(
g(x)

)
g′(x) = f

(
g(x)

)
g′(x).

An example will help us understand this.

.. Example 127 The FTC, Part 1, and the Chain Rule

Find the derivaƟve of F(x) =
∫ x2

2
ln t dt.

SÊ½çã®ÊÄ We can view F(x) as being the funcƟon G(x) =

∫ x

2
ln t dt

composed with g(x) = x2; that is, F(x) = G
(
g(x)

)
. The Fundamental Theorem

of Calculus states that G′(x) = ln x. The Chain Rule gives us

F′(x) = G′(g(x))g′(x)
= ln(g(x))g′(x)

= ln(x2)2x

= 2x ln x2

Normally, the steps defining G(x) and g(x) are skipped. ..

PracƟce this once more.

.. Example 128 The FTC, Part 1, and the Chain Rule

Find the derivaƟve of F(x) =
∫ 5

cos x
t3 dt.

SÊ½çã®ÊÄ Note that F(x) = −
∫ cos x

5
t3 dt. Viewed this way, the deriva-

Ɵve of F is straighƞorward:

F′(x) = sin x cos3 x...

Notes:
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Figure 5.24: Finding the area bounded by
two funcƟons on an interval; it is found
by subtracƟng the area under g from the
area under f.
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Figure 5.25: Sketching the region en-
closed by y = x2 + x− 5 and y = 3x− 2
in Example 129.
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Area Between Curves

Consider conƟnuous funcƟons f(x) and g(x) defined on [a, b], where f(x) ≥
g(x) for all x in [a, b], as demonstrated in Figure 5.24. What is the area of the
shaded region bounded by the two curves over [a, b]?

The area can be found by recognizing that this area is “the area under f −
the area under g.” Using mathemaƟcal notaƟon, the area is∫ b

a
f(x) dx−

∫ b

a
g(x) dx.

ProperƟes of the definite integral allow us to simplify this expression to∫ b

a

(
f(x)− g(x)

)
dx.

..
Theorem 41 Area Between Curves

Let f(x) and g(x) be conƟnuous funcƟons defined on [a, b]where f(x) ≥
g(x) for all x in [a, b]. The area of the region bounded by the curves
y = f(x), y = g(x) and the lines x = a and x = b is∫ b

a

(
f(x)− g(x)

)
dx.

.. Example 129 ..Finding area between curves
Find the area of the region enclosed by y = x2 + x− 5 and y = 3x− 2.

SÊ½çã®ÊÄ It will help to sketch these two funcƟons, as done in Figure
5.25. The region whose area we seek is completely bounded by these two
funcƟons; they seem to intersect at x = −1 and x = 3. To check, set x2+x−5 =
3x− 2 and solve for x:

x2 + x− 5 = 3x− 2

(x2 + x− 5)− (3x− 2) = 0

x2 − 2x− 3 = 0
(x− 3)(x+ 1) = 0

x = −1, 3

Notes:
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Figure 5.26: A graph of a funcƟon f to in-
troduce the Mean Value Theorem.

.....
1

.
2

.
3

.
4

.

x

.

y

(a)

.....
1

.
2

.
3

.
4

.

x

.

y

(b)

.....
1

.
2

.
3

.
4

.

x

.

y

(c)

Figure 5.27: Differently sized rectan-
gles give upper and lower bounds on∫ 4
1 f(x) dx; the last rectangle matches the
area exactly.

5.4 The Fundamental Theorem of Calculus

Following Theorem 41, the area is∫ 3

−1

(
3x− 2− (x2 + x− 5)

)
dx =

∫ 3

−1
(−x2 + 2x+ 3) dx

=

(
−1
3
x3 + x2 + 3x

)∣∣∣∣3
−1

= −1
3
(27) + 9+ 9−

(
1
3
+ 1− 3

)
= 10

2
3
= 10.6

...

The Mean Value Theorem and Average Value

Consider the graph of a funcƟon f in Figure 5.26 and the area defined by∫ 4
1 f(x) dx. Three rectangles are drawn in Figure 5.27; in (a), the height of the
rectangle is greater than f on [1, 4], hence the area of this rectangle is is greater
than

∫ 4
0 f(x) dx.

In (b), the height of the rectangle is smaller than f on [1, 4], hence the area
of this rectangle is less than

∫ 4
1 f(x) dx.

Finally, in (c) the height of the rectangle is such that the area of the rectangle
is exactly that of

∫ 4
0 f(x) dx. Since rectangles that are “too big”, as in (a), and

rectangles that are “too liƩle,” as in (b), give areas greater/lesser than
∫ 4
1 f(x) dx,

it makes sense that there is a rectangle, whose top intersects f(x) somewhere
on [1, 4], whose area is exactly that of the definite integral.

We state this idea formally in a theorem.

..
Theorem 42 The Mean Value Theorem of IntegraƟon

Let f be conƟnuous on [a, b]. There exists a value c in [a, b] such that∫ b

a
f(x) dx = f(c)(b− a).

This is an existenƟal statement; c exists, but we do not provide a method
of finding it. Theorem 42 is directly connected to the Mean Value Theorem of
DifferenƟaƟon, given as Theorem 27; we leave it to the reader to see how.

We demonstrate the principles involved in this version of the Mean Value
Theorem in the following example.

Notes:
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Figure 5.28: A graph of y = sin x on
[0, π] and the rectangle guaranteed by
the Mean Value Theorem.
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Figure 5.29: On top, a graph of y =
f(x) and the rectangle guaranteed by the
Mean Value Theorem. Below, y = f(x) is
shiŌed down by f(c); the resulƟng “area
under the curve” is 0.

Chapter 5 IntegraƟon

.. Example 130 Using the Mean Value Theorem
Consider

∫ π

0 sin x dx. Find a value c guaranteed by the Mean Value Theorem.

SÊ½çã®ÊÄ We first need to evaluate
∫ π

0 sin x dx. (This was previously
done in Example 125.) ∫ π

0
sin x dx = − cos x

∣∣∣π
0
= 2.

Thus we seek a value c in [0, π] such that π sin c = 2.

π sin c = 2 ⇒ sin c = 2/π ⇒ c = arcsin(2/π) ≈ 0.69.

In Figure 5.28 sin x is sketched along with a rectangle with height sin(0.69).
The area of the rectangle is the same as the area under sin x on [0, π]. ..

Let f be a funcƟon on [a, b]with c such that f(c)(b−a) =
∫ b
a f(x) dx. Consider∫ b

a

(
f(x)− f(c)

)
dx:∫ b

a

(
f(x)− f(c)

)
dx =

∫ b

a
f(x)−

∫ b

a
f(c) dx

= f(c)(b− a)− f(c)(b− a)
= 0.

When f(x) is shiŌed by −f(c), the amount of area under f above the x–axis on
[a, b] is the same as the amount of area below the x–axis above f; see Figure
5.29 for an illustraƟon of this. In this sense, we can say that f(c) is the average
value of f on [a, b].

The value f(c) is the average value in another sense. First, recognize that the
Mean Value Theorem can be rewriƩen as

f(c) =
1

b− a

∫ b

a
f(x) dx,

for some value of c in [a, b]. Next, parƟƟon the interval [a, b] into n equally
spaced subintervals, a = x1 < x2 < . . . < xn+1 = b and choose any ci in
[xi, xi+1]. The average of the numbers f(c1), f(c2), …, f(cn) is:

1
n

(
f(c1) + f(c2) + . . .+ f(cn)

)
=

1
n

n∑
i=1

f(ci).

Notes:
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5.4 The Fundamental Theorem of Calculus

MulƟply this last expression by 1 in the form of (b−a)
(b−a) :

1
n

n∑
i=1

f(ci) =
n∑

i=1

f(ci)
1
n

=
n∑

i=1

f(ci)
1
n
(b− a)
(b− a)

=
1

b− a

n∑
i=1

f(ci)
b− a
n

=
1

b− a

n∑
i=1

f(ci)∆x (where∆x = (b − a)/n)

Now take the limit as n → ∞:

lim
n→∞

1
b− a

n∑
i=1

f(ci)∆x =
1

b− a

∫ b

a
f(x) dx = f(c).

This tells us this: when we evaluate f at n (somewhat) equally spaced points in
[a, b], the average value of these samples is f(c) as n → ∞.

This leads us to a definiƟon.

..
DefiniƟon 22 The Average Value of f on [a, b]

Let f be conƟnuous on [a, b]. The average value of f on [a, b] is f(c),
where c is a value in [a, b] guaranteed by the Mean Value Theorem. I.e.,

Average Value of f on [a, b] =
1

b− a

∫ b

a
f(x) dx.

An applicaƟon of this definiƟon is given in the following example.

.. Example 131 Finding the average value of a funcƟon
An object moves back and forth along a straight line with a velocity given by
v(t) = (t − 1)2 on [0, 3], where t is measured in seconds and v(t) is measured
in Ō/s.

What is the average velocity of the object?

SÊ½çã®ÊÄ By our definiƟon, the average velocity is:

1
3− 0

∫ 3

0
(t− 1)2 dt =

1
3

∫ 3

0

(
t2 − 2t+ 1

)
dt =

1
3

(
1
3
t3 − t2 + t

)∣∣∣∣3
0
= 1 Ō/s.

..

Notes:
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We can understand the above example through a simpler situaƟon. Suppose
you drove 100 miles in 2 hours. What was your average speed? The answer is
simple: displacement/Ɵme = 100 miles/2 hours = 50 mph.

What was the displacement of the object in Example 131? We calculate this
by integraƟng its velocity funcƟon:

∫ 3
0 (t− 1)2 dt = 3 Ō. Its final posiƟon was 3

feet from its iniƟal posiƟon aŌer 3 seconds: its average velocity was 1 Ō/s.

This secƟon has laid the groundwork for a lot of great mathemaƟcs to fol-
low. The most important lesson is this: definite integrals can be evaluated using
anƟderivaƟves. Since the previous secƟon established that definite integrals are
the limit of Riemann sums, we can later create Riemann sums to approximate
values other than “area under the curve,” convert the sums to definite integrals,
then evaluate these using the Fundamental Theorem of Calculus. This will allow
us to compute the work done by a variable force, the volume of certain solids,
the arc length of curves, and more.

The downside is this: generally speaking, compuƟng anƟderivaƟves is much
more difficult than compuƟng derivaƟves. The next chapter is devoted to tech-
niques of finding anƟderivaƟves so that a wide variety of definite integrals can
be evaluated.

Notes:
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Exercises 5.4
Terms and Concepts
1. How are definite and indefinite integrals related?

2. What constant of integraƟon is most commonly used when
evaluaƟng definite integrals?

3. T/F: If f is a conƟnuous funcƟon, then F(x) =
∫ x

a
f(t) dt is

also a conƟnuous funcƟon.

4. The definite integral can be used to find “the area under a
curve.” Give two other uses for definite integrals.

Problems
In Exercises 5 – 28, evaluate the definite integral.

5.
∫ 3

1
(3x2 − 2x+ 1) dx

6.
∫ 4

0
(x− 1)2 dx

7.
∫ 1

−1
(x3 − x5) dx

8.
∫ π

π/2
cos x dx

9.
∫ π/4

0
sec2 x dx

10.
∫ e

1

1
x
dx

11.
∫ 1

−1
5x dx

12.
∫ −1

−2
(4− 2x3) dx

13.
∫ π

0
(2 cos x− 2 sin x) dx

14.
∫ 3

1
ex dx

15.
∫ 4

0

√
t dt

16.
∫ 25

9

1√
t
dt

17.
∫ 8

1

3
√
x dx

18.
∫ 2

1

1
x
dx

19.
∫ 2

1

1
x2

dx

20.
∫ 2

1

1
x3

dx

21.
∫ 1

0
x dx

22.
∫ 1

0
x2 dx

23.
∫ 1

0
x3 dx

24.
∫ 1

0
x100 dx

25.
∫ 4

−4
dx

26.
∫ −5

−10
3 dx

27.
∫ 2

−2
0 dx

28.
∫ π/3

π/6
csc x cot x dx

29. Explain why:

(a)
∫ 1

−1
xn dx = 0, when n is a posiƟve, odd integer, and

(b)
∫ 1

−1
xn dx = 2

∫ 1

0
xn dx when n is a posiƟve, even

integer.

In Exercises 30 – 33, find a value c guaranteed by the Mean
Value Theorem.

30.
∫ 2

0
x2 dx

31.
∫ 2

−2
x2 dx

32.
∫ 1

0
ex dx

33.
∫ 16

0

√
x dx

In Exercises 34 – 39, find the average value of the funcƟon on
the given interval.

34. f(x) = sin x on [0, π/2]

35. y = sin x on [0, π]

36. y = x on [0, 4]

37. y = x2 on [0, 4]

38. y = x3 on [0, 4]

39. g(t) = 1/t on [1, e]

In Exercises 40 – 44, a velocity funcƟon of an object moving
along a straight line is given. Find the displacement of the
object over the given Ɵme interval.

40. v(t) = −32t+ 20Ō/s on [0, 5]

41. v(t) = −32t+ 200Ō/s on [0, 10]
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42. v(t) = 2tmph on [−1, 1]

43. v(t) = cos t Ō/s on [0, 3π/2]

44. v(t) = 4
√
t Ō/s on [0, 16]

In Exercises 45 – 48, an acceleraƟon funcƟon of an object
moving along a straight line is given. Find the change of the
object’s velocity over the given Ɵme interval.

45. a(t) = −32Ō/s2 on [0, 2]

46. a(t) = 10Ō/s2 on [0, 5]

47. a(t) = t Ō/s2 on [0, 2]

48. a(t) = cos t Ō/s2 on [0, π]

In Exercises 49 – 52, sketch the given funcƟons and find the
area of the enclosed region.

49. y = 2x, y = 5x, and x = 3.

50. y = −x+ 1, y = 3x+ 6, x = 2 and x = −1.

51. y = x2 − 2x+ 5, y = 5x− 5.

52. y = 2x2 + 2x− 5, y = x2 + 3x+ 7.

In Exercises 53 – 56, find F′(x).

53. F(x) =
∫ x3+x

2

1
t
dt

54. F(x) =
∫ 0

x3
t3 dt

55. F(x) =
∫ x2

x
(t+ 2) dt

56. F(x) =
∫ ex

ln x
sin t dt
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Figure 5.30: Graphically represenƟng
three definite integrals that cannot be
evaluated using anƟderivaƟves.

5.5 Numerical IntegraƟon

5.5 Numerical IntegraƟon
The Fundamental Theorem of Calculus gives a concrete technique for finding
the exact value of a definite integral. That technique is based on compuƟng an-
ƟderivaƟves. Despite the power of this theorem, there are sƟll situaƟons where
we must approximate the value of the definite integral instead of finding its ex-
act value. The first situaƟon we explore is where we cannot compute the an-
ƟderivaƟve of the integrand. The second case is when we actually do not know
the integrand, but only its value when evaluated at certain points.

An elementary funcƟon is any funcƟon that is a combinaƟon of polynomi-
als, nth roots, raƟonal, exponenƟal, logarithmic and trigonometric funcƟons. We
can compute the derivaƟve of any elementary funcƟon, but there are many el-
ementary funcƟons that we cannot compute an anƟderivaƟve of. For example,
the following funcƟons do not have anƟderivaƟves that we can express with el-
ementary funcƟons:

e−x2 , sin(x3) and
sin x
x

.

The simplest way to refer to the anƟderivaƟves of e−x2 is to simply write∫
e−x2 dx.
This secƟon outlines three common methods of approximaƟng the value of

definite integrals. We describe each as a systemaƟc method of approximaƟng
area under a curve. By approximaƟng this area accurately, we find an accurate
approximaƟon of the corresponding definite integral.

We will apply the methods we learn in this SecƟon to the following definite
integrals: ∫ 1

0
e−x2 dx,

∫ π
2

− π
4

sin(x3) dx, and
∫ 4π

0.5

sin(x)
x

dx,

as pictured in Figure 5.30.

The LeŌ and Right Hand Rule Methods

In SecƟon 5.3 we addressed the problem of evaluaƟng definite integrals by
approximaƟng the area under the curve using rectangles. We revisit those ideas
here before introducing other methods of approximaƟng definite integrals.

We start with a review of notaƟon. Let f be a conƟnuous funcƟon on the

interval [a, b]. We wish to approximate
∫ b

a
f(x) dx. We parƟƟon [a, b] into n

equally spaced subintervals, each of length∆x =
b− a
n

. The endpoints of these

Notes:
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Figure 5.31: ApproximaƟng
∫ 1
0 e−x2 dx in

Example 132.

Chapter 5 IntegraƟon

subintervals are labeled as

x1 = a, x2 = a+∆x, x3 = a+ 2∆x, . . . , xi = a+ (i− 1)∆x, . . . , xn+1 = b.

Key Idea 8 states that to use the LeŌ Hand Rule we use the summaƟon
n∑

i=1

f(xi)∆x and to use the Right Hand Rule we use
n∑

i=1

f(xi+1)∆x. We review

the use of these rules in the context of examples.

.. Example 132 ..ApproximaƟng definite integrals with rectangles

Approximate
∫ 1

0
e−x2 dx using the LeŌ and Right Hand Rules with 5 equally

spaced subintervals.

SÊ½çã®ÊÄ We begin by parƟƟoning the interval [0, 1] into 5 equally
spaced intervals. We have∆x = 1−0

5 = 1/5 = 0.2, so

x1 = 0, x2 = 0.2, x3 = 0.4, x4 = 0.6, x5 = 0.8, and x6 = 1.

Using the LeŌ Hand Rule, we have:

n∑
i=1

f(xi)∆x =
(
f(x1) + f(x2) + f(x3) + f(x4) + f(x5)

)
∆x

=
(
f(0) + f(0.2) + f(0.4) + f(0.6) + f(0.8)

)
∆x

≈
(
1+ 0.961+ 0.852+ 0.698+ 0.527)(0.2)

≈ 0.808.

Using the Right Hand Rule, we have:

n∑
i=1

f(xi+1)∆x =
(
f(x2) + f(x3) + f(x4) + f(x5) + f(x6)

)
∆x

=
(
f(0.2) + f(0.4) + f(0.6) + f(0.8) + f(1)

)
∆x

≈
(
0.961+ 0.852+ 0.698+ 0.527+ 0.368)(0.2)

≈ 0.681.

Figure 5.31 shows the rectangles used in each method to approximate the
definite integral. These graphs show that in this parƟcular case, the LeŌ Hand
Rule is an over approximaƟon and the Right Hand Rule is an under approxima-
Ɵon. To get a beƩer approximaƟon, we could use more rectangles, as we did in

Notes:
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xi Exact Approx. sin(x3i )
x1 −π/4 −0.785 −0.466
x2 −7π/40 −0.550 −0.165
x3 −π/10 −0.314 −0.031
x4 −π/40 −0.0785 0
x5 π/20 0.157 0.004
x6 π/8 0.393 0.061
x7 π/5 0.628 0.246
x8 11π/40 0.864 0.601
x9 7π/20 1.10 0.971
x10 17π/40 1.34 0.690
x11 π/2 1.57 −0.670

Figure 5.32: Table of values used to ap-
proximate

∫ π
2

− π
4
sin(x3) dx in Example 133.

.....

y = sin(x3)

.

−1

.

1

.
−0.5

.

0.5

.

1

.

x

.

y

.....

y = sin(x3)

.

−1

.

1

.
−0.5

.

0.5

.

1

.

x

.

y

Figure 5.33: ApproximaƟng∫ π
2

− π
4
sin(x3) dx in Example 133.

5.5 Numerical IntegraƟon

SecƟon 5.3. We could also average the LeŌ and Right Hand Rule results together,
giving

0.808+ 0.681
2

= 0.7445.

The actual answer, accurate to 4 places aŌer the decimal, is 0.7468, showing
our average is a good approximaƟon. ...

.. Example 133 ApproximaƟng definite integrals with rectangles

Approximate
∫ π

2

− π
4

sin(x3) dx using the LeŌ and Right Hand Rules with 10 equally

spaced subintervals.

SÊ½çã®ÊÄ We begin by finding∆x:

b− a
n

=
π/2− (−π/4)

10
=

3π
40

≈ 0.236.

It is useful to write out the endpoints of the subintervals in a table; in Figure
5.32, we give the exact values of the endpoints, their decimal approximaƟons,
and decimal approximaƟons of sin(x3) evaluated at these points.

Once this table is created, it is straighƞorward to approximate the definite
integral using the LeŌ and Right Hand Rules. (Note: the table itself is easy to
create, especially with a standard spreadsheet program on a computer. The last
two columns are all that are needed.) The LeŌHand Rule sums the first 10 values
of sin(x3i ) and mulƟplies the sum by ∆x; the Right Hand Rule sums the last 10
values of sin(x3i ) and mulƟplies by∆x. Therefore we have:

LeŌ Hand Rule:
∫ π

2

− π
4

sin(x3) dx ≈ (1.91)(0.236) = 0.451.

Right Hand Rule:
∫ π

2

− π
4

sin(x3) dx ≈ (1.71)(0.236) = 0.404.

Average of the LeŌ and Right Hand Rules: 0.4275.
The actual answer, accurate to 3 places aŌer the decimal, is 0.460. Our ap-

proximaƟons were once again fairly good. The rectangles used in each approx-
imaƟon are shown in Figure 5.33. It is clear from the graphs that using more
rectangles (and hence, narrower rectangles) should result in a more accurate
approximaƟon. ..

The Trapezoidal Rule

In Example 132 we approximated the value of
∫ 1

0
e−x2 dx with 5 rectangles

of equal width. Figure 5.31 shows the rectangles used in the LeŌ and Right Hand

Notes:
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Figure 5.34: ApproximaƟng
∫ 1
0 e−x2 dx us-

ing 5 trapezoids of equal widths.

..
a
.

b

.
h

.

Area = a+b
2 h

Figure 5.35: The area of a trapezoid.

xi e−x2i

0 1
0.2 0.961
0.4 0.852
0.6 0.698
0.8 0.527
1 0.368

Figure 5.36: A table of values of e−x2 .

Chapter 5 IntegraƟon

Rules. These graphs clearly show that rectangles do not match the shape of the
graph all that well, and that accurate approximaƟons will only come by using
lots of rectangles.

Instead of using rectangles to approximate the area, we can instead use
trapezoids. In Figure 5.34, we show the region under f(x) = e−x2 on [0, 1] ap-
proximated with 5 trapezoids of equal width; the top “corners” of each trape-
zoid lies on the graph of f(x). It is clear from this figure that these trapezoids
more accurately approximate the area under f and hence should give a beƩer
approximaƟon of

∫ 1
0 e−x2 dx. (In fact, these trapezoids seem to give a great ap-

proximaƟon of the area!)
The formula for the area of a trapezoid is given in Figure 5.35. We approxi-

mate
∫ 1
0 e−x2 dx with these trapezoids in the following example.

.. Example 134 ApproximaƟng definite integrals using trapezoids

Use 5 trapezoids of equal width to approximate
∫ 1

0
e−x2 dx.

SÊ½çã®ÊÄ To compute the areas of the 5 trapezoids in Figure 5.34, it
will again be useful to create a table of values as shown in Figure 5.36.

The leŌmost trapezoid has legs of length 1 and 0.961 and a height of 0.2.
Thus, by our formula, the area of the leŌmost trapezoid is:

1+ 0.961
2

(0.2) = 0.1961.

Moving right, the next trapezoid has legs of length 0.961 and 0.852 and a height
of 0.2. Thus its area is:

0.961+ 0.852
2

(0.2) = 0.1813.

The sum of the areas of all 5 trapezoids is:

1+ 0.961
2

(0.2) +
0.961+ 0.852

2
(0.2) +

0.852+ 0.698
2

(0.2)+

0.698+ 0.527
2

(0.2) +
0.527+ 0.368

2
(0.2) = 0.7445.

We approximate
∫ 1

0
e−x2 dx ≈ 0.7445. ..

There are many things to observe in this example. Note how each term in
the final summaƟonwasmulƟplied by both 1/2 and by∆x = 0.2. We can factor
these coefficients out, leaving a more concise summaƟon as:

1
2
(0.2)

[
(1+0.961)+(0.961+0.852)+(0.852+0.698)+(0.698+0.527)+(0.527+0.368)

]
.

Notes:
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Now noƟce that all numbers except for the first and the last are added twice.
Therefore we can write the summaƟon even more concisely as

0.2
2

[
1+ 2(0.961+ 0.852+ 0.698+ 0.527) + 0.368

]
.

This is the heart of the Trapezoidal Rule, wherein a definite integral
∫ b

a
f(x)dx

is approximated by using trapezoids of equal widths to approximate the corre-
sponding area under f. Using n equally spaced subintervals with endpoints x1,

x2, . . ., xn+1, we again have∆x =
b− a
n

. Thus:

∫ b

a
f(x) dx ≈

n∑
i=1

f(xi) + f(xi+1)

2
∆x

=
∆x
2

n∑
i=1

(
f(xi) + f(xi+1)

)
=

∆x
2

[
f(x1) + 2

n∑
i=2

f(xi) + f(xn+1)
]
.

.. Example 135 Using the Trapezoidal Rule

Revisit Example 133 and approximate
∫ π

2

− π
4

sin(x3) dx using the Trapezoidal Rule

and 10 equally spaced subintervals.

SÊ½çã®ÊÄ Werefer back to Figure 5.32 for the table of values of sin(x3).
Recall that∆x = 3π/40 ≈ 0.236. Thus we have:∫ π

2

− π
4

sin(x3) dx ≈ 0.236
2

[
− 0.466+ 2

(
− 0.165+ (−0.031) + . . .+ 0.971+ 0.69

)
+ (−0.67)

]
= 0.4275...

NoƟce how “quickly” the Trapezoidal Rule can be implemented once the ta-
ble of values is created. This is true for all the methods explored in this secƟon;
the real work is creaƟng a table of xi and f(xi) values. Once this is completed, ap-
proximaƟng the definite integral is not difficult. Again, using technology is wise.
Spreadsheets can make quick work of these computaƟons and make using lots
of subintervals easy.

Also noƟce the approximaƟons the Trapezoidal Rule gives. It is the average
of the approximaƟons given by the LeŌ and Right Hand Rules! This effecƟvely

Notes:
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Figure 5.37: A graph of a funcƟon f and
a parabola that approximates it well on
[1, 3].

Chapter 5 IntegraƟon

renders the LeŌ and Right Hand Rules obsolete. They are useful when first learn-
ing about definite integrals, but if a real approximaƟon is needed, one is gener-
ally beƩer off using the Trapezoidal Rule instead of either the LeŌ or Right Hand
Rule.

How can we improve on the Trapezoidal Rule, apart from using more and
more trapezoids? The answer is clear once we look back and consider what we
have really done so far. The LeŌ Hand Rule is not really about using rectangles to
approximate area. Instead, it approximates a funcƟon f with constant funcƟons
on small subintervals and then computes the definite integral of these constant
funcƟons. The Trapezoidal Rule is really approximaƟng a funcƟon fwith a linear
funcƟon on a small subinterval, then computes the definite integral of this linear
funcƟon. In both of these cases the definite integrals are easy to compute in
geometric terms.

So we have a progression: we start by approximaƟng fwith a constant func-
Ɵon and then with a linear funcƟon. What is next? A quadraƟc funcƟon. By
approximaƟng the curve of a funcƟon with lots of parabolas, we generally get
an even beƩer approximaƟon of the definite integral. We call this process Simp-
son’s Rule, named aŌer Thomas Simpson (1710-1761), even though others had
used this rule as much as 100 years prior.

Simpson’s Rule

Given one point, we can create a constant funcƟon that goes through that
point. Given two points, we can create a linear funcƟon that goes through those
points. Given three points, we can create a quadraƟc funcƟon that goes through
those three points (given that no two have the same x–value).

Consider three points (x1, y1), (x2, y2) and (x3, y3)whose x–values are equally
spaced and x1 < x2 < x3. Let f be the quadraƟc funcƟon that goes through these
three points. It is not hard to show that∫ x3

x1
f(x) dx =

x3 − x1
6

(
y1 + 4y2 + y3

)
. (5.4)

Consider Figure 5.37. A funcƟon f goes through the 3 points shown and the
parabola g that also goes through those points is graphed with a dashed line.
Using our equaƟon from above, we know exactly that∫ 3

1
g(x) dx =

3− 1
6
(
3+ 4(1) + 2

)
= 3.

Since g is a good approximaƟon for f on [1, 3], we can state that∫ 3

1
f(x) dx ≈ 3.

Notes:
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xi e−x2i

0 1
0.25 0.939
0.5 0.779
0.75 0.570
1 0.368

(a)

.....

y = e−x2

. 0.25. 0.5. 0.75. 1.

0.5

.

1

.
x

.

y

(b)

Figure 5.38: A table of values to approxi-
mate

∫ 1
0 e−x2 dx, alongwith a graph of the

funcƟon.

xi sin(x3i )
−0.785 −0.466
−0.550 −0.165
−0.314 −0.031
−0.0785 0
0.157 0.004
0.393 0.061
0.628 0.246
0.864 0.601
1.10 0.971
1.34 0.690
1.57 −0.670

Figure 5.39: Table of values used to ap-
proximate

∫ π
2

− π
4
sin(x3) dx in Example 137.

5.5 Numerical IntegraƟon

NoƟce how the interval [1, 3]was split into two subintervals as we needed 3
points. Because of this, whenever we use Simpson’s Rule, we need to break the
interval into an even number of subintervals.

In general, to approximate
∫ b

a
f(x) dx using Simpson’s Rule, subdivide [a, b]

into n subintervals, where n is even and each subinterval has width∆x = (b−
a)/n. We approximate fwith n/2 parabolic curves, using EquaƟon (5.4) to com-
pute the area under these parabolas. Adding up these areas gives the formula:∫ b

a
f(x)dx ≈ ∆x

3

[
f(x1)+4f(x2)+2f(x3)+4f(x4)+. . .+2f(xn−1)+4f(xn)+f(xn+1)

]
.

Note how the coefficients of the terms in the summaƟon have the paƩern 1, 4,
2, 4, 2, 4, . . ., 2, 4, 1.

Let’s demonstrate Simpson’s Rule with a concrete example.

.. Example 136 Using Simpson’s Rule

Approximate
∫ 1

0
e−x2 dxusing Simpson’s Rule and 4 equally spaced subintervals.

SÊ½çã®ÊÄ We begin bymaking a table of values as we have in the past,
as shown in Figure 5.38(a). Simpson’s Rule states that∫ 1

0
e−x2 dx ≈ 0.25

3

[
1+ 4(0.939) + 2(0.779) + 4(0.570) + 0.368

]
= 0.74683.

Recall in Example 132we stated that the correct answer, accurate to 4 places
aŌer the decimal, was 0.7468. Our approximaƟon with Simpson’s Rule, with 4
subintervals, is beƩer than our approximaƟon with the Trapezoidal Rule using
5!

Figure 5.38(b) shows f(x) = e−x2 along with its approximaƟng parabolas,
demonstraƟng how good our approximaƟon is. The approximaƟng curves are
nearly indisƟnguishable from the actual funcƟon. ..

.. Example 137 ..Using Simpson’s Rule

Approximate
∫ π

2

− π
4

sin(x3) dx using Simpson’s Rule and 10 equally spaced inter-

vals.

SÊ½çã®ÊÄ Figure 5.39 shows the table of values that we used in the
past for this problem, shown here again for convenience. Again, ∆x = (π/2 +
π/4)/10 ≈ 0.236.

Notes:
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Figure 5.40: ApproximaƟng∫ π
2

− π
4
sin(x3) dx in Example 137 with

Simpson’s Rule and 10 equally spaced
intervals.

Chapter 5 IntegraƟon

Simpson’s Rule states that∫ π
2

− π
4

sin(x3) dx ≈ 0.236
3

[
(−0.466) + 4(−0.165) + 2(−0.031) + . . .

. . .+ 2(0.971) + 4(0.69) + (−0.67)
]

= 0.4701

Recall that the actual value, accurate to 3 decimal places, is 0.460. Our ap-
proximaƟon is within one 1/100th of the correct value. The graph in Figure 5.40
shows how closely the parabolas match the shape of the graph. ...

Summary and Error Analysis

We summarize the key concepts of this secƟon thus far in the following Key
Idea.

..
Key Idea 9 Numerical IntegraƟon

Let f be a conƟnuous funcƟon on [a, b], let n be a posiƟve integer, and let∆x =
b− a
n

.
Set x1 = a, x2 = a+∆x, . . ., xi = a+ (i− 1)∆x, xn+1 = b.

Consider
∫ b

a
f(x) dx.

LeŌ Hand Rule:
∫ b

a
f(x) dx ≈ ∆x

[
f(x1) + f(x2) + . . .+ f(xn)

]
.

Right Hand Rule:
∫ b

a
f(x) dx ≈ ∆x

[
f(x2) + f(x3) + . . .+ f(xn+1)

]
.

Trapezoidal Rule:
∫ b

a
f(x) dx ≈ ∆x

2

[
f(x1) + 2f(x2) + 2f(x3) + . . .+ 2f(xn) + f(xn+1)

]
.

Simpson’s Rule:
∫ b

a
f(x) dx ≈ ∆x

3

[
f(x1) + 4f(x2) + 2f(x3) + . . .+ 4f(xn) + f(xn+1)

]
(n even).

In our examples, we approximated the value of a definite integral using a
given method then compared it to the “right” answer. This should have raised
several quesƟons in the reader’s mind, such as:

1. How was the “right” answer computed?

2. If the right answer can be found, what is the point of approximaƟng?

3. If there is value to approximaƟng, how are we supposed to know if the
approximaƟon is any good?

Notes:
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These are good quesƟons, and their answers are educaƟonal. In the exam-
ples, the right answer was never computed. Rather, an approximaƟon accurate
to a certain number of places aŌer the decimal was given. In Example 132, we
do not know the exact answer, but we know it starts with 0.7468. These more
accurate approximaƟons were computed using numerical integraƟon but with
more precision (i.e., more subintervals and the help of a computer).

Since the exact answer cannot be found, approximaƟon sƟll has its place.
How are we to tell if the approximaƟon is any good?

“Trial and error” provides one way. Using technology, make an approxima-
Ɵon with, say, 10, 100, and 200 subintervals. This likely will not take much Ɵme
at all, and a trend should emerge. If a trend does not emerge, try using yet more
subintervals. Keep in mind that trial and error is never foolproof; you might
stumble upon a problem in which a trend will not emerge.

A second method is to use Error Analysis. While the details are beyond the
scope of this text, there are some formulas that give bounds for how good your
approximaƟon will be. For instance, the formula might state that the approx-
imaƟon is within 0.1 of the correct answer. If the approximaƟon is 1.58, then
one knows that the correct answer is between 1.48 and 1.68. By using lots of
subintervals, one can get an approximaƟon as accurate as one likes. Theorem
43 states what these bounds are.

..
Theorem 43 Error Bounds in the Trapezoidal Rule and Simpson’s Rule

1. Let ET be the error in approximaƟng
∫ b

a
f(x) dx using the Trapezoidal Rule.

If f has a conƟnuous 2nd derivaƟve on [a, b] andM is any upper bound of
∣∣f ′′(x)∣∣

on [a, b], then

ET ≤
(b− a)3

12n2
M.

2. Let ES be the error in approximaƟng
∫ b

a
f(x) dx using Simpson’s Rule.

If f has a conƟnuous 4th derivaƟve on [a, b] andM is any upper bound of
∣∣f (4)∣∣

on [a, b], then

ES ≤
(b− a)5

180n4
M.

There are some key things to note about this theorem.

Notes:
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Figure 5.41: Graphing f ′′(x) in Example
138 to help establish error bounds.
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Figure 5.42: Graphing f (4)(x) in Example
138 to help establish error bounds.
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1. The larger the interval, the larger the error. This should make sense intu-
iƟvely.

2. The error shrinks as more subintervals are used (i.e., as n gets larger).

3. The error in Simpson’s Rule has a term relaƟng to the 4th derivaƟve of f.
Consider a cubic polynomial: it’s 4th derivaƟve is 0. Therefore, the error in
approximaƟng the definite integral of a cubic polynomial with Simpson’s
Rule is 0 – Simpson’s Rule computes the exact answer!

We revisit Examples 134 and 136 and compute the error bounds using The-
orem 43 in the following example.

.. Example 138 ..CompuƟng error bounds

Find the error bounds when approximaƟng
∫ 1

0
e−x2 dx using the Trapezoidal

Rule and 5 subintervals, and using Simpson’s Rule with 4 subintervals.

SÊ½çã®ÊÄ
Trapezoidal Rule with n = 5:

We start by compuƟng the 2nd derivaƟve of f(x) = e−x2 :

f ′′(x) = e−x2(4x2 − 2).

Figure 5.41 shows a graph of f ′′(x) on [0, 1]. It is clear that the largest value of
f ′′, in absolute value, is 2. Thus we letM = 2 and apply the error formula from
Theorem 43.

ET =
(1− 0)3

12 · 52
· 2 = 0.006.

Our error esƟmaƟon formula states that our approximaƟon of 0.7445 found
in Example 134 is within 0.0067 of the correct answer, hence we know that

0.7445− 0.0067 = .7378 ≤
∫ 1

0
e−x2 dx ≤ 0.7512 = 0.7445+ 0.0067.

We had earlier computed the exact answer, correct to 4 decimal places, to be
0.7468, affirming the validity of Theorem 43.

Simpson’s Rule with n = 4:
We start by compuƟng the 4th derivaƟve of f(x) = e−x2 :

f (4)(x) = e−x2(16x4 − 48x2 + 12).

Notes:
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Time Speed
(mph)

0 0
1 25
2 22
3 19
4 39
5 0
6 43
7 59
8 54
9 51
10 43
11 35
12 40
13 43
14 30
15 0
16 0
17 28
18 40
19 42
20 40
21 39
22 40
23 23
24 0

Figure 5.43: Speed data collected at 30
second intervals for Example 139.

5.5 Numerical IntegraƟon

Figure 5.42 shows a graph of f (4)(x) on [0, 1]. It is clear that the largest value of
f (4), in absolute value, is 12. Thus we let M = 12 and apply the error formula
from Theorem 43.

Es =
(1− 0)5

180 · 44
· 12 = 0.00026.

Our error esƟmaƟon formula states that our approximaƟonof 0.74683 found
in Example 136 is within 0.00026 of the correct answer, hence we know that

0.74683− 0.00026 = .74657 ≤
∫ 1

0
e−x2 dx ≤ 0.74709 = 0.74683+ 0.00026.

Once again we affirm the validity of Theorem 43. ...

At the beginning of this secƟon we menƟoned two main situaƟons where
numerical integraƟon was desirable. We have considered the case where an
anƟderivaƟve of the integrand cannot be computed. We now invesƟgate the
situaƟon where the integrand is not known. This is, in fact, the most widely
used applicaƟon of Numerical IntegraƟon methods. “Most of the Ɵme” we ob-
serve behavior but do not know “the” funcƟon that describes it. We instead
collect data about the behavior andmake approximaƟons based off of this data.
We demonstrate this in an example.

.. Example 139 ..ApproximaƟng distance traveled
One of the authors drove his daughter home from school while she recorded
their speed every 30 seconds. The data is given in Figure 5.43. Approximate the
distance they traveled.

SÊ½çã®ÊÄ Recall that by integraƟng a speed funcƟon we get distance
traveled. We have informaƟon about v(t); we will use Simpson’s Rule to approx-

imate
∫ b

a
v(t) dt.

Themost difficult aspect of this problem is converƟng the given data into the
form we need it to be in. The speed is measured in miles per hour, whereas the
Ɵme is measured in 30 second increments.

We need to compute∆x = (b − a)/n. Clearly, n = 24. What are a and b?
Since we start at Ɵme t = 0, we have that a = 0. The final recorded Ɵme came
aŌer 24 periods of 30 seconds, which is 12 minutes or 1/5 of an hour. Thus we
have

∆x =
b− a
n

=
1/5− 0

24
=

1
120

;
∆x
3

=
1

360
.

Notes:
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Thus the distance traveled is approximately:∫ 0.2

0
v(t) dt ≈ 1

360

[
f(x1) + 4f(x2) + 2f(x3) + · · ·+ 4f(xn) + f(xn+1)

]
=

1
360

[
0+ 4 · 25+ 2 · 22+ · · ·+ 2 · 40+ 4 · 23+ 0

]
≈ 6.2167 miles.

We approximate the author drove 6.2 miles. (Because we are sure the reader
wants to know, the author’s odometer recorded the distance as about 6.05
miles.) ...

Notes:
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Exercises 5.5
Terms and Concepts
1. T/F: Simpson’s Rule is a method of approximaƟng an-

ƟderivaƟves.

2. What are the two basic situaƟons where approximaƟng the
value of a definite integral is necessary?

3. Why are the LeŌ and Right Hand Rules rarely used?

Problems
In Exercises 4 – 11, a definite integral is given.

(a) Approximate the definite integral with the Trapezoidal
Rule and n = 4.

(b) Approximate the definite integral with Simpson’s Rule
and n = 4.

(c) Find the exact value of the integral.

4.
∫ 1

−1
x2 dx

5.
∫ 10

0
5x dx

6.
∫ π

0
sin x dx

7.
∫ 4

0

√
x dx

8.
∫ 3

0
(x3 + 2x2 − 5x+ 7) dx

9.
∫ 1

0
x4 dx

10.
∫ 2π

0
cos x dx

11.
∫ 3

−3

√
9− x2 dx

In Exercises 12 – 19, approximate the definite integral with
the Trapezoidal Rule and Simpson’s Rule, with n = 6.

12.
∫ 1

0
cos
(
x2
)
dx

13.
∫ 1

−1
ex

2
dx

14.
∫ 5

0

√
x2 + 1 dx

15.
∫ π

0
x sin x dx

16.
∫ π/2

0

√
cos x dx

17.
∫ 4

1
ln x dx

18.
∫ 1

−1

1
sin x+ 2

dx

19.
∫ 6

0

1
sin x+ 2

dx

In Exercises 20 – 23, find n such that the error in approximat-
ing the given definite integral is less than 0.0001when using:

(a) the Trapezoidal Rule

(b) Simpson’s Rule

20.
∫ π

0
sin x dx

21.
∫ 4

1

1√
x
dx

22.
∫ π

0
cos
(
x2
)
dx

23.
∫ 5

0
x4 dx

In Exercises 24 – 25, a region is given. Find the area of the
region using Simpson’s Rule:

(a) where the measurements are in cenƟmeters, taken in
1 cm increments, and

(b) where the measurements are in hundreds of yards,
taken in 100 yd increments.

24. ..

4.
7

.

6.
3

. 6.
9

. 6.
6.

5.
1

25. ..

3.
6

. 3.
6

. 4.
5. 6.

6

.

5.
6
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The previous chapter introduced the anƟderivaƟve and connected it to signed
areas under a curve through the Fundamental Theorem of Calculus. The next
chapter explores more applicaƟons of definite integrals than just area. As eval-
uaƟng definite integrals will become important, we will want to find anƟderiva-
Ɵves of a variety of funcƟons.

This chapter is devoted to exploring techniques of anƟdifferenƟaƟon. While
not every funcƟon has an anƟderivaƟve in terms of elementary funcƟons (a
concept introduced in the secƟon on Numerical IntegraƟon), we can sƟll find
anƟderivaƟves of many.

6.1 SubsƟtuƟon
We moƟvate this secƟon with an example. Let f(x) = (x2 + 3x − 5)10. We can
compute f ′(x) using the Chain Rule. It is:

f ′(x) = 10(x2 + 3x− 5)9 · (2x+ 3) = (20x+ 30)(x2 + 3x− 5)9.

Now consider this: What is
∫
(20x+ 30)(x2 + 3x− 5)9 dx? We have the answer

in front of us;∫
(20x+ 30)(x2 + 3x− 5)9 dx = (x2 + 3x− 5)10 + C.

How would we have evaluated this indefinite integral without starƟng with f(x)
as we did?

This secƟon explores integraƟon by subsƟtuƟon. It allows us to “undo the
Chain Rule.” SubsƟtuƟon allows us to evaluate the above integral without know-
ing the original funcƟon first.

The underlying principle is to rewrite a “complicated” integral of the form∫
f(x) dx as a not–so–complicated integral

∫
h(u) du. We’ll formally establish

later how this is done. First, consider again our introductory indefinite integral,∫
(20x + 30)(x2 + 3x − 5)9 dx. Arguably the most “complicated” part of the

integrand is (x2 + 3x − 5)9. We wish to make this simpler; we do so through a
subsƟtuƟon. Let u = x2 + 3x− 5. Thus

(x2 + 3x− 5)9 = u9.



Chapter 6 Techniques of AnƟdifferenƟaƟon

We have established u as a funcƟon of x, so now consider the differenƟal of u:

du = (2x+ 3)dx.

Keep inmind that (2x+3) and dx aremulƟplied; the dx is not “just siƫng there.”
Return to the original integral and do some subsƟtuƟons through algebra:∫

(20x+ 30)(x2 + 3x− 5)9 dx =
∫

10(2x+ 3)(x2 + 3x− 5)9 dx

=

∫
10(x2 + 3x− 5︸ ︷︷ ︸

u

)9 (2x+ 3) dx︸ ︷︷ ︸
du

=

∫
10u9 du

= u10 + C (replace u with x2 + 3x − 5)

= (x2 + 3x− 5)10 + C

One might well look at this and think “I (sort of) followed how that worked,
but I could never come up with that on my own,” but the process is learnable.
This secƟon contains numerous examples through which the reader will gain
understanding and mathemaƟcal maturity enabling them to regard subsƟtuƟon
as a natural tool when evaluaƟng integrals.

We stated before that integraƟon by subsƟtuƟon “undoes” the Chain Rule.
Specifically, let F(x) and g(x) be differenƟable funcƟons and consider the deriva-
Ɵve of their composiƟon:

d
dx

(
F
(
g(x)

))
= F ′(g(x))g′(x).

Thus ∫
F ′(g(x))g′(x) dx = F(g(x)) + C.

IntegraƟon by subsƟtuƟon works by recognizing the “inside” funcƟon g(x) re-
placing it with a variable. By seƫng u = g(x), we can rewrite the derivaƟve
as

d
dx

(
F
(
u
))

= F ′(u)u′.

Since du = g′(x)dx, we can rewrite the above integral as∫
F ′(g(x))g′(x) dx =

∫
F ′(u)du = F(u) + C = F(g(x)) + C.

This concept is important so we restate it in the context of a theorem.

Notes:
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6.1 SubsƟtuƟon

..
Theorem 44 IntegraƟon by SubsƟtuƟon

Let F and g be differenƟable funcƟons, where the range of g is an interval
I and the domain of F is contained in I. Then∫

F ′(g(x))g′(x) dx = F(g(x)) + C.

If u = g(x), then du = g′(x)dx and∫
F ′(g(x))g′(x) dx =

∫
F ′(u) du = F(u) + C = F(g(x)) + C.

The point of subsƟtuƟon is to make the integraƟon step easy. Indeed, the
step

∫
F ′(u) du = F(u)+C looks easy, as the anƟderivaƟve of the derivaƟve of F

is just F, plus a constant. The “work” involved is making the proper subsƟtuƟon.
There is not a step–by–step process that one can memorize; rather, experience
will be one’s guide. To gain experience, we now embark on many examples.

.. Example 140 ..IntegraƟng by subsƟtuƟon

Evaluate
∫

x sin(x2 + 5) dx.

SÊ½çã®ÊÄ Knowing that subsƟtuƟon is related to the Chain Rule, we
choose to let u be the “inside” funcƟon of sin(x2+5). (This is not always a good
choice, but it is oŌen the best place to start.)

Let u = x2 + 5, hence du = 2x dx. The integrand has an x dx term, but
not a 2x dx term. (Recall that mulƟplicaƟon is commutaƟve, so the x does not
physically have to be next to dx for there to be an x dx term.) We can divide both
sides of the du expression by 2:

du = 2x dx ⇒ 1
2
du = x dx.

We can now subsƟtute.∫
x sin(x2 + 5) dx =

∫
sin(x2 + 5︸ ︷︷ ︸

u

) x dx︸︷︷︸
1
2 du

=

∫
1
2
sin u du
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= −1
2
cos u+ C (now replace u with x2 + 5)

= −1
2
cos(x2 + 5) + C.

Thus
∫
x sin(x2 + 5) dx = − 1

2 cos(x
2 + 5) + C. We can check our work by eval-

uaƟng the derivaƟve of the right hand side. ...

.. Example 141 IntegraƟng by subsƟtuƟon

Evaluate
∫

cos(5x) dx.

SÊ½çã®ÊÄ Again let u replace the “inside” funcƟon. Leƫng u = 5x, we
have du = 5dx. Since our integrand does not have a 5dx term, we can divide
the previous equaƟon by 5 to obtain 1

5du = dx. We can now subsƟtute.∫
cos(5x) dx =

∫
cos( 5x︸︷︷︸

u

) dx︸︷︷︸
1
5 du

=

∫
1
5
cos u du

=
1
5
sin u+ C

=
1
5
sin(5x) + C.

We can again check our work through differenƟaƟon. ..

The previous example exhibited a common, and simple, type of subsƟtuƟon.
The “inside” funcƟon was a linear funcƟon (in this case, y = 5x). When the
inside funcƟon is linear, the resulƟng integraƟon is very predictable, outlined
here.

..
Key Idea 10 SubsƟtuƟon With A Linear FuncƟon

Consider
∫
F ′(ax + b) dx, where a ̸= 0 and b are constants. Leƫng

u = ax+ b gives du = a · dx, leading to the result∫
F ′(ax+ b) dx =

1
a
F(ax+ b) + C.

Thus
∫
sin(7x− 4) dx = − 1

7 cos(7x− 4) + C. Our next example can use Key
Idea 10, but we will only employ it aŌer going through all of the steps.
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.. Example 142 IntegraƟng by subsƟtuƟng a linear funcƟon

Evaluate
∫

7
−3x+ 1

dx.

SÊ½çã®ÊÄ View this a composiƟon of funcƟons f(g(x)), where f(x) =
7/x and g(x) = −3x + 1. Employing our understanding of subsƟtuƟon, we let
u = −3x + 1, the inside funcƟon. Thus du = −3dx. The integrand lacks a −3;
hence divide the previous equaƟon by −3 to obtain −du/3 = dx. We can now
evaluate the integral through subsƟtuƟon.∫

7
−3x+ 1

dx =
∫

7
u
du
−3

=
−7
3

∫
du
u

=
−7
3

ln |u|+ C

= −7
3
ln | − 3x+ 1|+ C.

Using Key Idea 10 is faster, recognizing that u is linear and a = −3. One may
want to conƟnue wriƟng out all the steps unƟl they are comfortable with this
parƟcular shortcut. ..

Not all integrals that benefit from subsƟtuƟon have a clear “inside” funcƟon.
Several of the following examples will demonstrate ways in which this occurs.

.. Example 143 ..IntegraƟng by subsƟtuƟon

Evaluate
∫

sin x cos x dx.

SÊ½çã®ÊÄ There is not a composiƟonof funcƟonhere to exploit; rather,
just a product of funcƟons. Do not be afraid to experiment; when given an inte-
gral to evaluate, it is oŌen beneficial to think “If I let u be this, then dumust be
that …” and see if this helps simplify the integral at all.

In this example, let’s set u = sin x. Then du = cos x dx, which we have as
part of the integrand! The subsƟtuƟon becomes very straighƞorward:∫

sin x cos x dx =
∫

u du

=
1
2
u2 + C

=
1
2
sin2 x+ C.
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One would do well to ask “What would happen if we let u = cos x?” The an-
swer: the result is just as easy to find, yet looks very different. The challenge to
the reader is to evaluate the integral leƫng u = cos x and discovering why the
answer is the same, yet looks different. ...

Our examples so far have required “basic subsƟtuƟon.” The next example
demonstrates how subsƟtuƟons can be made that oŌen strike the new learner
as being “nonstandard.”

.. Example 144 IntegraƟng by subsƟtuƟon

Evaluate
∫

x
√
x+ 3 dx.

SÊ½çã®ÊÄ Recognizing the composiƟon of funcƟons, set u = x + 3.
Then du = dx, giving what seems iniƟally to be a simple subsƟtuƟon. But at this
stage, we have: ∫

x
√
x+ 3 dx =

∫
x
√
u du.

We cannot evaluate an integral that has both an x and an u in it. We need to
convert the x to an expression involving just u.

Since we set u = x+3, we can also state that u−3 = x. Thus we can replace
x in the integrand with u− 3. It will also be helpful, as before, to rewrite

√
u as

u 1
2 . ∫

x
√
x+ 3 dx =

∫
(u− 3)u

1
2 du

=

∫ (
u

3
2 − 3u

1
2
)
du

=
2
5
u

5
2 − 2u

3
2 + C

=
2
5
(x+ 3)

5
2 − 2(x+ 3)

3
2 + C.

Checking your work is always a good idea. In this parƟcular case, some algebra
will be needed to make one’s answer match the integrand in the original prob-
lem. ..

.. Example 145 ..IntegraƟng by subsƟtuƟon

Evaluate
∫

1
x ln x

dx.

SÊ½çã®ÊÄ This is another example where there does not seem to be
an obvious composiƟon of funcƟons. The line of thinking used in Example 144
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is useful here: choose something for u and consider what this implies du must
be. If u can be chosen such that du also appears in the integrand, then we have
chosen well.

Choosing u = 1/xmakes du = −1/x2 dx; that does not seem helpful. How-
ever, seƫng u = ln xmakes du = 1/x dx, which is part of the integrand. Thus:

∫
1

x ln x
dx =

∫
1
ln x︸︷︷︸
1/u

1
x
dx︸︷︷︸

du

=

∫
1
u
du

= ln |u|+ C
= ln | ln x|+ C.

The final answer is interesƟng; the natural log of the natural log. Take the deriva-
Ɵve to confirm this answer is indeed correct. ...

Integrals Involving Trigonometric FuncƟons

SecƟon 6.3 delves deeper into integrals of a variety of trigonometric func-
Ɵons; here we use subsƟtuƟon to establish a foundaƟon that wewill build upon.

Thenext three exampleswill help fill in somemissing pieces of our anƟderiva-
Ɵve knowledge. We know the anƟderivaƟves of the sine and cosine funcƟons;
what about the other standard funcƟons tangent, cotangent, secant and cose-
cant? We discover these next.

.. Example 146 ..IntegraƟon by subsƟtuƟon: anƟderivaƟves of tan x

Evaluate
∫

tan x dx.

SÊ½çã®ÊÄ The previous paragraph established that we did not know
the anƟderivaƟves of tangent, hence we must assume that we have learned
something in this secƟon that can help us evaluate this indefinite integral.

Rewrite tan x as sin x/ cos x. While the presence of a composiƟon of func-
Ɵons may not be immediately obvious, recognize that cos x is “inside” the 1/x
funcƟon. Therefore, we see if seƫng u = cos x returns usable results. We have
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that du = − sin x dx, hence−du = sin x dx. We can integrate:

∫
tan x dx =

∫
sin x
cos x

dx

=

∫
1

cos x︸︷︷︸
u

sin x dx︸ ︷︷ ︸
−du

=

∫
−1
u

du

= − ln |u|+ C
= − ln | cos x|+ C.

Some texts prefer to bring the−1 inside the logarithm as a power of cos x, as in:

− ln | cos x|+ C = ln |(cos x)−1|+ C

= ln
∣∣∣∣ 1
cos x

∣∣∣∣+ C

= ln | sec x|+ C.

Thus the result they give is
∫
tan x dx = ln | sec x| + C. These two answers are

equivalent. ...

.. Example 147 ..IntegraƟng by subsƟtuƟon: anƟderivaƟves of sec x

Evaluate
∫

sec x dx.

SÊ½çã®ÊÄ This example employs a wonderful trick: mulƟply the inte-
grand by “1” so that we see how to integrate more clearly. In this case, we write
“1” as

1 =
sec x+ tan x
sec x+ tan x

.

This may seem like it came out of leŌ field, but it works beauƟfully. Consider:

∫
sec x dx =

∫
sec x · sec x+ tan x

sec x+ tan x
dx

=

∫
sec2 x+ sec x tan x

sec x+ tan x
dx.
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Now let u = sec x + tan x; this means du = (sec x tan x + sec2 x) dx, which is
our numerator. Thus:

=

∫
du
u

= ln |u|+ C
= ln | sec x+ tan x|+ C.

...

We can use similar techniques to those used in Examples 146 and 147 to find
anƟderivaƟves of cot x and csc x (which the reader can explore in the exercises.)
We summarize our results here.

..
Theorem 45 AnƟderivaƟves of Trigonometric FuncƟons

1.
∫

sin x dx = − cos x+ C

2.
∫

cos x dx = sin x+ C

3.
∫

tan x dx = − ln | cos x|+C

4.
∫

csc x dx = − ln | csc x+ cot x|+ C

5.
∫

sec x dx = ln | sec x+ tan x|+ C

6.
∫

cot x dx = ln | sin x|+ C

We explore one more common trigonometric integral.

.. Example 148 ..IntegraƟon by subsƟtuƟon: powers of cos x and sin x

Evaluate
∫

cos2 x dx.

SÊ½çã®ÊÄ We have a composiƟon of funcƟons with cos x inside the x2
funcƟon. However, seƫng u = cos x means du = − sin x dx, which we do not
have in the integral. Another technique is needed.

The process we’ll employ is to use a Power Reducing formula for cos2 x (per-
haps consult the back of this text). Note that

cos2 x =
1+ cos(2x)

2
.

The right hand side of this equaƟon is not difficult to integrate. We have:∫
cos2 x dx =

∫
1+ cos(2x)

2
dx

=

∫ (
1
2
+

1
2
cos(2x)

)
dx.
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Now use Key Idea 10:

=
1
2
x+

1
2
(− sin(2x))

2
+ C

=
1
2
x− sin(2x)

4
+ C.

We’ll make significant use of this power–reducing technique in future secƟons. ...

Simplifying the Integrand

It is common to be reluctant to manipulate the integrand of an integral; at
first, our grasp of integraƟon is tenuous and one may think that working with
the integrand will improperly change the results. IntegraƟon by subsƟtuƟon
works using a different logic: as long as equality is maintained, the integrand can
be manipulated so that its form is easier to deal with. The next two examples
demonstrate common ways in which using algebra first makes the integraƟon
easier to perform.

.. Example 149 ..IntegraƟon by subsƟtuƟon: simplifying first

Evaluate
∫

x3 + 4x2 + 8x+ 5
x2 + 2x+ 1

dx.

SÊ½çã®ÊÄ One may start by seƫng u equal to either the numerator or
denominator; in each instance, the result is not workable.

When dealing with raƟonal funcƟons (i.e., quoƟents made up of polynomial
funcƟons), it is an almost universal rule that everything works beƩer when the
degree of the numerator is less than the degree of the denominator. Hence we
use polynomial division.

We skip the specifics of the steps, but note that when x2 + 2x+ 1 is divided
into x3 + 4x2 + 8x+ 5, it goes in x+ 2 Ɵmes with a remainder of 3x+ 3. Thus

x3 + 4x2 + 8x+ 5
x2 + 2x+ 1

= x+ 2+
3x+ 3

x2 + 2x+ 1
.

IntegraƟng x + 2 is simple. The fracƟon can be integrated by seƫng u = x2 +
2x+ 1, giving du = (2x+ 2) dx. This is very similar to the numerator. Note that
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du/2 = (x+ 1) dx and then consider the following:∫
x3 + 4x2 + 8x+ 5

x2 + 2x+ 1
dx =

∫ (
x+ 2+

3x+ 3
x2 + 2x+ 1

)
dx

=

∫
(x+ 2) dx+

∫
3(x+ 1)

x2 + 2x+ 1
dx

=
1
2
x2 + 2x+ C1 +

∫
3
u
du
2

=
1
2
x2 + 2x+ C1 +

3
2
ln |u|+ C2

=
1
2
x2 + 2x+

3
2
ln |x2 + 2x+ 1|+ C.

In some ways, we “lucked out” in that aŌer dividing, subsƟtuƟon was able to be
done. In later secƟons we’ll develop techniques for handling raƟonal funcƟons
where subsƟtuƟon is not directly feasible. ...

.. Example 150 ..IntegraƟon by alternate methods

Evaluate
∫

x2 + 2x+ 3√
x

dx with, and without, subsƟtuƟon.

SÊ½çã®ÊÄ We already know how to integrate this parƟcular example.
Rewrite

√
x as x 1

2 and simplify the fracƟon:

x2 + 2x+ 3
x1/2

= x
3
2 + 2x

1
2 + 3x−

1
2 .

We can now integrate using the Power Rule:∫
x2 + 2x+ 3

x1/2
dx =

∫ (
x

3
2 + 2x

1
2 + 3x−

1
2

)
dx

=
2
5
x

5
2 +

4
3
x

3
2 + 6x

1
2 + C

This is a perfectly fine approach. We demonstrate how this can also be solved
using subsƟtuƟon as its implementaƟon is rather clever.

Let u =
√
x = x 1

2 ; therefore

du =
1
2
x−

1
2 dx =

1
2
√
x
dx ⇒ 2du =

1√
x
dx.

This gives us
∫

x2 + 2x+ 3√
x

dx =
∫

(x2 + 2x+ 3) · 2 du. What are we to do

with the other x terms? Since u = x 1
2 , u2 = x, etc. We can then replace x2 and
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x with appropriate powers of u. We thus have∫
x2 + 2x+ 3√

x
dx =

∫
(x2 + 2x+ 3) · 2 du

=

∫
2(u4 + 2u2 + 3) du

=
2
5
u5 +

4
3
u3 + 6u+ C

=
2
5
x

5
2 +

4
3
x

3
2 + 6x

1
2 + C,

which is obviously the same answer we obtained before. In this situaƟon, sub-
sƟtuƟon is arguably more work than our other method. The fantasƟc thing is
that it works. It demonstrates how flexible integraƟon is. ...

SubsƟtuƟon and Inverse Trigonometric FuncƟons

When studying derivaƟves of inverse funcƟons, we learned that

d
dx
(
tan−1 x

)
=

1
1+ x2

.

Applying the Chain Rule to this is not difficult; for instance,

d
dx
(
tan−1 5x

)
=

5
1+ 25x2

.

Wenow explore how SubsƟtuƟon can be used to “undo” certain derivaƟves that
are the result of the Chain Rule and Inverse Trigonometric funcƟons. We begin
with an example.

.. Example 151 ..IntegraƟngby subsƟtuƟon: inverse trigonometric funcƟons

Evaluate
∫

1
25+ x2

dx.

SÊ½çã®ÊÄ The integrand looks similar to the derivaƟve of the arctan-
gent funcƟon. Note:

1
25+ x2

=
1

25(1+ x2
25 )

=
1

25(1+
( x
5

)2
)

=
1
25

1

1+
( x
5

)2 .
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Thus ∫
1

25+ x2
dx =

1
25

∫
1

1+
( x
5

)2 dx.

This can be integrated using SubsƟtuƟon. Set u = x/5, hence du = dx/5 or
dx = 5du. Thus ∫

1
25+ x2

dx =
1
25

∫
1

1+
( x
5

)2 dx

=
1
5

∫
1

1+ u2
du

=
1
5
tan−1 u+ C

=
1
5
tan−1

( x
5

)
+ C

...

Example 151 demonstrates a general technique that can be applied to other
integrands that result in inverse trigonometric funcƟons. The results are sum-
marized here.

..
Theorem 46 Integrals Involving Inverse Trigonomentric FuncƟons

Let a > 0.

1.
∫

1
a2 + x2

dx =
1
a
tan−1

( x
a

)
+ C

2.
∫

1√
a2 − x2

dx = sin−1
( x
a

)
+ C

3.
∫

1
x
√
x2 − a2

dx =
1
a
sec−1

(
|x|
a

)
+ C

Let’s pracƟce using Theorem 46.

.. Example 152 ..IntegraƟngby subsƟtuƟon: inverse trigonometric funcƟons
Evaluate the given indefinite integrals.∫

1
9+ x2

dx,
∫

1

x
√

x2 − 1
100

dx and
∫

1√
5− x2

dx.

Notes:

259



Chapter 6 Techniques of AnƟdifferenƟaƟon

SÊ½çã®ÊÄ Each can be answered using a straighƞorward applicaƟon of
Theorem 46.∫

1
9+ x2

dx =
1
3
tan−1 x

3
+ C.

∫
1

x
√

x2 − 1
100

dx = 10 sec−1 10x+ C.

∫
1√

5− x2
= sin−1 x√

5
+ C.

...

Most applicaƟons of Theorem 46 are not as straighƞorward. The next exam-
ples show some common integrals that can sƟll be approached with this theo-
rem.

.. Example 153 ..IntegraƟng by subsƟtuƟon: compleƟng the square
Evaluate

1
x2 − 4x+ 13

dx.

SÊ½çã®ÊÄ IniƟally, this integral seems to have nothing in commonwith
the integrals in Theorem 46. As it lacks a square root, it almost certainly is not
related to arcsine or arcsecant. It is, however, related to the arctangent funcƟon.

We see this by compleƟng the square on the denominator. We give a brief
reminder of the process here.

Start with a quadraƟc with a leading coefficient of 1. It will have the form of
x2+bx+c. Take 1/2 of b, square it, and add/subtract it back into the expression.
I.e.,

x2 + bx+ c = x2 + bx+
b2

4︸ ︷︷ ︸
(x+b/2)2

−b2

4
+ c

=

(
x+

b
2

)2

+ c− b2

4

In our example, we take half of −4 and square it, geƫng 4. We add/subtract it
into the denominator as follows:

1
x2 − 4x+ 13

=
1

x2 − 4x+ 4︸ ︷︷ ︸
(x−2)2

−4+ 13

=
1

(x− 2)2 + 9
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We can now integrate this using the arctangent rule. Technically, we need to
subsƟtute first with u = x− 2, but we can employ Key Idea 10 instead. Thus we
have ∫

1
x2 − 4x+ 13

dx =
∫

1
(x− 2)2 + 9

dx =
1
3
tan−1 x− 2

3
+ C.

...

.. Example 154 Integrals require mulƟple methods

Evaluate
∫

4− x√
16− x2

dx.

SÊ½çã®ÊÄ This integral requires two different methods to evaluate it.
We get to those methods by spliƫng up the integral:∫

4− x√
16− x2

dx =
∫

4√
16− x2

dx−
∫

x√
16− x2

dx.

The first integral is handled using a straighƞorward applicaƟon of Theorem 46;
the second integral is handled by subsƟtuƟon, with u = 16 − x2. We handle
each separately.∫

4√
16− x2

dx = 4 sin−1 x
4
+ C.

∫
x√

16− x2
dx: Set u = 16 − x2, so du = −2xdx and xdx = −du/2. We

have ∫
x√

16− x2
dx =

∫
−du/2√

u

= −1
2

∫
1√
u
du

= −
√
u+ C

= −
√

16− x2 + C.

Combining these together, we have∫
4− x√
16− x2

dx = 4 sin−1 x
4
+
√

16− x2 + C.
..

SubsƟtuƟon and Definite IntegraƟon

This secƟon has focused on evaluaƟng indefinite integrals as we are learning
a new technique for finding anƟderivaƟves. However, much of the Ɵme integra-
Ɵon is used in the context of a definite integral. Definite integrals that require
subsƟtuƟon can be calculated using the following workflow:
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1. Start with a definite integral
∫ b

a
f(x) dx that requires subsƟtuƟon.

2. Ignore the bounds; use subsƟtuƟon to evaluate
∫

f(x) dx and find an an-

ƟderivaƟve F(x).

3. Evaluate F(x) at the bounds; that is, evaluate F(x)
∣∣∣b
a
= F(b)− F(a).

This workflow works fine, but subsƟtuƟon offers an alternaƟve that is powerful
and amazing (and a liƩle Ɵme saving).

At its heart, (using the notaƟon of Theorem 44) subsƟtuƟon converts inte-
grals of the form

∫
F ′(g(x))g′(x) dx into an integral of the form

∫
F ′(u) du with

the subsƟtuƟon of u = g(x). The following theorem states how the bounds of
a definite integral can be changed as the subsƟtuƟon is performed.

..
Theorem 47 SubsƟtuƟon with Definite Integrals

Let f and g be differenƟable funcƟons, where the range of g is an interval
I that contains the domain of F. Then∫ b

a
F′
(
g(x)

)
g′(x) dx =

∫ g(b)

g(a)
F ′(u) du.

In effect, Theorem 47 states that once you convert to integraƟng with re-
spect to u, you do not need to switch back to integraƟng with respect to x. A
few examples will help one understand.

.. Example 155 ..Definite integrals and subsƟtuƟon: changing the bounds

Evaluate
∫ 2

0
cos(3x− 1) dx using Theorem 47.

SÊ½çã®ÊÄ Observing the composiƟon of funcƟons, let u = 3x − 1,
hence du = 3dx. As 3dx does not appear in the integrand, divide the laƩer
equaƟon by 2 to get du/3 = dx.

By seƫng u = 3x− 1, we are implicitly staƟng that g(x) = 3x− 1. Theorem
47 states that the new lower bound is g(0) = −1; the new upper bound is
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Figure 6.1: Graphing the areas defined by
the definite integrals of Example 155.
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y = sin x cos x
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Figure 6.2: Graphing the areas defined by
the definite integrals of Example 156.

6.1 SubsƟtuƟon

g(2) = 5. We now evaluate the definite integral:∫ 2

1
cos(3x− 1) dx =

∫ 5

−1
cos u

du
3

=
1
3
sin u

∣∣∣5
−1

=
1
3
(
sin 5− sin(−1)

)
≈ −0.039.

NoƟce how once we converted the integral to be in terms of u, we never went
back to using x.

The graphs in Figure 6.1 tell more of the story. In (a) the area defined by the
original integrand is shaded, whereas in (b) the area defined by the new inte-
grand is shaded. In this parƟcular situaƟon, the areas look very similar; the new
region is “shorter” but “wider,” giving the same area. ...

.. Example 156 Definite integrals and subsƟtuƟon: changing the bounds

Evaluate
∫ π/2

0
sin x cos x dx using Theorem 47.

SÊ½çã®ÊÄ Wesaw the corresponding indefinite integral in Example 143.
In that example we set u = sin x but stated that we could have let u = cos x.
For variety, we do the laƩer here.

Let u = g(x) = cos x, giving du = − sin x dx. The new upper bound is
g(π/2) = 0; the new lower bound is g(0) = 1. Note how the lower bound is
actually larger than the upper bound now. We have∫ π/2

0
sin x cos x dx =

∫ 0

1
u (−1)du

=

∫ 0

1
−u du (switch bounds & change sign)

=

∫ 1

0
u du

=
1
2
u2
∣∣∣1
0

= 1/2.

In Figure 6.2 we have again graphed the two regions defined by our definite
integrals. Unlike the previous example, they bear no resemblance to each other.
However, Theorem 47 guarantees that they have the same area...
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Exercises 6.1
Terms and Concepts
1. SubsƟtuƟon “undoes” what derivaƟve rule?

2. T/F: One can use algebra to rewrite the integrand of an in-
tegral to make it easier to evaluate.

Problems
In Exercises 3 – 14, evaluate the indefinite integral to develop
an understanding of SubsƟtuƟon.

3.
∫

3x2
(
x3 − 5

)7 dx
4.
∫

(2x− 5)
(
x2 − 5x+ 7

)3 dx
5.
∫

x
(
x2 + 1

)8 dx
6.
∫

(12x+ 14)
(
3x2 + 7x− 1

)5 dx
7.
∫

1
2x+ 7

dx

8.
∫

1√
2x+ 3

dx

9.
∫

x√
x+ 3

dx

10.
∫

x3 − x√
x

dx

11.
∫

e
√

x
√
x
dx

12.
∫

x4√
x5 + 1

dx

13.
∫ 1

x + 1
x2

dx

14.
∫

ln(x)
x

dx

In Exercises 15 – 21, use SubsƟtuƟon to evaluate the indefi-
nite integral involving trigonometric funcƟons.

15.
∫

sin2(x) cos(x)dx

16.
∫

cos(3− 6x)dx

17.
∫

sec2(4− x)dx

18.
∫

sec(2x)dx

19.
∫

tan2(x) sec2(x)dx

20.
∫

x cos
(
x2
)
dx

21.
∫

tan2(x)dx

In Exercises 22 – 28, use SubsƟtuƟon to evaluate the indefi-
nite integral involving exponenƟal funcƟons.

22.
∫

e3x−1dx

23.
∫

ex
3
x2dx

24.
∫

ex
2−2x+1(x− 1)dx

25.
∫

ex + 1
ex

dx

26.
∫

ex − e−x

e2x
dx

27.
∫

33xdx

28.
∫

42xdx

In Exercises 29 – 32, use SubsƟtuƟon to evaluate the indefi-
nite integral involving logarithmic funcƟons.

29.
∫

ln x
x

dx

30.
∫

ln2(x)
x

dx

31.
∫ ln

(
x3
)

x
dx

32.
∫

1
x ln (x2)

dx

In Exercises 33 – 38, use SubsƟtuƟon to evaluate the indefi-
nite integral involving raƟonal funcƟons.

33.
∫

x2 + 3x+ 1
x

dx

34.
∫

x3 + x2 + x+ 1
x

dx

35.
∫

x3 − 1
x+ 1

dx

36.
∫

x2 + 2x− 5
x− 3

dx

37.
∫

3x2 − 5x+ 7
x+ 1

dx

38.
∫

x2 + 2x+ 1
x3 + 3x2 + 3x

dx

In Exercises 39 – 48, use SubsƟtuƟon to evaluate the indefi-
nite integral involving inverse trigonometric funcƟons.

39.
∫

7
x2 + 7

dx

40.
∫

3√
9− x2

dx
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41.
∫

14√
5− x2

dx

42.
∫

2
x
√
x2 − 9

dx

43.
∫

5√
x4 − 16x2

dx

44.
∫

x√
1− x4

dx

45.
∫

1
x2 − 2x+ 8

dx

46.
∫

2√
−x2 + 6x+ 7

dx

47.
∫

3√
−x2 + 8x+ 9

dx

48.
∫

5
x2 + 6x+ 34

dx

In Exercises 49 – 73, evaluate the indefinite integral.

49.
∫

x2

(x3 + 3)2
dx

50.
∫ (

3x2 + 2x
) (

5x3 + 5x2 + 2
)8 dx

51.
∫

x√
1− x2

dx

52.
∫

x2 csc2
(
x3 + 1

)
dx

53.
∫

sin(x)
√

cos(x)dx

54.
∫

1
x− 5

dx

55.
∫

7
3x+ 2

dx

56.
∫

3x3 + 4x2 + 2x− 22
x2 + 3x+ 5

dx

57.
∫

2x+ 7
x2 + 7x+ 3

dx

58.
∫

9(2x+ 3)
3x2 + 9x+ 7

dx

59.
∫

−x3 + 14x2 − 46x− 7
x2 − 7x+ 1

dx

60.
∫

x
x4 + 81

dx

61.
∫

2
4x2 + 1

dx

62.
∫

1
x
√
4x2 − 1

dx

63.
∫

1√
16− 9x2

dx

64.
∫

3x− 2
x2 − 2x+ 10

dx

65.
∫

7− 2x
x2 + 12x+ 61

dx

66.
∫

x2 + 5x− 2
x2 − 10x+ 32

dx

67.
∫

x3

x2 + 9
dx

68.
∫

x3 − x
x2 + 4x+ 9

dx

69.
∫

sin(x)
cos2(x) + 1

dx

70.
∫

cos(x)
sin2(x) + 1

dx

71.
∫

cos(x)
1− sin2(x)

dx

72.
∫

3x− 3√
x2 − 2x− 6

dx

73.
∫

x− 3√
x2 − 6x+ 8

dx

In Exercises 74 – 81, evaluate the definite integral.

74.
∫ 3

1

1
x− 5

dx

75.
∫ 6

2
x
√
x− 2dx

76.
∫ π/2

−π/2
sin2 x cos x dx

77.
∫ 1

0
2x(1− x2)4 dx

78.
∫ −1

−2
(x+ 1)ex

2+2x+1 dx

79.
∫ 1

−1

1
1+ x2

dx

80.
∫ 4

2

1
x2 − 6x+ 10

dx

81.
∫ √

3

1

1√
4− x2

dx
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Chapter 6 Techniques of AnƟdifferenƟaƟon

6.2 IntegraƟon by Parts
Here’s a simple integral that we can’t yet do:∫

x cos x dx.

It’s a simple maƩer to take the derivaƟve of the integrand using the Product
Rule, but there is no Product Rule for integrals. However, this secƟon introduces
IntegraƟon by Parts, a method of integraƟon that is based on the Product Rule
for derivaƟves. It will enable us to evaluate this integral.

The Product Rule says that if u and v are funcƟons of x, then (uv)′ = u′v+uv′.
For simplicity, we’ve wriƩen u for u(x) and v for v(x). Suppose we integrate both
sides with respect to x. This gives∫

(uv)′ dx =
∫
(u′v+ uv′) dx.

By the Fundamental Theoremof Calculus, the leŌ side integrates to uv. The right
side can be broken up into two integrals, and we have

uv =
∫

u′v dx+
∫

uv′ dx.

Solving for the second integral we have∫
uv′ dx = uv−

∫
u′v dx.

Using differenƟal notaƟon, we can write du = u′(x)dx and dv = v′(x)dx and the
expression above can be wriƩen as follows:∫

u dv = uv−
∫

v du.

This is the IntegraƟon by Parts formula. For reference purposes, we state this in
a theorem.

..
Theorem 48 IntegraƟon by Parts

Let u and v be differenƟable funcƟons of x on an interval I containing a
and b. Then ∫

u dv = uv−
∫

v du,

and ∫ x=b

x=a
u dv = uv

∣∣∣b
a
−
∫ x=b

x=a
v du.
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6.2 IntegraƟon by Parts

Let’s try an example to understand our new technique.

.. Example 157 IntegraƟng using IntegraƟon by Parts

Evaluate
∫

x cos x dx.

SÊ½çã®ÊÄ The key to IntegraƟon by Parts is to idenƟfy part of the in-
tegrand as “u” and part as “dv.” Regular pracƟce will help one make good iden-
ƟficaƟons, and later we will introduce some principles that help. For now, let
u = x and dv = cos x dx.

It is generally useful to make a small table of these values as done below.
Right nowwe only know u and dv as shown on the leŌ of Figure 6.3; on the right
we fill in the rest of what we need. If u = x, then du = dx. Since dv = cos x dx,
v is an anƟderivaƟve of cos x. We choose v = sin x.

u = x v = ?
du = ? dv = cos x dx

⇒ u = x v = sin x
du = dx dv = cos x dx

Figure 6.3: Seƫng up IntegraƟon by Parts.

Now subsƟtute all of this into the IntegraƟon by Parts formula, giving∫
x cos x = x sin x−

∫
sin x dx.

We can then integrate sin x to get− cos x+ C and overall our answer is∫
x cos x dx = x sin x+ cos x+ C.

Note how the anƟderivaƟve contains a product, x sin x. This product is what
makes IntegraƟon by Parts necessary. ..

The example above demonstrates how IntegraƟon by Parts works in general.
We try to idenƟfy u and dv in the integral we are given, and the key is that we
usually want to choose u and dv so that du is simpler than u and v is hopefully
not too much more complicated than dv. This will mean that the integral on the
right side of the IntegraƟon by Parts formula,

∫
v du will be simpler to integrate

than the original integral
∫
u dv.

In the example above, we chose u = x and dv = cos x dx. Then du = dxwas
simpler than u and v = sin x is no more complicated than dv. Therefore, instead
of integraƟng x cos x dx, we could integrate sin x dx, which we know how to do.

A useful mnemonic for helping to determine u is “LIATE,” where

L = Logarithmic, I = Inverse Trig., A = Algebraic (polynomials),
T = Trigonometric, and E = ExponenƟal.

Notes:
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Chapter 6 Techniques of AnƟdifferenƟaƟon

If the integrand contains both a logarithmic and an algebraic term, in general
leƫng u be the logarithmic term works best, as indicated by L coming before A
in LIATE.

We now consider another example.

.. Example 158 IntegraƟng using IntegraƟon by Parts

Evaluate
∫

xex dx.

SÊ½çã®ÊÄ The integrand contains an algebraic term (x) and an expo-
nenƟal term (ex). Our mnemonic suggests leƫng u be the algebraic term, so we
choose u = x and dv = ex dx. Then du = dx and v = ex as indicated by the
tables below.

u = x v = ?
du = ? dv = ex dx

⇒ u = x v = ex

du = dx dv = ex dx

Figure 6.4: Seƫng up IntegraƟon by Parts.

We see du is simpler than u, while there is no change in going from dv to v.
This is good. The IntegraƟon by Parts formula gives∫

xex dx = xex −
∫

ex dx.

The integral on the right is simple; our final answer is∫
xex dx = xex − ex + C.

Note again how the anƟderivaƟves contain a product term. ..

.. Example 159 ..IntegraƟng using IntegraƟon by Parts

Evaluate
∫

x2 cos x dx.

SÊ½çã®ÊÄ Themnemonic suggests leƫngu = x2 insteadof the trigono-
metric funcƟon, hence dv = cos x dx. Then du = 2x dx and v = sin x as shown
below.

u = x2 v = ?
du = ? dv = cos x dx

⇒ u = x2 v = sin x
du = 2x dx dv = cos x dx

Figure 6.5: Seƫng up IntegraƟon by Parts.
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6.2 IntegraƟon by Parts

The IntegraƟon by Parts formula gives∫
x2 cos x dx = x2 sin x−

∫
2x sin x dx.

At this point, the integral on the right is indeed simpler than the one we started
with, but to evaluate it, we need to do IntegraƟon by Parts again. Here we
choose u = 2x and dv = sin x and fill in the rest below.

u = 2x v = ?
du = ? dv = sin x dx

⇒ u = 2x v = − cos x
du = 2 dx dv = sin x dx

Figure 6.6: Seƫng up IntegraƟon by Parts (again).∫
x2 cos x dx = x2 sin x−

(
−2x cos x−

∫
−2 cos x dx

)
.

The integral all the way on the right is now something we can evaluate. It eval-
uates to −2 sin x. Then going through and simplifying, being careful to keep all
the signs straight, our answer is∫

x2 cos x dx = x2 sin x+ 2x cos x− 2 sin x+ C....

.. Example 160 ..IntegraƟng using IntegraƟon by Parts

Evaluate
∫

ex cos x dx.

SÊ½çã®ÊÄ This is a classic problem. Our mnemonic suggests leƫng u
be the trigonometric funcƟon instead of the exponenƟal. In this parƟcular ex-
ample, one can let u be either cos x or ex; to demonstrate that we do not have
to follow LIATE, we choose u = ex and hence dv = cos x dx. Then du = ex dx
and v = sin x as shown below.

u = ex v = ?
du = ? dv = cos x dx

⇒ u = ex v = sin x
du = ex dx dv = cos x dx

Figure 6.7: Seƫng up IntegraƟon by Parts.

NoƟce that du is no simpler than u, going against our general rule (but bear
with us). The IntegraƟon by Parts formula yields∫

ex cos x dx = ex sin x−
∫

ex sin x dx.
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Chapter 6 Techniques of AnƟdifferenƟaƟon

The integral on the right is not much different than the one we started with, so
it seems like we have goƩen nowhere. Let’s sƟck keep working and apply Inte-
graƟon by Parts to the new integral, using u = ex and dv = sin x dx. This leads
us to the following:

u = ex v = ?
du = ? dv = sin x dx

⇒ u = ex v = − cos x
du = ex dx dv = sin x dx

Figure 6.8: Seƫng up IntegraƟon by Parts (again).

The IntegraƟon by Parts formula then gives:∫
ex cos x dx = ex sin x−

(
−ex cos x−

∫
−ex cos x dx

)
= ex sin x+ ex cos x−

∫
ex cos x dx.

It seems we are back right where we started, as the right hand side contains∫
ex cos x dx. But this actually a good thing.

Add
∫

ex cos x dx to both sides. This gives

2
∫

ex cos x dx = ex sin x+ ex cos x

Now divide both sides by 2:∫
ex cos x dx =

1
2
(
ex sin x+ ex cos x

)
.

Simplifying a liƩle and adding the constant of integraƟon, our answer is thus∫
ex cos x dx =

1
2
ex (sin x+ cos x) + C....

.. Example 161 ..IntegraƟng using IntegraƟon by Parts: anƟderivaƟve of ln x

Evaluate
∫

ln x dx.

SÊ½çã®ÊÄ Onemay have noƟced that we have rules for integraƟng the
familiar trigonometric funcƟons and ex, but we have not yet given a rule for in-
tegraƟng ln x. That is because ln x can’t easily be done with any of the rules we
have learned up to this point. But it can be done by a clever applicaƟon of Inte-
graƟon by Parts. Set u = ln x and dv = dx. This is a good, sneaky trick to learn
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6.2 IntegraƟon by Parts

as it can help in other situaƟons. This determines du = (1/x) dx and v = x as
shown below.

u = ln x v = ?
du = ? dv = dx

⇒ u = ln x v = x
du = 1/x dx dv = dx

Figure 6.9: Seƫng up IntegraƟon by Parts.

Puƫng this all together in the IntegraƟon by Parts formula, things work out
very nicely: ∫

ln x dx = x ln x−
∫

x
1
x
dx.

The new integral simplifies to
∫
1 dx, which is about as simple as things get. Its

integral is x+ C and our answer is∫
ln x dx = x ln x− x+ C.

...

.. Example 162 IntegraƟng using Int. by Parts: anƟderivaƟve of arctan x

Evaluate
∫

arctan x dx.

SÊ½çã®ÊÄ The same sneaky trick we used above works here. Let u =
arctan x and dv = dx. Then du = 1/(1 + x2) dx and v = x. The IntegraƟon by
Parts formula gives∫

arctan x dx = x arctan x−
∫

x
1+ x2

dx.

The integral on the right can be done by subsƟtuƟon. Taking u = 1+ x2, we get
du = 2x dx. The integral then becomes∫

arctan x dx = x arctan x− 1
2

∫
1
u
du.

The integral on the right evaluates to ln |u|+ C, which becomes ln(1+ x2) + C.
Therefore, the answer is∫

arctan x dx = x arctan x− ln(1+ x2) + C.
..
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Chapter 6 Techniques of AnƟdifferenƟaƟon

SubsƟtuƟon Before IntegraƟon

When taking derivaƟves, it was common to employ mulƟple rules (such as,
using both theQuoƟent and the Chain Rules). It should then come as no surprise
that some integrals are best evaluated by combining integraƟon techniques. In
parƟcular, here we illustrate making an “unusual” subsƟtuƟon first before using
IntegraƟon by Parts.

.. Example 163 IntegraƟon by Parts aŌer subsƟtuƟon

Evaluate
∫

cos(ln x) dx.

SÊ½çã®ÊÄ The integrand contains a composiƟon of funcƟons, leading
us to think SubsƟtuƟon would be beneficial. Leƫng u = ln x, we have du =
1/x dx. This seems problemaƟc, as we do not have a 1/x in the integrand. But
consider:

du =
1
x
dx ⇒ x · du = dx.

Since u = ln x, we can use inverse funcƟons and conclude that x = eu. Therefore
we have that

dx = x · du
= eu du.

We can thus replace ln x with u and dx with eu du. Thus we rewrite our integral
as ∫

cos(ln x) dx =
∫

eu cos u du.

We evaluated this integral in Example 160. Using the result there, we have:∫
cos(ln x) dx =

∫
eu cos u du

=
1
2
eu
(
sin u+ cos u

)
+ C

=
1
2
eln x
(
sin(ln x) + cos(ln x)

)
+ C

=
1
2
x
(
sin(ln x) + cos(ln x)

)
+ C

..

Definite Integrals and IntegraƟon By Parts

So far we have focused only on evaluaƟng indefinite integrals. Of course, we
can use IntegraƟon by Parts to evaluate definite integrals as well, as Theorem
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6.2 IntegraƟon by Parts

48 states. We do so in the next example.

.. Example 164 Definite integraƟon using IntegraƟon by Parts

Evaluate
∫ 2

1
x2 ln x dx.

SÊ½çã®ÊÄ Once again, our mnemonic suggests we let u = ln x. (We
could let u = x2 and dv = ln x dx, as we now know the anƟderivaƟves of ln x.
However, leƫng u = ln x makes our next integral much simpler as it removes
the logarithm from the integral enƟrely.)

So we have u = ln x and dv = x2 dx. We then get du = (1/x) dx and
v = x3/3 as shown below.

u = ln x v = ?

du = ? dv = x2 dx
⇒ u = ln x v = x3/3

du = 1/x dx dv = x2 dx

Figure 6.10: Seƫng up IntegraƟon by Parts.

The IntegraƟon by Parts formula then gives∫ 2

1
x2 ln x dx =

x3

3
ln x
∣∣∣∣2
1
−
∫ 2

1

x3

3
1
x
dx

=
x3

3
ln x
∣∣∣∣2
1
−
∫ 2

1

x2

3
dx

=
x3

3
ln x
∣∣∣∣2
1
− x3

9

∣∣∣∣2
1

=

(
x3

3
ln x− x3

9

) ∣∣∣∣2
1

=

(
8
3
ln 2− 8

9

)
−
(
1
3
ln 1− 1

9

)
=

8
3
ln 2− 7

9
≈ 1.07...

In general, IntegraƟon by Parts is useful for integraƟng certain products of
funcƟons, like

∫
xex dx or

∫
x3 sin x dx. It is also useful for integrals involving

logarithms and inverse trigonometric funcƟons.
As stated before, integraƟon is generally more difficult than derivaƟon. We

are developing tools for handling a large array of integrals, and experience will
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Chapter 6 Techniques of AnƟdifferenƟaƟon

tell us when one tool is preferable/necessary over another. For instance, con-
sider the three similar–looking integrals∫

xex dx,
∫

xex
2
dx and

∫
xex

3
dx.

While the first is calculated easilywith IntegraƟonby Parts, the second is best
approached with SubsƟtuƟon. Taking things one step further, the third integral
has no answer in terms of elementary funcƟons, so none of the methods we
learn in calculus will get us the exact answer.

Regardless of these issues, IntegraƟon by Parts is a very useful method, sec-
ond only to subsƟtuƟon.
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Exercises 6.2
Terms and Concepts
1. T/F: IntegraƟon by Parts is useful in evaluaƟng integrands

that contain products of funcƟons.
2. T/F: IntegraƟon by Parts can be thought of as the “opposite

of the Chain Rule.”
3. For what is “LIATE” useful?

Problems
In Exercises 4 – 33, evaluate the given indefinite integral.

4.
∫

x sin x dx

5.
∫

xe−x dx

6.
∫

x2 sin x dx

7.
∫

x3 sin x dx

8.
∫

xex
2
dx

9.
∫

x3ex dx

10.
∫

xe−2x dx

11.
∫

ex sin x dx

12.
∫

e2x cos x dx

13.
∫

e2x sin(3x) dx

14.
∫

e5x cos(5x) dx

15.
∫

sin x cos x dx

16.
∫

sin−1 x dx

17.
∫

tan−1(2x) dx

18.
∫

x tan−1 x dx

19.
∫

sin−1 x dx

20.
∫

x ln x dx

21.
∫

(x− 2) ln x dx

22.
∫

x ln(x− 1) dx

23.
∫

x ln(x2) dx

24.
∫

x2 ln x dx

25.
∫

(ln x)2 dx

26.
∫

(ln(x+ 1))2 dx

27.
∫

x sec2 x dx

28.
∫

x csc2 x dx

29.
∫

x
√
x− 2 dx

30.
∫

x
√
x2 − 2 dx

31.
∫

sec x tan x dx

32.
∫

x sec x tan x dx

33.
∫

x csc x cot x dx

In Exercises 34 – 38, evaluate the indefinite integral aŌer first
making a subsƟtuƟon.

34.
∫

sin(ln x) dx

35.
∫

sin(
√
x) dx

36.
∫

ln(
√
x) dx

37.
∫

e
√

x dx

38.
∫

eln x dx

In Exercises 39 – 47, evaluate the definite integral. Note: the
corresponding indefinite integrals appear in Exercises 4 – 12.

39.
∫ π

0
x sin x dx

40.
∫ 1

−1
xe−x dx

41.
∫ π/4

−π/4
x2 sin x dx

42.
∫ π/2

−π/2
x3 sin x dx

43.
∫ √

ln 2

0
xex

2
dx

44.
∫ 1

0
x3ex dx

45.
∫ 2

1
xe−2x dx

46.
∫ π

0
ex sin x dx

47.
∫ π/2

−π/2
e2x cos x dx
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6.3 Trigonometric Integrals

FuncƟons involving trigonometric funcƟons are useful as they are good at de-
scribing periodic behavior. This secƟon describes several techniques for finding
anƟderivaƟves of certain combinaƟons of trigonometric funcƟons.

Integrals of the form
∫

sinm x cosn x dx

In learning the technique of SubsƟtuƟon, we saw the integral
∫
sin x cos x dx

in Example 143. The integraƟon was not difficult, and one could easily evaluate
the indefinite integral by leƫng u = sin x or by leƫng u = cos x. This integral is
easy since the power of both sine and cosine is 1.

Wegeneralize this integral and consider integrals of the form
∫
sinm x cosn x dx,

where m, n are nonnegaƟve integers. Our strategy for evaluaƟng these inte-
grals is to use the idenƟty cos2 x + sin2 x = 1 to convert high powers of one
trigonometric funcƟon into the other, leaving a single sine or cosine term in the
integrand. We summarize the general technique in the following Key Idea.

..
Key Idea 11 Integrals Involving Powers of Sine and Cosine

Consider
∫

sinm x cosn x dx, wherem, n are nonnegaƟve integers.

1. Ifm is odd, thenm = 2k+ 1 for some integer k. Rewrite

sinm x = sin2k+1 x = sin2k x sin x = (sin2 x)k sin x = (1− cos2 x)k sin x.

Then ∫
sinm x cosn x dx =

∫
(1− cos2 x)k sin x cosn x dx = −

∫
(1− u2)kun du,

where u = cos x and du = − sin x dx.

2. If n is odd, then using subsƟtuƟons similar to that outlined above we have∫
sinm x cosn x dx =

∫
um(1− u2)k du,

where u = sin x and du = cos x dx.

3. If bothm and n are even, use the power–reducing idenƟƟes

cos2 x =
1+ cos(2x)

2
and sin2 x =

1− cos(2x)
2

to reduce the degree of the integrand. Expand the result and apply the principles
of this Key Idea again.
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We pracƟce applying Key Idea 11 in the next examples.

.. Example 165 IntegraƟng powers of sine and cosine

Evaluate
∫

sin5 x cos8 x dx.

SÊ½çã®ÊÄ The power of the sine term is odd, so we rewrite sin5 x as

sin5 x = sin4 x sin x = (sin2 x)2 sin x = (1− cos2 x)2 sin x.

Our integral is now
∫
(1− cos2 x)2 cos8 x sin x dx. Let u = cos x, hence du =

− sin x dx. Making the subsƟtuƟon and expanding the integrand gives∫
(1−cos2)2 cos8 x sin x dx = −

∫
(1−u2)2u8 du = −

∫ (
1−2u2+u4

)
u8 du = −

∫ (
u8−2u10+u12

)
du.

This final integral is not difficult to evaluate, giving

−
∫ (

u8 − 2u10 + u12
)
du = −1

9
u9 +

2
11

u11 − 1
13

u13 + C

= −1
9
cos9 x+

2
11

cos11 x− 1
13

cos13 x+ C.

..

.. Example 166 ..IntegraƟng powers of sine and cosine

Evaluate
∫

sin5 x cos9 x dx.

SÊ½çã®ÊÄ Thepowers of both the sine and cosine terms are odd, there-
fore we can apply the techniques of Key Idea 11 to either power. We choose to
work with the power of the cosine term since the previous example used the
sine term’s power.

We rewrite cos9 x as

cos9 x = cos8 x cos x

= (cos2 x)4 cos x

= (1− sin2 x)4 cos x

= (1− 4 sin2 x+ 6 sin4 x− 4 sin6 x+ sin8 x) cos x.

We rewrite the integral as∫
sin5 x cos9 x dx =

∫
sin5 x

(
1− 4 sin2 x+ 6 sin4 x− 4 sin6 x+ sin8 x

)
cos x dx.
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Figure 6.11: A plot of f(x) and g(x) from
Example 166 and the Technology Note.
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Now subsƟtute and integrate, using u = sin x and du = cos x dx.∫
sin5 x

(
1− 4 sin2 x+ 6 sin4 x− 4 sin6 x+ sin8 x

)
cos x dx =

∫
u5(1− 4u2 + 6u4 − 4u6 + u8) du =

∫ (
u5 − 4u7 + 6u9 − 4u11 + u13

)
du

=
1
6
u6 − 1

2
u8 +

3
5
u10 − 1

3
u12 +

1
14

u14 + C

=
1
6
sin6 x− 1

2
sin8 x+

3
5
sin10 x− 1

3
sin12 x+

1
14

sin14 x+ C
...

Technology Note: The work we are doing here can be a bit tedious, but the
skills it develops (problem solving, algebraic manipulaƟon, etc.) are important.
Nowadays problems of this sort are oŌen solved using a computer algebra sys-
tem. The powerful programMathemaƟca® integrates

∫
sin5 x cos9 x dx as

f(x) = −45 cos(2x)
16384

−5 cos(4x)
8192

+
19 cos(6x)
49152

+
cos(8x)
4096

− cos(10x)
81920

− cos(12x)
24576

− cos(14x)
114688

,

which clearly has a different form than our answer in Example 166, which is

g(x) =
1
6
sin6 x− 1

2
sin8 x+

3
5
sin10 x− 1

3
sin12 x+

1
14

sin14 x.

Figure 6.11 shows a graph of f and g; they are clearly not equal. We leave it to
the reader to recognize why both answers are correct.

.. Example 167 ..IntegraƟng powers of sine and cosine

Evaluate
∫

cos4 x sin2 x dx.

SÊ½çã®ÊÄ The powers of sine and cosine are both even, so we employ
the power–reducing formulas and algebra as follows.∫

cos4 x sin2 x dx =
∫ (

1+ cos(2x)
2

)2(1− cos(2x)
2

)
dx

=

∫
1+ 2 cos(2x) + cos2(2x)

4
· 1− cos(2x)

2
dx

=

∫
1
8
(
1+ cos(2x)− cos2(2x)− cos3(2x)

)
dx

The cos(2x) term is easy to integrate, especially with Key Idea 10. The cos2(2x)
term is another trigonometric integral with an even power, requiring the power–
reducing formula again. The cos3(2x) term is a cosine funcƟon with an odd
power, requiring a subsƟtuƟon as done before. We integrate each in turn below.
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∫
cos(2x) dx =

1
2
sin(2x) + C.

∫
cos2(2x) dx =

∫
1+ cos(4x)

2
dx =

1
2
(
x+

1
4
sin(4x)

)
+ C.

Finally, we rewrite cos3(2x) as

cos3(2x) = cos2(2x) cos(2x) =
(
1− sin2(2x)

)
cos(2x).

Leƫng u = sin(2x), we have du = 2 cos(2x) dx, hence∫
cos3(2x) dx =

∫ (
1− sin2(2x)

)
cos(2x) dx

=

∫
1
2
(1− u2) du

=
1
2

(
u− 1

3
u3
)
+ C

=
1
2

(
sin(2x)− 1

3
sin3(2x)

)
+ C

Puƫng all the pieces together, we have∫
cos4 x sin2 x dx =

∫
1
8
(
1+ cos(2x)− cos2(2x)− cos3(2x)

)
dx

=
1
8

[
x+

1
2
sin(2x)− 1

2
(
x+

1
4
sin(4x)

)
− 1

2

(
sin(2x)− 1

3
sin3(2x)

)]
+ C

=
1
8

[1
2
x− 1

8
sin(4x) +

1
6
sin3(2x)

]
+ C

...

The process above was a bit long and tedious, but being able to work a prob-
lem such as this from start to finish is important.

Integrals of the form
∫

sin(mx) sin(nx) dx,
∫

cos(mx) cos(nx) dx,

and
∫

sin(mx) cos(nx) dx.

FuncƟons that contain products of sines and cosines of differing periods are
important in many applicaƟons including the analysis of sound waves. Integrals
of the form∫

sin(mx) sin(nx) dx,
∫

cos(mx) cos(nx) dx and
∫

sin(mx) cos(nx) dx

Notes:
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are best approached by first applying the Product to Sum Formulas found in the
back cover of this text, namely

sin(mx) sin(nx) =
1
2

[
cos
(
(m− n)x

)
− cos

(
(m+ n)x

)]
cos(mx) cos(nx) =

1
2

[
cos
(
(m− n)x

)
+ cos

(
(m+ n)x

)]
sin(mx) cos(nx) =

1
2

[
sin
(
(m− n)x

)
+ sin

(
(m+ n)x

)]
.. Example 168 IntegraƟng products of sin(mx) and cos(nx)

Evaluate
∫

sin(5x) cos(2x) dx.

SÊ½çã®ÊÄ The applicaƟon of the formula and subsequent integraƟon
are straighƞorward:∫

sin(5x) cos(2x) dx =
∫

1
2

[
sin(3x) + sin(7x)

]
dx

= −1
6
cos(3x)− 1

14
cos(7x) + C

..

Integrals of the form
∫

tanm x secn x dx.

When evaluaƟng integrals of the form
∫
sinm x cosn x dx, the Pythagorean

Theorem allowed us to convert even powers of sine into even powers of cosine,
and vise–versa. If, for instance, the power of sine was odd, we pulled out one
sin x and converted the remaining even power of sin x into a funcƟon using pow-
ers of cos x, leading to an easy subsƟtuƟon.

The same basic strategy applies to integrals of the form
∫
tanm x secn x dx,

albeit a bit more nuanced. The following three facts will prove useful:

• d
dx (tan x) = sec2 x,

• d
dx (sec x) = sec x tan x , and

• 1+ tan2 x = sec2 x (the Pythagorean Theorem).

If the integrand can be manipulated to separate a sec2 x term with the re-
maining secant power even, or if a sec x tan x term can be separated with the
remaining tan x power even, the Pythagorean Theorem can be employed, lead-
ing to a simple subsƟtuƟon. This strategy is outlined in the following Key Idea.
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..
Key Idea 12 Integrals Involving Powers of Tangent and Secant

Consider
∫

tanm x secn x dx, wherem, n are nonnegaƟve integers.

1. If n is even, then n = 2k for some integer k. Rewrite secn x as

secn x = sec2k x = sec2k−2 x sec2 x = (1+ tan2 x)k−1 sec2 x.

Then ∫
tanm x secn x dx =

∫
tanm x(1+ tan2 x)k−1 sec2 x dx =

∫
um(1+ u2)k−1 du,

where u = tan x and du = sec2 x dx.

2. Ifm is odd, thenm = 2k+ 1 for some integer k. Rewrite tanm x secn x as

tanm x secn x = tan2k+1 x secn x = tan2k x secn−1 x sec x tan x = (sec2 x− 1)k secn−1 x sec x tan x.

Then ∫
tanm x secn x dx =

∫
(sec2 x− 1)k secn−1 x sec x tan x dx =

∫
(u2 − 1)kun−1 du,

where u = sec x and du = sec x tan x dx.

3. If n is odd andm is even, thenm = 2k for some integer k. Convert tanm x to (sec2 x− 1)k. Expand
the new integrand and use IntegraƟon By Parts, with dv = sec2 x dx.

4. Ifm is even and n = 0, rewrite tanm x as

tanm x = tanm−2 x tan2 x = tanm−2 x(sec2 x− 1) = tanm−2 sec2 x− tanm−2 x.

So ∫
tanm x dx =

∫
tanm−2 sec2 x dx︸ ︷︷ ︸
apply rule #1

−
∫

tanm−2 x dx︸ ︷︷ ︸
apply rule #4 again

.

The techniques described in items1 and2of Key Idea 12 are relaƟvely straight-
forward, but the techniques in items 3 and 4 can be rather tedious. A few exam-
ples will help with these methods.
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.. Example 169 IntegraƟng powers of tangent and secant

Evaluate
∫

tan2 x sec6 x dx.

SÊ½çã®ÊÄ Since the power of secant is even, we use rule #1 from Key
Idea 12 and pull out a sec2 x in the integrand. We convert the remaining powers
of secant into powers of tangent.∫

tan2 x sec6 x dx =
∫

tan2 x sec4 x sec2 x dx

=

∫
tan2 x

(
1+ tan2 x

)2 sec2 x dx
Now subsƟtute, with u = tan x, with du = sec2 x dx.

=

∫
u2
(
1+ u2

)2 du
We leave the integraƟon and subsequent subsƟtuƟon to the reader. The final
answer is

=
1
3
tan3 x+

2
5
tan5 x+

1
7
tan7 x+ C.

..

.. Example 170 ..IntegraƟng powers of tangent and secant

Evaluate
∫

sec3 x dx.

SÊ½çã®ÊÄ We apply rule #3 from Key Idea 12 as the power of secant is
odd and the power of tangent is even (0 is an even number). We use IntegraƟon
by Parts; the rule suggests leƫng dv = sec2 x dx, meaning that u = sec x.

u = sec x v = ?

du = ? dv = sec2 x dx
⇒ u = sec x v = tan x

du = sec x tan x dx dv = sec2 x dx

Figure 6.12: Seƫng up IntegraƟon by Parts.

Employing IntegraƟon by Parts, we have∫
sec3 x dx =

∫
sec x︸︷︷︸

u

· sec2 x dx︸ ︷︷ ︸
dv

= sec x tan x−
∫

sec x tan2 x dx.
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This new integral also requires applying rule #3 of Key Idea 12:

= sec x tan x−
∫

sec x
(
sec2 x− 1

)
dx

= sec x tan x−
∫

sec3 x dx+
∫

sec x dx

= sec x tan x−
∫

sec3 x dx+ ln | sec x+ tan x|

In previous applicaƟons of IntegraƟon by Parts, we have seen where the original
integral has reappeared in our work. We resolve this by adding

∫
sec3 x dx to

both sides, giving:

2
∫

sec3 x dx = sec x tan x+ ln | sec x+ tan x|∫
sec3 x dx =

1
2

(
sec x tan x+ ln | sec x+ tan x|

)
+ C

...

We give one more example.

.. Example 171 ..IntegraƟng powers of tangent and secant

Evaluate
∫

tan6 x dx.

SÊ½çã®ÊÄ We employ rule #4 of Key Idea 12.∫
tan6 x dx =

∫
tan4 x tan2 x dx

=

∫
tan4 x

(
sec2 x− 1

)
dx

=

∫
tan4 x sec2 x dx−

∫
tan4 x dx

Integrate the first integral with subsƟtuƟon, u = tan x; integrate the second by
employing rule #4 again.

=
1
5
tan5 x−

∫
tan2 x tan2 x dx

=
1
5
tan5 x−

∫
tan2 x

(
sec2 x− 1

)
dx

=
1
5
tan5 x−

∫
tan2 x sec2 x dx+

∫
tan2 x dx

Notes:
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Again, use subsƟtuƟon for the first integral and rule #4 for the second.

=
1
5
tan5 x− 1

3
tan3 x+

∫ (
sec2 x− 1

)
dx

=
1
5
tan5 x− 1

3
tan3 x+ tan x− x+ C

...
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Exercises 6.3
Terms and Concepts

1. T/F:
∫

sin2 x cos2 x dx cannot be evaluated using the tech-

niques described in this secƟon since both powers of sin x
and cos x are even.

2. T/F:
∫

sin3 x cos3 x dx cannot be evaluated using the tech-

niques described in this secƟon since both powers of sin x
and cos x are odd.

3. T/F: This secƟon addresses how to evaluate indefinite inte-

grals such as
∫

sin5 x tan3 x dx.

Problems
In Exercises 4 – 26, evaluate the indefinite integral.

4.
∫

sin x cos4 x dx

5.
∫

sin3 x cos x dx

6.
∫

sin3 x cos2 x dx

7.
∫

sin3 x cos3 x dx

8.
∫

sin6 x cos5 x dx

9.
∫

sin2 x cos7 x dx

10.
∫

sin2 x cos2 x dx

11.
∫

sin(5x) cos(3x) dx

12.
∫

sin(x) cos(2x) dx

13.
∫

sin(3x) sin(7x) dx

14.
∫

sin(πx) sin(2πx) dx

15.
∫

cos(x) cos(2x) dx

16.
∫

cos
(π
2
x
)
cos(πx) dx

17.
∫

tan4 x sec2 x dx

18.
∫

tan2 x sec4 x dx

19.
∫

tan3 x sec4 x dx

20.
∫

tan3 x sec2 x dx

21.
∫

tan3 x sec3 x dx

22.
∫

tan5 x sec5 x dx

23.
∫

tan4 x dx

24.
∫

sec5 x dx

25.
∫

tan2 x sec x dx

26.
∫

tan2 x sec3 x dx

In Exercises 27 – 33, evaluate the definite integral. Note: the
corresponding indefinite integrals appear in the previous set.

27.
∫ π

0
sin x cos4 x dx

28.
∫ π

−π

sin3 x cos x dx

29.
∫ π/2

−π/2
sin2 x cos7 x dx

30.
∫ π/2

0
sin(5x) cos(3x) dx

31.
∫ π/2

−π/2
cos(x) cos(2x) dx

32.
∫ π/4

0
tan4 x sec2 x dx

33.
∫ π/4

−π/4
tan2 x sec4 x dx

285



Chapter 6 Techniques of AnƟdifferenƟaƟon

6.4 Trigonometric SubsƟtuƟon
In SecƟon 5.2 we defined the definite integral as the “signed area under the
curve.” In that secƟon we had not yet learned the Fundamental Theorem of
Calculus, so we evaluated special definite integrals which described nice, geo-
metric shapes. For instance, we were able to evaluate∫ 3

−3

√
9− x2 dx =

9π
2

(6.1)

as we recognized that f(x) =
√
9− x2 described the upper half of a circle with

radius 3.
We have since learned a number of integraƟon techniques, including Sub-

sƟtuƟon and IntegraƟon by Parts, yet we are sƟll unable to evaluate the above
integral without resorƟng to a geometric interpretaƟon. This secƟon introduces
Trigonometric SubsƟtuƟon, amethod of integraƟon that fills this gap in our inte-
graƟon skill. This techniqueworks on the sameprinciple as SubsƟtuƟon as found
in SecƟon 6.1, though it can feel “backward.” In SecƟon 6.1, we set u = f(x), for
some funcƟon f, and replaced f(x) with u. In this secƟon, we will set x = f(θ),
where f is a trigonometric funcƟon, then replace x with f(θ).

We start by demonstraƟng this method in evaluaƟng the integral in (6.1).
AŌer the example, we will generalize the method and give more examples.

.. Example 172 ..Using Trigonometric SubsƟtuƟon

Evaluate
∫ 3

−3

√
9− x2 dx.

SÊ½çã®ÊÄ We begin by noƟng that 9 sin2 θ + 9 cos2 θ = 9, and hence
9 cos2 θ = 9−9 sin2 θ. If we let x = 3 sin θ, then 9−x2 = 9−9 sin2 θ = 9 cos2 θ.

Seƫng x = 3 sin θ gives dx = 3 cos θ dθ. We are almost ready to subsƟtute.
We also wish to change our bounds of integraƟon. The bound x = −3 corre-
sponds to θ = −π/2 (for when θ = −π/2, x = 3 sin θ = −3). Likewise, the
bound of x = 3 is replaced by the bound θ = π/2. Thus∫ 3

−3

√
9− x2 dx =

∫ π/2

−π/2

√
9− 9 sin2 θ(3 cos θ) dθ

=

∫ π/2

−π/2
3
√
9 cos2 θ cos θ dθ

=

∫ π/2

−π/2
3|3 cos θ| cos θ dθ.

On [−π/2, π/2], cos θ is always posiƟve, so we can drop the absolute value bars,
then employ a power–reducing formula:
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=

∫ π/2

−π/2
9 cos2 θ dθ

=

∫ π/2

−π/2

9
2
(
1+ cos(2θ)

)
dθ

=
9
2
(
θ +

1
2
sin(2θ)

)∣∣∣∣∣
π/2

−π/2

=
9
2
π.

This matches our answer from before. ...

We now describe in detail Trigonometric SubsƟtuƟon. This method excels
when dealing with integrands that contain

√
a2 − x2,

√
x2 − a2 and

√
x2 + a2.

The following Key Idea outlines the procedure for each case, followed by more
examples.

..
Key Idea 13 Trigonometric SubsƟtuƟon

(a) For integrands containing
√
a2 − x2:

Let x = a sin θ, dx = a cos θ dθ

Thus θ = sin−1(x/a), for−π/2 ≤ θ ≤ π/2.

On this interval, cos θ ≥ 0, so
√
a2 − x2 = a cos θ

.. √
a2 − x2

.

x

.

a

. θ

(b) For integrands containing
√
x2 + a2:

Let x = a tan θ, dx = a sec2 θ dθ

Thus θ = tan−1(x/a), for−π/2 < θ < π/2.

On this interval, sec θ > 0, so
√
x2 + a2 = a sec θ

..
a

.

x

.

√ x2 +
a2

. θ

(c) For integrands containing
√
x2 − a2:

Let x = a sec θ, dx = a sec θ tan θ dθ

Thus θ = sec−1(x/a). If x/a ≥ 1, then 0 ≤ θ < π/2;
if x/a ≤ −1, then π/2 < θ ≤ π.

We restrict our work to where x ≥ a, so x/a ≥ 1, and
0 ≤ θ < π/2. On this interval, tan θ ≥ 0, so
√
x2 − a2 = a tan θ

..
a

.

√
x2 − a2

.

x

. θ
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.. Example 173 Using Trigonometric SubsƟtuƟon

Evaluate
∫

1√
5+ x2

dx.

SÊ½çã®ÊÄ Using Key Idea 13(b), we recognize a =
√
5 and set x =√

5 tan θ. This makes dx =
√
5 sec2 θ dθ. We will use the fact that

√
5+ x2 =√

5+ 5 tan2 θ =
√
5 sec2 θ =

√
5 sec θ. SubsƟtuƟng, we have:∫

1√
5+ x2

dx =
∫

1√
5+ 5 tan2 θ

√
5 sec2 θ dθ

=

∫ √
5 sec2 θ√
5 sec θ

dθ

=

∫
sec θ dθ

= ln
∣∣ sec θ + tan θ

∣∣+ C.

While the integraƟon steps are over, we are not yet done. The original problem
was stated in terms of x, whereas our answer is given in terms of θ. We must
convert back to x.

The reference triangle given in Key Idea 13(b) helps. With x =
√
5 tan θ, we

have

tan θ =
x√
5

and sec θ =

√
x2 + 5√

5
.

This gives ∫
1√

5+ x2
dx = ln

∣∣ sec θ + tan θ
∣∣+ C

= ln

∣∣∣∣∣
√
x2 + 5√

5
+

x√
5

∣∣∣∣∣+ C.

We can leave this answer as is, or we can use a logarithmic idenƟty to simplify
it. Note:

ln

∣∣∣∣∣
√
x2 + 5√

5
+

x√
5

∣∣∣∣∣+ C = ln
∣∣∣∣ 1√

5

(√
x2 + 5+ x

)∣∣∣∣+ C

= ln
∣∣∣∣ 1√

5

∣∣∣∣+ ln
∣∣√x2 + 5+ x

∣∣+ C

= ln
∣∣√x2 + 5+ x

∣∣+ C,

where the ln
(
1/

√
5
)
term is absorbed into the constant C. (In SecƟon 6.6 we

will learn another way of approaching this problem.) ..
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.. Example 174 ..Using Trigonometric SubsƟtuƟon

Evaluate
∫ √

4x2 − 1 dx.

SÊ½çã®ÊÄ Westart by rewriƟng the integrand so that it looks like
√
x2 − a2

for some value of a:

√
4x2 − 1 =

√
4
(
x2 − 1

4

)

= 2

√
x2 −

(
1
2

)2

.

Sowe have a = 1/2, and following Key Idea 13(c), we set x = 1
2 sec θ, and hence

dx = 1
2 sec θ tan θ dθ. We now rewrite the integral with these subsƟtuƟons:

∫ √
4x2 − 1 dx =

∫
2

√
x2 −

(
1
2

)2

dx

=

∫
2
√

1
4
sec2 θ − 1

4

(
1
2
sec θ tan θ

)
dθ

=

∫ √
1
4
(sec2 θ − 1)

(
sec θ tan θ

)
dθ

=

∫ √
1
4
tan2 θ

(
sec θ tan θ

)
dθ

=

∫
1
2
tan2 θ sec θ dθ

=
1
2

∫ (
sec2 θ − 1

)
sec θ dθ

=
1
2

∫ (
sec3 θ − sec θ

)
dθ.

We integrated sec3 θ in Example 170, finding its anƟderivaƟves to be

∫
sec3 θ dθ =

1
2

(
sec θ tan θ + ln | sec θ + tan θ|

)
+ C.
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Thus∫ √
4x2 − 1 dx =

1
2

∫ (
sec3 θ − sec θ

)
dθ

=
1
2

(
1
2

(
sec θ tan θ + ln | sec θ + tan θ|

)
− ln | sec θ + tan θ|

)
+ C

=
1
4
(sec θ tan θ − ln | sec θ + tan θ|) + C.

We are not yet done. Our original integral is given in terms of x, whereas our
final answer, as given, is in terms of θ. We need to rewrite our answer in terms
of x. With a = 1/2, and x = 1

2 sec θ, the reference triangle in Key Idea 13(c)
shows that

tan θ =
√

x2 − 1/4/(1/2) = 2
√

x2 − 1/4 and sec θ = 2x.

Thus

1
4
(
sec θ tan θ − ln

∣∣ sec θ + tan θ
∣∣)+ C =

1
4
(
2x · 2

√
x2 − 1/4− ln

∣∣2x+ 2
√

x2 − 1/4
∣∣)+ C

=
1
4

(
4x
√

x2 − 1/4− ln
∣∣2x+ 2

√
x2 − 1/4

∣∣)+ C.

The final answer is given in the last line above, repeated here:∫ √
4x2 − 1 dx =

1
4

(
4x
√

x2 − 1/4− ln
∣∣2x+ 2

√
x2 − 1/4

∣∣)+ C.

...

.. Example 175 ..Using Trigonometric SubsƟtuƟon

Evaluate
∫ √

4− x2

x2
dx.

SÊ½çã®ÊÄ We use Key Idea 13(a) with a = 2, x = 2 sin θ, dx = 2 cos θ
and hence

√
4− x2 = 2 cos θ. This gives∫ √

4− x2

x2
dx =

∫
2 cos θ
4 sin2 θ

(2 cos θ) dθ

=

∫
cot2 θ dθ

=

∫
(csc2 θ − 1) dθ

= − cot θ − θ + C.
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We need to rewrite our answer in terms of x. Using the reference triangle found
in Key Idea 13(a), we have cot θ =

√
4− x2/x and θ = sin−1(x/2). Thus∫ √

4− x2

x2
dx = −

√
4− x2

x
− sin−1

( x
2

)
+ C.

...

Trigonometric SubsƟtuƟon can be applied inmany situaƟons, even those not
of the form

√
a2 − x2,

√
x2 − a2 or

√
x2 + a2. In the following example, we ap-

ply it to an integral we already know how to handle.

.. Example 176 Using Trigonometric SubsƟtuƟon

Evaluate
∫

1
x2 + 1

dx.

SÊ½çã®ÊÄ Weknow the answer already as tan−1 x+C. Weapply Trigono-
metric SubsƟtuƟon here to show that we get the same answer without inher-
ently relying on knowledge of the derivaƟve of the arctangent funcƟon.

Using Key Idea 13(b), let x = tan θ, dx = sec2 θ dθ and note that x2 + 1 =
tan2 θ + 1 = sec2 θ. Thus∫

1
x2 + 1

dx =
∫

1
sec2 θ

sec2 θ dθ

=

∫
1 dθ

= θ + C.

Since x = tan θ, θ = tan−1 x, and we conclude that
∫

1
x2 + 1

dx = tan−1 x+C. ..

The next example is similar to the previous one in that it does not involve a
square–root. It shows how several techniques and idenƟƟes can be combined
to obtain a soluƟon.

.. Example 177 ..Using Trigonometric SubsƟtuƟon

Evaluate
∫

1
(x2 + 6x+ 10)2

dx.

SÊ½çã®ÊÄ We start by compleƟng the square, then make the subsƟtu-
Ɵon u = x+ 3, followed by the trigonometric subsƟtuƟon of u = tan θ:∫

1
(x2 + 6x+ 10)2

dx =
∫

1
(u2 + 1)2

du.
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Now make the subsƟtuƟon u = tan θ, du = sec2 θ dθ:

=

∫
1

(tan2 θ + 1)2
sec2 θ dθ

=

∫
1

(sec2 θ)2
sec2 θ dθ

=

∫
cos2 θ dθ.

Applying a power reducing formula, we have

=

∫ (
1
2
+

1
2
cos(2θ)

)
dθ

=
1
2
θ +

1
4
sin(2θ) + C. (6.2)

We need to return to the variable x. As u = tan θ, θ = tan−1 u. Using the
idenƟty sin(2θ) = 2 sin θ cos θ and using the reference triangle found in Key
Idea 13(b), we have

1
4
sin(2θ) =

1
2

u√
u2 + 1

· 1√
u2 + 1

=
1
2

u
u2 + 1

.

Finally, we return to xwith the subsƟtuƟon u = x+3. We start with the expres-
sion in EquaƟon (6.2):

1
2
θ +

1
4
sin(2θ) + C =

1
2
tan−1 u+

1
2

u
u2 + 1

+ C

=
1
2
tan−1(x+ 3) +

x+ 3
2(x2 + 6x+ 10)

+ C.

StaƟng our final result in one line,∫
1

(x2 + 6x+ 10)2
dx =

1
2
tan−1(x+ 3) +

x+ 3
2(x2 + 6x+ 10)

+ C.

...

Our last example returns us to definite integrals, as seen in our first example.
Given a definite integral that can be evaluated using Trigonometric SubsƟtuƟon,
we could first evaluate the corresponding indefinite integral (by changing from
an integral in terms of x to one in terms of θ, then converƟng back to x) and then
evaluate using the original bounds. It is much more straighƞorward, though, to
change the bounds as we subsƟtute.
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.. Example 178 Definite integraƟon and Trigonometric SubsƟtuƟon

Evaluate
∫ 5

0

x2√
x2 + 25

dx.

SÊ½çã®ÊÄ Using Key Idea 13(b), we set x = 5 tan θ, dx = 5 sec2 θ dθ,
and note that

√
x2 + 25 = 5 sec θ. As we subsƟtute, we can also change the

bounds of integraƟon.
The lower bound of the original integral is x = 0. As x = 5 tan θ, we solve for

θ and find θ = tan−1(x/5). Thus the new lower bound is θ = tan−1(0) = 0. The
original upper bound is x = 5, thus the new upper bound is θ = tan−1(5/5) =
π/4.

Thus we have∫ 5

0

x2√
x2 + 25

dx =
∫ π/4

0

25 tan2 θ
5 sec θ

5 sec2 θ dθ

= 25
∫ π/4

0
tan2 θ sec θ dθ.

We encountered this indefinite integral in Example 174 where we found∫
tan2 θ sec θ dθ =

1
2
(
sec θ tan θ − ln | sec θ + tan θ|

)
.

So

25
∫ π/4

0
tan2 θ sec θ dθ =

25
2
(
sec θ tan θ − ln | sec θ + tan θ|

)∣∣∣∣∣
π/4

0

=
25
2
(√

2− ln(
√
2+ 1)

)
≈ 6.661...

The following equaliƟes are very usefulwhenevaluaƟng integrals using Trigono-
metric SubsƟtuƟon.

..
Key Idea 14 Useful EqualiƟes with Trigonometric SubsƟtuƟon

1. sin(2θ) = 2 sin θ cos θ

2. cos(2θ) = cos2 θ − sin2 θ = 2 cos2 θ − 1 = 1− 2 sin2 θ

3.
∫

sec3 θ dθ =
1
2

(
sec θ tan θ + ln

∣∣ sec θ + tan θ
∣∣)+ C

4.
∫

cos2 θ dθ =

∫
1
2
(
1+ cos(2θ)

)
dθ =

1
2
(
θ + sin θ cos θ

)
+ C.
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Exercises 6.4
Terms and Concepts
1. Trigonometric SubsƟtuƟon works on the same principles as

IntegraƟon by SubsƟtuƟon, though it can feel “ ”.

2. If one uses Trigonometric SubsƟtuƟon on an integrand con-
taining

√
25− x2, then one should set x = .

3. Consider the Pythagorean IdenƟty sin2 θ + cos2 θ = 1.

(a) What idenƟty is obtained when both sides are di-
vided by cos2 θ?

(b) Use the new idenƟty to simplify 9 tan2 θ + 9.

4. Why does Key Idea 13(a) state that
√
a2 − x2 = a cos θ,

and not |a cos θ|?

Problems
In Exercises 5 – 16, apply Trigonometric SubsƟtuƟon to eval-
uate the indefinite integrals.

5.
∫ √

x2 + 1 dx

6.
∫ √

x2 + 4 dx

7.
∫ √

1− x2 dx

8.
∫ √

9− x2 dx

9.
∫ √

x2 − 1 dx

10.
∫ √

x2 − 16 dx

11.
∫ √

4x2 + 1 dx

12.
∫ √

1− 9x2 dx

13.
∫ √

16x2 − 1 dx

14.
∫

8√
x2 + 2

dx

15.
∫

3√
7− x2

dx

16.
∫

5√
x2 − 8

dx

In Exercises 17 – 26, evaluate the indefinite integrals. Some
may be evaluated without Trigonometric SubsƟtuƟon.

17.
∫ √

x2 − 11
x

dx

18.
∫

1
(x2 + 1)2

dx

19.
∫

x√
x2 − 3

dx

20.
∫

x2
√
1− x2 dx

21.
∫

x
(x2 + 9)3/2

dx

22.
∫

5x2√
x2 − 10

dx

23.
∫

1
(x2 + 4x+ 13)2

dx

24.
∫

x2(1− x2)−3/2 dx

25.
∫ √

5− x2

7x2
dx

26.
∫

x2√
x2 + 3

dx

In Exercises 27 – 32, evaluate the definite integrals by mak-
ing the proper trigonometric subsƟtuƟon and changing the
bounds of integraƟon. (Note: each of the corresponding
indefinite integrals has appeared previously in this Exercise
set.)

27.
∫ 1

−1

√
1− x2 dx

28.
∫ 8

4

√
x2 − 16 dx

29.
∫ 2

0

√
x2 + 4 dx

30.
∫ 1

−1

1
(x2 + 1)2

dx

31.
∫ 1

−1

√
9− x2 dx

32.
∫ 1

−1
x2
√
1− x2 dx
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6.5 ParƟal FracƟon DecomposiƟon

In this secƟonwe invesƟgate the anƟderivaƟves of raƟonal funcƟons. Recall that
raƟonal funcƟons are funcƟons of the form f(x) = p(x)

q(x) , where p(x) and q(x) are
polynomials and q(x) ̸= 0. Such funcƟons arise in many contexts, one of which
is the solving of certain fundamental differenƟal equaƟons.

We begin with an example that demonstrates the moƟvaƟon behind this

secƟon. Consider the integral
∫

1
x2 − 1

dx. We do not have a simple formula

for this (if the denominator were x2 + 1, we would recognize the anƟderivaƟve
as being the arctangent funcƟon). It can be solved using Trigonometric SubsƟ-
tuƟon, but note how the integral is easy to evaluate once we realize:

1
x2 − 1

=
1/2
x− 1

− 1/2
x+ 1

.

Thus

∫
1

x2 − 1
dx =

∫
1/2
x− 1

dx−
∫

1/2
x+ 1

dx

=
1
2
ln |x− 1| − 1

2
ln |x+ 1|+ C.

This secƟon teaches how to decompose

1
x2 − 1

into
1/2
x− 1

− 1/2
x+ 1

.

We start with a raƟonal funcƟon f(x) = p(x)
q(x) , where p and q do not have any

common factors and the degree of p is less than the degree of q. It can be shown
that any polynomial, and hence q, can be factored into a product of linear and
irreducible quadraƟc terms. The following Key Idea states how to decompose a
raƟonal funcƟon into a sum of raƟonal funcƟons whose denominators are all of
lower degree than q.
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..
Key Idea 15 ParƟal FracƟon DecomposiƟon

Let
p(x)
q(x)

be a raƟonal funcƟon, where the degree of p is less than the

degree of q.

1. Linear Terms: Let (x−a) divide q(x), where (x−a)n is the highest
power of (x−a) that divides q(x). Then the decomposiƟon of p(x)

q(x)
will contain the sum

A1

(x− a)
+

A2

(x− a)2
+ · · ·+ An

(x− a)n
.

2. QuadraƟc Terms: Let x2+bx+ c divide q(x), where (x2+bx+ c)n
is the highest power of x2 + bx + c that divides q(x). Then the
decomposiƟon of p(x)

q(x) will contain the sum

B1x+ C1
x2 + bx+ c

+
B2x+ C2

(x2 + bx+ c)2
+ · · ·+ Bnx+ Cn

(x2 + bx+ c)n
.

To find the coefficients Ai, Bi and Ci:

1. MulƟply all fracƟons by q(x), clearing the denominators. Collect
like terms.

2. Equate the resulƟng coefficients of the powers of x and solve the
resulƟng system of linear equaƟons.

The following examples will demonstrate how to put this Key Idea into prac-
Ɵce. Example 179 stresses the decomposiƟon aspect of the Key Idea.

.. Example 179 ..Decomposing into parƟal fracƟons
Decompose f(x) =

1
(x+ 5)(x− 2)3(x2 + 2x+ 1)(x2 + x+ 7)2

without solving

for the resulƟng coefficients.

SÊ½çã®ÊÄ The denominator is already factored; we need to decom-
pose f(x) properly. Since (x + 5) is a linear term that divides the denominator,
there will be a

A
x+ 5

term in the decomposiƟon.
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As (x− 2)3 divides the denominator, we will have the following terms in the
decomposiƟon:

B
x− 2

,
C

(x− 2)2
and

D
(x− 2)3

.

The x2 + 2x+ 1 term in the denominator results in a
Ex+ F

x2 + 2x+ 1
term.

Finally, the (x2 + x+ 7)2 term results in the terms

Gx+ H
x2 + x+ 7

and
Ix+ J

(x2 + x+ 7)2
.

All together, we have

1
(x+ 5)(x− 2)3(x2 + 2x+ 1)(x2 + x+ 7)2

=
A

x+ 5
+

B
x− 2

+
C

(x− 2)2
+

D
(x− 2)3

+

Ex+ F
x2 + 2x+ 1

+
Gx+ H

x2 + x+ 7
+

Ix+ J
(x2 + x+ 7)2

Solving for the coefficients A, B . . . J would be a bit tedious but not “hard.” ...

.. Example 180 ..Decomposing into parƟal fracƟons
Perform the parƟal fracƟon decomposiƟon of

1
x2 − 1

.

SÊ½çã®ÊÄ The denominator factors into two linear terms: x2 − 1 =
(x− 1)(x+ 1). Thus

1
x2 − 1

=
A

x− 1
+

B
x+ 1

.

To solve for A and B, first mulƟply through by x2 − 1 = (x− 1)(x+ 1):

1 =
A(x− 1)(x+ 1)

x− 1
+

B(x− 1)(x+)

x+ 1
= A(x+ 1) + B(x− 1)
= Ax+ A+ Bx− B

Now collect like terms.

= (A+ B)x+ (A− B).

The next step is key. Note the equality we have:

1 = (A+ B)x+ (A− B).
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Note: EquaƟon 6.3 offers a direct route to
finding the values of A, B and C. Since the
equaƟon holds for all values of x, it holds
in parƟcular when x = 1. However, when
x = 1, the right hand side simplifies to
A(1 + 2)2 = 9A. Since the leŌ hand side
is sƟll 1, we have 1 = 9A. HenceA = 1/9.
Likewise, the equality holds when x =
−2; this leads to the equaƟon 1 = −3C.
Thus C = −1/3.
We can find the value of B by expanding
the terms as shown in the example.

Chapter 6 Techniques of AnƟdifferenƟaƟon

For clarity’s sake, rewrite the leŌ hand side as

0x+ 1 = (A+ B)x+ (A− B).

On the leŌ, the coefficient of the x term is 0; on the right, it is (A + B). Since
both sides are equal, we must have that 0 = A+ B.

Likewise, on the leŌ, we have a constant term of 1; on the right, the constant
term is (A− B). Therefore we have 1 = A− B.

We have two linear equaƟons with two unknowns. This one is easy to solve
by hand, leading to

A+ B = 0
A− B = 1 ⇒ A = 1/2

B = −1/2 .

Thus
1

x2 − 1
=

1/2
x− 1

− 1/2
x+ 1

.
...

.. Example 181 ..IntegraƟng using parƟal fracƟons

Use parƟal fracƟon decomposiƟon to integrate
∫

1
(x− 1)(x+ 2)2

dx.

SÊ½çã®ÊÄ Wedecompose the integrand as follows, as described by Key
Idea 15:

1
(x− 1)(x+ 2)2

=
A

x− 1
+

B
x+ 2

+
C

(x+ 2)2
.

To solve for A, B and C, we mulƟply both sides by (x− 1)(x+ 2)2 and collect like
terms:

1 = A(x+ 2)2 + B(x− 1)(x+ 2) + C(x− 1) (6.3)

= Ax2 + 4Ax+ 4A+ Bx2 + Bx− 2B+ Cx− C

= (A+ B)x2 + (4A+ B+ C)x+ (4A− 2B− C)

We have

0x2 + 0x+ 1 = (A+ B)x2 + (4A+ B+ C)x+ (4A− 2B− C)

leading to the equaƟons

A+ B = 0, 4A+ B+ C = 0 and 4A− 2B− C = 1.

These three equaƟons of three unknowns lead to a unique soluƟon:

A = 1/9, B = −1/9 and C = −1/3.
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Note: The values ofA andB can be quickly
found using the technique described in
the margin of Example 181.

6.5 ParƟal FracƟon DecomposiƟon

Thus∫
1

(x− 1)(x+ 2)2
dx =

∫
1/9
x− 1

dx+
∫

−1/9
x+ 2

dx+
∫

−1/3
(x+ 2)2

dx.

Each can be integrated with a simple subsƟtuƟonwith u = x−1 or x = x+2
(or by directly applying Key Idea 10 as the denominators are linear funcƟons).
The end result is∫

1
(x− 1)(x+ 2)2

dx =
1
9
ln |x− 1| − 1

9
ln |x+ 2|+ 1

3(x+ 2)
+ C.

...

.. Example 182 ..IntegraƟng using parƟal fracƟons

Use parƟal fracƟon decomposiƟon to integrate
∫

x3

(x− 5)(x+ 3)
dx.

SÊ½çã®ÊÄ Key Idea 15 presumes that the degree of the numerator is
less than the degree of the denominator. Since this is not the case here, we
begin by using polynomial division to reduce the degree of the numerator. We
omit the steps, but encourage the reader to verify that

x3

(x− 5)(x+ 3)
= x+ 2+

19x+ 30
(x− 5)(x+ 3)

.

Using Key Idea 15, we can rewrite the new raƟonal funcƟon as:

19x+ 30
(x− 5)(x+ 3)

=
A

x− 5
+

B
x+ 3

for appropriate values of A and B. Clearing denominators, we have

19x+ 30 = A(x+ 3) + B(x− 5)
= (A+ B)x+ (3A− 5B).

This implies that:

19 = A+ B
30 = 3A− 5B.

Solving this system of linear equaƟons gives

125/8 = A
27/8 = B.
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We can now integrate.∫
x3

(x− 5)(x+ 3)
dx =

∫ (
x+ 2+

125/8
x− 5

+
27/8
x+ 3

)
dx

=
x2

2
+ 2x+

125
8

ln |x− 5|+ 27
8

ln |x+ 3|+ C.
...

.. Example 183 ..IntegraƟng using parƟal fracƟons

Use parƟal fracƟon decomposiƟon to evaluate
∫

7x2 + 31x+ 54
(x+ 1)(x2 + 6x+ 11)

dx.

SÊ½çã®ÊÄ The degree of the numerator is less than the degree of the
denominator so we begin by applying Key Idea 15. We have:

7x2 + 31x+ 54
(x+ 1)(x2 + 6x+ 11)

=
A

x+ 1
+

Bx+ C
x2 + 6x+ 11

.

Now clear the denominators.

7x2 + 31x+ 54 = A(x2 + 6x+ 11) + (Bx+ C)(x+ 1)

= (A+ B)x2 + (6A+ B+ C)x+ (11A+ C).

This implies that:

7 = A+ B
31 = 6A+ B+ C
54 = 11A+ C.

Solving this system of linear equaƟons gives the nice result of A = 5, B = 2 and
C = −1. Thus∫

7x2 + 31x+ 54
(x+ 1)(x2 + 6x+ 11)

dx =
∫ (

5
x+ 1

+
2x− 1

x2 + 6x+ 11

)
dx.

The first termof this new integrand is easy to evaluate; it leads to a 5 ln |x+1|
term. The second term is not hard, but takes several steps and uses subsƟtuƟon
techniques.

The integrand
2x− 1

x2 + 6x+ 11
has a quadraƟc in the denominator and a linear

term in the numerator. This leads us to try subsƟtuƟon. Let u = x2+6x+11, so
du = (2x+ 6) dx. The numerator is 2x− 1, not 2x+ 6, but we can get a 2x+ 6

Notes:
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term in the numerator by adding 0 in the form of “7− 7.”

2x− 1
x2 + 6x+ 11

=
2x− 1+ 7− 7
x2 + 6x+ 11

=
2x+ 6

x2 + 6x+ 11
− 7

x2 + 6x+ 11
.

Wecannow integrate the first termwith subsƟtuƟon, leading to a ln |x2+6x+11|
term. The final term can be integrated using arctangent. First, complete the
square in the denominator:

7
x2 + 6x+ 11

=
7

(x+ 3)2 + 2
.

An anƟderivaƟve of the laƩer term can be found using Theorem 46 and subsƟ-
tuƟon: ∫

7
x2 + 6x+ 11

dx =
7√
2
tan−1

(
x+ 3√

2

)
+ C.

Let’s start at the beginning and put all of the steps together.∫
7x2 + 31x+ 54

(x+ 1)(x2 + 6x+ 11)
dx =

∫ (
5

x+ 1
+

2x− 1
x2 + 6x+ 11

)
dx

=

∫
5

x+ 1
dx+

∫
2x+ 6

x2 + 6x+ 11
dx−

∫
7

x2 + 6x+ 11
dx

= 5 ln |x+ 1|+ ln |x2 + 6x+ 11| − 7√
2
tan−1

(
x+ 3√

2

)
+ C.

As with many other problems in calculus, it is important to remember that one
is not expected to “see” the final answer immediately aŌer seeing the problem.
Rather, given the iniƟal problem, we break it down into smaller problems that
are easier to solve. The final answer is a combinaƟon of the answers of the
smaller problems. ...

Notes:
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Exercises 6.5
Terms and Concepts
1. Fill in the blank: ParƟal FracƟonDecomposiƟon is amethod

of rewriƟng funcƟons.

2. T/F: It is someƟmes necessary to use polynomial division
before using ParƟal FracƟon DecomposiƟon.

3. Decompose
1

x2 − 3x
without solving for the coefficients, as

done in Example 179.

4. Decompose
7− x
x2 − 9

without solving for the coefficients, as
done in Example 179.

5. Decompose
x− 3
x2 − 7

without solving for the coefficients, as
done in Example 179.

6. Decompose
2x+ 5
x3 + 7x

without solving for the coefficients, as
done in Example 179.

Problems
In Exercises 7 – 25, evaluate the indefinite integral.

7.
∫

7x+ 7
x2 + 3x− 10

dx

8.
∫

7x− 2
x2 + x

dx

9.
∫

−4
3x2 − 12

dx

10.
∫

x+ 7
(x+ 5)2

dx

11.
∫

−3x− 20
(x+ 8)2

dx

12.
∫

9x2 + 11x+ 7
x(x+ 1)2

dx

13.
∫

−12x2 − x+ 33
(x− 1)(x+ 3)(3− 2x)

dx

14.
∫

94x2 − 10x
(7x+ 3)(5x− 1)(3x− 1)

dx

15.
∫

x2 + x+ 1
x2 + x− 2

dx

16.
∫

x3

x2 − x− 20
dx

17.
∫

2x2 − 4x+ 6
x2 − 2x+ 3

dx

18.
∫

1
x3 + 2x2 + 3x

dx

19.
∫

x2 + x+ 5
x2 + 4x+ 10

dx

20.
∫

12x2 + 21x+ 3
(x+ 1)(3x2 + 5x− 1)

dx

21.
∫

6x2 + 8x− 4
(x− 3)(x2 + 6x+ 10)

dx

22.
∫

2x2 + x+ 1
(x+ 1)(x2 + 9)

dx

23.
∫

x2 − 20x− 69
(x− 7)(x2 + 2x+ 17)

dx

24.
∫

9x2 − 60x+ 33
(x− 9)(x2 − 2x+ 11)

dx

25.
∫

6x2 + 45x+ 121
(x+ 2)(x2 + 10x+ 27)

dx

In Exercises 26 – 29, evaluate the definite integral.

26.
∫ 2

1

8x+ 21
(x+ 2)(x+ 3)

dx

27.
∫ 5

0

14x+ 6
(3x+ 2)(x+ 4)

dx

28.
∫ 1

−1

x2 + 5x− 5
(x− 10)(x2 + 4x+ 5)

dx

29.
∫ 1

0

x
(x+ 1)(x2 + 2x+ 1)

dx
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Figure 6.13: Using trigonometric func-
Ɵons to define points on a circle and hy-
perbolic funcƟons to define points on a
hyperbola. The area of the shaded re-
gions are included in them.

PronunciaƟon Note:
“cosh” rhymes with “gosh,”
“sinh” rhymes with “pinch,” and
“tanh” rhymes with “ranch.”

6.6 Hyperbolic FuncƟons

6.6 Hyperbolic FuncƟons
The hyperbolic funcƟons are a set of funcƟons that have many applicaƟons to
mathemaƟcs, physics, and engineering. Among many other applicaƟons, they
are used to describe the formaƟon of satellite rings around planets, to describe
the shape of a rope hanging from two points, and have applicaƟon to the theory
of special relaƟvity. This secƟon defines the hyperbolic funcƟons and describes
many of their properƟes, especially their usefulness to calculus.

These funcƟons are someƟmes referred to as the “hyperbolic trigonometric
funcƟons” as there are many, many connecƟons between them and the stan-
dard trigonometric funcƟons. Figure 6.13 demonstrates one such connecƟon.
Just as cosine and sine are used to define points on the circle defined by x2+y2 =
1, the funcƟons hyperbolic cosine and hyperbolic sine are used to define points
on the hyperbola x2 − y2 = 1.

We begin with their definiƟon.

..
DefiniƟon 23 Hyperbolic FuncƟons

1. cosh x =
ex + e−x

2

2. sinh x =
ex − e−x

2

3. tanh x =
sinh x
cosh x

4. sech x =
1

cosh x

5. csch x =
1

sinh x

6. coth x =
cosh x
sinh x

These hyperbolic funcƟons are graphed in Figure 6.14. In the graphs of cosh x
and sinh x, graphs of ex/2 and e−x/2 are included with dashed lines. As x gets
“large,” cosh x and sinh x each act like ex/2; when x is a large negaƟve number,
cosh x acts like e−x/2 whereas sinh x acts like−e−x/2.

NoƟce the domains of tanh x and sech x are (−∞,∞), whereas both coth x
and csch x have verƟcal asymptotes at x = 0. Also note the ranges of these
funcƟon, especially tanh x: as x → ∞, both sinh x and cosh x approach e−x/2,
hence tanh x approaches 1.

The following example explores some of the properƟes of these funcƟons
that bear remarkable resemblance to the properƟes of their trigonometric coun-
terparts.

Notes:
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Figure 6.14: Graphs of the hyperbolic funcƟons.

.. Example 184 ..Exploring properƟes of hyperbolic funcƟons

Use DefiniƟon 23 to rewrite the following expressions.

1. cosh2 x− sinh2 x

2. tanh2 x+ sech2 x

3. 2 cosh x sinh x

4. d
dx

(
cosh x

)
5. d

dx

(
sinh x

)
6. d

dx

(
tanh x

)

SÊ½çã®ÊÄ
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1. cosh2 x− sinh2 x =
(
ex + e−x

2

)2

−
(
ex − e−x

2

)2

=
e2x + 2exe−x + e−2x

4
− e2x − 2exe−x + e−2x

4

=
4
4
= 1.

So cosh2 x− sinh2 x = 1.

2. tanh2 x+ sech2 x =
sinh2 x
cosh2 x

+
1

cosh2 x

=
sinh2 x+ 1
cosh2 x

Now use idenƟty from #1.

=
cosh2 x
cosh2 x

= 1

So tanh2 x+ sech2 x = 1.

..

3. 2 cosh x sinh x = 2
(
ex + e−x

2

)(
ex − e−x

2

)
= 2 · e

2x − e−2x

4

=
e2x − e−2x

2
= sinh(2x).

Thus 2 cosh x sinh x = sinh(2x).

4.
d
dx
(
cosh x

)
=

d
dx

(
ex + e−x

2

)
=

ex − e−x

2
= sinh x

So d
dx

(
cosh x

)
= sinh x.

5.
d
dx
(
sinh x

)
=

d
dx

(
ex − e−x

2

)
=

ex + e−x

2
= cosh x

So d
dx

(
sinh x

)
= cosh x.

Notes:
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6.
d
dx
(
tanh x

)
=

d
dx

(
sinh x
cosh x

)
=

cosh x cosh x− sinh x sinh x
cosh2 x

=
1

cosh2 x
= sech2 x

So d
dx

(
tanh x

)
= sech2 x.

...

The following Key Idea summarizes many of the important idenƟƟes relaƟng
to hyperbolic funcƟons. Each can be verified by referring back to DefiniƟon 23.

..
Key Idea 16 Useful Hyperbolic FuncƟon ProperƟes

Basic IdenƟƟes

1. cosh2 x− sinh2 x = 1

2. tanh2 x+ sech2 x = 1

3. coth2 x− csch2 x = 1

4. cosh 2x = cosh2 x+ sinh2 x

5. sinh 2x = 2 sinh x cosh x

6. cosh2 x =
cosh 2x+ 1

2

7. sinh2 x =
cosh 2x− 1

2

DerivaƟves

1. d
dx

(
cosh x

)
= sinh x

2. d
dx

(
sinh x

)
= cosh x

3. d
dx

(
tanh x

)
= sech2 x

4. d
dx

(
sech x

)
= − sech x tanh x

5. d
dx

(
csch x

)
= − csch x coth x

6. d
dx

(
coth x

)
= − csch2 x

Integrals

1.
∫

cosh x dx = sinh x+ C

2.
∫

sinh x dx = cosh x+ C

3.
∫

tanh x dx = ln(cosh x) + C

4.
∫

coth x dx = ln | sinh x |+ C

We pracƟce using Key Idea 16.

.. Example 185 ..DerivaƟves and integrals of hyperbolic funcƟons
Evaluate the following derivaƟves and integrals.

1.
d
dx
(
cosh 2x

)
2.
∫

sech2(7t− 3) dt

3.
∫ ln 2

0
cosh x dx

Notes:
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SÊ½çã®ÊÄ

1. Using the Chain Rule directly, we have d
dx

(
cosh 2x

)
= 2 sinh 2x.

Just to demonstrate that it works, let’s also use the Basic IdenƟty found in
Key Idea 16: cosh 2x = cosh2 x+ sinh2 x.

d
dx
(
cosh 2x

)
=

d
dx
(
cosh2 x+ sinh2 x

)
= 2 cosh x sinh x+ 2 sinh x cosh x

= 4 cosh x sinh x.

Using another Basic IdenƟty, we can see that 4 cosh x sinh x = 2 sinh 2x.
We get the same answer either way.

2. We employ subsƟtuƟon, with u = 7t − 3 and du = 7dt. Applying Key
Ideas 10 and 16 we have:∫

sech2(7t− 3) dt =
1
7
tanh(7t− 3) + C.

3. ∫ ln 2

0
cosh x dx = sinh x

∣∣∣ln 2
0

= sinh(ln 2)− sinh 0 = sinh(ln 2).

We can simplify this last expression as sinh x is based on exponenƟals:

sinh(ln 2) =
eln 2 − e− ln 2

2
=

2− 1/2
2

=
3
4
.

...

Inverse Hyperbolic FuncƟons

Just as the inverse trigonometric funcƟons are useful in certain integraƟons,
the inverse hyperbolic funcƟons are useful with others. Figure 6.15 shows the
restricƟons on the domains to make each funcƟon one-to-one and the resulƟng
domains and ranges of their inverse funcƟons. Their graphs are shown in Figure
6.16.

Because the hyperbolic funcƟons are defined in terms of exponenƟal func-
Ɵons, their inverses can be expressed in terms of logarithms as shown in Key Idea
17. It is oŌen more convenient to refer to sinh−1 x than to ln

(
x+

√
x2 + 1

)
, es-

pecially when one is working on theory and does not need to compute actual
values. On the other hand, when computaƟons are needed, technology is oŌen
helpful but many hand-held calculators lack a convenient sinh−1 x buƩon. (Of-
ten it can be accessed under a menu system, but not conveniently.) In such a
situaƟon, the logarithmic representaƟon is useful.

Notes:
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FuncƟon Domain Range
cosh x [0,∞) [1,∞)
sinh x (−∞,∞) (−∞,∞)
tanh x (−∞,∞) (−1, 1)
sech x [0,∞) (0, 1]
csch x (−∞, 0) ∪ (0,∞) (−∞, 0) ∪ (0,∞)
coth x (−∞, 0) ∪ (0,∞) (−∞,−1) ∪ (1,∞)

FuncƟon Domain Range
cosh−1 x [1,∞) [0,∞)
sinh−1 x [−∞,∞) [−∞,∞)
tanh−1 x (−1, 1) (−∞,∞)
sech−1 x (0, 1] [0,∞)
csch−1 x (−∞, 0) ∪ (0,∞) (−∞, 0) ∪ (0,∞)
coth−1 x (−∞,−1) ∪ (1,∞) (−∞, 0) ∪ (0,∞)

Figure 6.15: Domains and ranges of the hyperbolic and inverse hyperbolic funcƟons.
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Figure 6.16: Graphs of the hyperbolic funcƟons and their inverses.

..
Key Idea 17 Logarithmic definiƟons of Inverse Hyperbolic FuncƟons

1. cosh−1 x = ln
(
x+

√
x2 − 1

)
; x ≥ 1

2. tanh−1 x =
1
2
ln
(
1+ x
1− x

)
; |x| < 1

3. sech−1 x = ln

(
1+

√
1− x2

x

)
; 0 < x ≤ 1

4. sinh−1 x = ln
(
x+

√
x2 + 1

)
5. coth−1 x =

1
2
ln
(
x+ 1
x− 1

)
; |x| > 1

6. csch−1 x = ln

(
1
x
+

√
1+ x2

|x|

)
; x ̸= 0

Notes:
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The following Key Ideas give the derivaƟves and integrals relaƟng to the in-
verse hyperbolic funcƟons. In Key Idea 19, both the inverse hyperbolic and log-
arithmic funcƟon representaƟons of the anƟderivaƟve are given, based on Key
Idea 17. Again, these laƩer funcƟons are oŌen more useful than the former.
Note how inverse hyperbolic funcƟons can be used to solve integrals we used
Trigonometric SubsƟtuƟon to solve in SecƟon 6.4.

..
Key Idea 18 DerivaƟves Involving Inverse Hyperbolic FuncƟons

1.
d
dx
(
cosh−1 x

)
=

1√
x2 − 1

; x > 1

2.
d
dx
(
sinh−1 x

)
=

1√
x2 + 1

3.
d
dx
(
tanh−1 x

)
=

1
1− x2

; |x| < 1

4.
d
dx
(
sech−1 x

)
=

−1
x
√
1− x2

; 0 < x < 1

5.
d
dx
(
csch−1 x

)
=

−1
|x|
√
1+ x2

; x ̸= 0

6.
d
dx
(
coth−1 x

)
=

1
1− x2

; |x| > 1

..
Key Idea 19 Integrals Involving Inverse Hyperbolic FuncƟons

1.
∫

1√
x2 − a2

dx = cosh−1
( x
a

)
+ C; 0 < a < x = ln

∣∣∣x+√x2 − a2
∣∣∣+ C

2.
∫

1√
x2 + a2

dx = sinh−1
( x
a

)
+ C; a > 0 = ln

∣∣∣x+√x2 + a2
∣∣∣+ C

3.
∫

1
a2 − x2

dx =


1
a tanh

−1 ( x
a

)
+ C x2 < a2

1
a coth

−1 ( x
a

)
+ C a2 < x2

=
1
2
ln
∣∣∣∣a+ x
a− x

∣∣∣∣+ C

4.
∫

1
x
√
a2 − x2

dx = −1
a
sech−1

( x
a

)
+ C; 0 < x < a =

1
a
ln
(

x
a+

√
a2 − x2

)
+ C

5.
∫

1
x
√
x2 + a2

dx = −1
a
csch−1

∣∣∣ xa ∣∣∣+ C; x ̸= 0, a > 0 =
1
a
ln
∣∣∣∣ x
a+

√
a2 + x2

∣∣∣∣+ C

We pracƟce using the derivaƟve and integral formulas in the following ex-
ample.

Notes:
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.. Example 186 ..DerivaƟves and integrals involving inverse hyperbolic func-
Ɵons
Evaluate the following.

1.
d
dx

[
cosh−1

(
3x− 2

5

)]
2.
∫

1
x2 − 1

dx

3.
∫

1√
9x2 + 10

dx

SÊ½çã®ÊÄ

1. Applying Key Idea 18 with the Chain Rule gives:

d
dx

[
cosh−1

(
3x− 2

5

)]
=

1√( 3x−2
5

)
− 1

· 3
5
.

2. MulƟplying the numerator anddenominator by (−1) gives:
∫

1
x2 − 1

dx =∫
−1

1− x2
dx. The second integral can be solved with a direct applicaƟon

of item #3 from Key Idea 19, with a = 1. Thus∫
1

x2 − 1
dx = −

∫
1

1− x2
dx

=

 − tanh−1 (x) + C x2 < 1

− coth−1 (x) + C 1 < x2

= −1
2
ln
∣∣∣∣x+ 1
x− 1

∣∣∣∣+ C

=
1
2
ln
∣∣∣∣x− 1
x+ 1

∣∣∣∣+ C. (6.4)

We should note that this exact problem was solved at the beginning of
SecƟon 6.5. In that example the answer was given as 1

2 ln |x−1|− 1
2 ln |x+

1|+ C. Note that this is equivalent to the answer given in EquaƟon 6.4, as
ln(a/b) = ln a− ln b.

3. This requires a subsƟtuƟon, then item #2 of Key Idea 19 can be applied.
Let u = 3x, hence du = 3dx. We have∫

1√
9x2 + 10

dx =
1
3

∫
1√

u2 + 10
du.

Notes:
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Note a2 = 10, hence a =
√
10. Now apply the integral rule.

=
1
3
sinh−1

(
3x√
10

)
+ C

=
1
3
ln
∣∣∣3x+√9x2 + 10

∣∣∣+ C.
...

Notes:
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Exercises 6.6
Terms and Concepts

1. In Key Idea 16, the equaƟon
∫

tanh x dx = ln(cosh x)+C is

given. Why is “ln | cosh x|” not used – i.e., why are absolute
values not necessary?

2. The hyperbolic funcƟons are used to define points on the
right hand porƟon of the hyperbola x2 − y2 = 1, as shown
in Figure 6.13. How can we use the hyperbolic funcƟons to
define points on the leŌ hand porƟon of the hyperbola?

Problems
In Exercises 3 – 10, verify the given idenƟty using DefiniƟon
23, as done in Example 184.

3. coth2 x− csch2 x = 1

4. cosh 2x = cosh2 x+ sinh2 x

5. cosh2 x =
cosh 2x+ 1

2

6. sinh2 x =
cosh 2x− 1

2

7.
d
dx

[sech x] = − sech x tanh x

8.
d
dx

[coth x] = − csch2 x

9.
∫

tanh x dx = ln(cosh x) + C

10.
∫

coth x dx = ln | sinh x|+ C

In Exercises 11 – 21, find the derivaƟve of the given funcƟon.

11. f(x) = cosh 2x

12. f(x) = tanh(x2)

13. f(x) = ln(sinh x)

14. f(x) = sinh x cosh x

15. f(x) = x sinh x− cosh x

16. f(x) = sech−1(x2)

17. f(x) = sinh−1(3x)

18. f(x) = cosh−1(2x2)

19. f(x) = tanh−1(x+ 5)

20. f(x) = tanh−1(cos x)

21. f(x) = cosh−1(sec x)

In Exercises 22 – 26, find the equaƟon of the line tangent to
the funcƟon at the given x-value.

22. f(x) = sinh x at x = 0

23. f(x) = cosh x at x = ln 2

24. f(x) = sech2 x at x = ln 3

25. f(x) = sinh−1 x at x = 0

26. f(x) = cosh−1 x at x =
√
2

In Exercises 27 – 40, evaluate the given indefinite integral.

27.
∫

tanh(2x) dx

28.
∫

cosh(3x− 7) dx

29.
∫

sinh x cosh x dx

30.
∫

x cosh x dx

31.
∫

x sinh x dx

32.
∫

1
9− x2

dx

33.
∫

2x√
x4 − 4

dx

34.
∫ √

x√
1+ x3

dx

35.
∫

1
x4 − 16

dx

36.
∫

1
x2 + x

dx

37.
∫

ex

e2x + 1
dx

38.
∫

sinh−1 x dx

39.
∫

tanh−1 x dx

40.
∫

sech x dx (Hint: muƟply by cosh x
cosh x ; set u = sinh x.)

In Exercises 41 – 43, evaluate the given definite integral.

41.
∫ 1

−1
sinh x dx

42.
∫ ln 2

− ln 2
cosh x dx

43.
∫ 1

0
tanh−1 x dx
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6.7 L’Hôpital’s Rule

6.7 L’Hôpital’s Rule
While this chapter is devoted to learning techniques of integraƟon, this secƟon
is not about integraƟon. Rather, it is concerned with a technique of evaluaƟng
certain limits that will be useful in the following secƟon, where integraƟon is
once more discussed.

Our treatment of limits exposedus to “0/0”, an indeterminate form. If lim
x→c

f(x) =
0 and lim

x→c
g(x) = 0, we do not conclude that lim

x→c
f(x)/g(x) is 0/0; rather, we use

0/0 as notaƟon to describe the fact that both the numerator and denominator
approach 0. The expression 0/0 has no numeric value; other workmust be done
to evaluate the limit.

Other indeterminate forms exist; they are: ∞/∞, 0 ·∞,∞−∞, 00, 1∞ and
∞0. Just as “0/0” does not mean “divide 0 by 0,” the expression “∞/∞” does
not mean “divide infinity by infinity.” Instead, it means “a quanƟty is growing
without bound and is being divided by another quanƟty that is growing without
bound.” We cannot determine from such a statement what value, if any, results
in the limit. Likewise, “0 ·∞” does not mean “mulƟply zero by infinity.” Instead,
it means “one quanƟty is shrinking to zero, and is being mulƟplied by a quanƟty
that is growing without bound.” We cannot determine from such a descripƟon
what the result of such a limit will be.

This secƟon introduces l’Hôpital’s Rule, amethod of resolving limits that pro-
duce the indeterminate forms 0/0 and ∞/∞. We’ll also show how algebraic
manipulaƟon can be used to convert other indeterminate expressions into one
of these two form so that our new rule can be applied.

..
Theorem 49 L’Hôpital’s Rule, Part 1

Let lim
x→c

f(x) = 0 and lim
x→c

g(x) = 0, where f and g are differenƟable func-
Ɵons on anopen interval I containing c, and g′(x) ̸= 0on I except possibly
at c. Then

lim
x→c

f(x)
g(x)

= lim
x→c

f ′(x)
g′(x)

.

We demonstrate the use of l’Hôpital’s Rule in the following examples; we
will oŌen use “LHR” as an abbreviaƟon of “l’Hôpital’s Rule.”

Notes:
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.. Example 187 Using l’Hôpital’s Rule
Evaluate the following limits, using l’Hôpital’s Rule as needed.

1. lim
x→0

sin x
x

2. lim
x→1

√
x+ 3− 2
1− x

3. lim
x→0

x2

1− cos x

4. lim
x→2

x2 + x− 6
x2 − 3x+ 2

SÊ½çã®ÊÄ

1. We proved this limit is 1 in Example 12 using the Squeeze Theorem. Here
we use l’Hôpital’s Rule to show its power.

lim
x→0

sin x
x

by LHR
= lim

x→0

cos x
1

= 1.

2. lim
x→1

√
x+ 3− 2
1− x

by LHR
= lim

x→1

1
2 (x+ 3)−1/2

−1
= −1

4
.

3. lim
x→0

x2

1− cos x

by LHR
= lim

x→0

2x
sin x

.

This laƩer limit also evaluates to the 0/0 indeterminate form. To evaluate
it, we apply l’Hôpital’s Rule again.

lim
x→0

2x
sin x

by LHR
=

2
cos x

= 2.

Thus lim
x→0

x2

1− cos x
= 2.

4. We already know how to evaluate this limit; first factor the numerator and
denominator. We then have:

lim
x→2

x2 + x− 6
x2 − 3x+ 2

= lim
x→2

(x− 2)(x+ 3)
(x− 2)(x− 1)

= lim
x→2

x+ 3
x− 1

= 5.

We now show how to solve this using l’Hôpital’s Rule.

lim
x→2

x2 + x− 6
x2 − 3x+ 2

by LHR
= lim

x→2

2x+ 1
2x− 3

= 5.
..

The following theorem extends our iniƟal version of l’Hôpital’s Rule in two
ways. It allows the technique to be applied to the indeterminate form ∞/∞
and to limits where x approaches±∞.

Notes:
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..
Theorem 50 L’Hôpital’s Rule, Part 2

1. Let lim
x→a

f(x) = ±∞ and lim
x→a

g(x) = ±∞, where f and g are differ-
enƟable on an open interval I containing a. Then

lim
x→a

f(x)
g(x)

= lim
x→a

f ′(x)
g′(x)

.

2. Let f and g be differenƟable funcƟons on the open interval (a,∞)
for some value a, where g′(x) ̸= 0 on (a,∞) and lim

x→∞
f(x)/g(x)

returns either 0/0 or∞/∞. Then

lim
x→∞

f(x)
g(x)

= lim
x→∞

f ′(x)
g′(x)

.

A similar statement can be made for limits where x approaches
−∞.

.. Example 188 Using l’Hôpital’s Rule with limits involving∞
Evaluate the following limits.

1. lim
x→∞

3x2 − 100x+ 2
4x2 + 5x− 1000

2. lim
x→∞

ex

x3
.

SÊ½çã®ÊÄ

1. We can evaluate this limit already using Theorem 11; the answer is 3/4.
We apply l’Hôpital’s Rule to demonstrate its applicability.

lim
x→∞

3x2 − 100x+ 2
4x2 + 5x− 1000

by LHR
= lim

x→∞

6x− 100
8x+ 5

by LHR
= lim

x→∞

6
8
=

3
4
.

2. lim
x→∞

ex

x3
by LHR
= lim

x→∞

ex

3x2
by LHR
= lim

x→∞

ex

6x

by LHR
= lim

x→∞

ex

6
= ∞.

Recall that this means that the limit does not exist; as x approaches ∞,
the expression ex/x3 grows without bound. We can infer from this that
ex grows “faster” than x3; as x gets large, ex is far larger than x3. (This
has important implicaƟons in compuƟng when considering efficiency of
algorithms.)

..

Notes:
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Indeterminate Forms 0 · ∞ and∞−∞

L’Hôpital’s Rule can only be applied to raƟos of funcƟons. When faced with
an indeterminate form such as 0 ·∞ or∞−∞, we can someƟmes apply algebra
to rewrite the limit so that l’Hôpital’s Rule can be applied. We demonstrate the
general idea in the next example.

.. Example 189 ..Applying l’Hôpital’s Rule to other indeterminate forms
Evaluate the following limits.

1. lim
x→0+

x · e1/x

2. lim
x→0−

x · e1/x

3. lim
x→∞

ln(x+ 1)− ln x

4. lim
x→∞

x2 − ex

SÊ½çã®ÊÄ

1. As x → 0+, x → 0 and e1/x → ∞. Thus we have the indeterminate form

0 · ∞. We rewrite the expression x · e1/x as e
1/x

1/x
; now, as x → 0+, we get

the indeterminate form∞/∞ to which l’Hôpital’s Rule can be applied.

lim
x→0+

x · e1/x = lim
x→0+

e1/x

1/x

by LHR
= lim

x→0+

(−1/x2)e1/x

−1/x2
= lim

x→0+
e1/x = ∞.

InterpretaƟon: e1/x grows “faster” than x shrinks to zero, meaning their
product grows without bound.

2. As x → 0−, x → 0 and e1/x → e−∞ → 0. The the limit evaluates to 0 · 0
which is not an indeterminate form. We conclude then that

lim
x→0−

x · e1/x = 0.

3. This limit iniƟally evaluates to the indeterminate form∞−∞. By applying
a logarithmic rule, we can rewrite the limit as

lim
x→∞

ln(x+ 1)− ln x = lim
x→∞

ln
(
x+ 1
x

)
.

As x → ∞, the argument of the ln term approaches ∞/∞, to which we
can apply l’Hôpital’s Rule.

lim
x→∞

x+ 1
x

by LHR
=

1
1
= 1.

Notes:
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Since x → ∞ implies
x+ 1
x

→ 1, it follows that

x → ∞ implies ln
(
x+ 1
x

)
→ ln 1 = 0.

Thus
lim
x→∞

ln(x+ 1)− ln x = lim
x→∞

ln
(
x+ 1
x

)
= 0.

InterpretaƟon: since this limit evaluates to 0, it means that for large x,
there is essenƟally no difference between ln(x + 1) and ln x; their differ-
ence is essenƟally 0.

4. The limit lim
x→∞

x2−ex iniƟally returns the indeterminate form∞−∞. We

can rewrite the expression by factoring out x2; x2 − ex = x2
(
1− ex

x2

)
.

We need to evaluate how ex/x2 behaves as x → ∞:

lim
x→∞

ex

x2
by LHR
= lim

x→∞

ex

2x

by LHR
= lim

x→∞

ex

2
= ∞.

Thus limx→∞ x2(1− ex/x2) evaluates to∞ · (−∞), which is not an inde-
terminate form; rather, ∞ · (−∞) evaluates to −∞. We conclude that
lim
x→∞

x2 − ex = −∞.

InterpretaƟon: as x gets large, the difference between x2 and ex grows
very large.

...

Indeterminate Forms 00, 1∞ and∞0

When faced with an indeterminate form that involves a power, it oŌen helps
to employ the natural logarithmic funcƟon. The following Key Idea expresses the
concept, which is followed by an example that demonstrates its use.

..
Key Idea 20 EvaluaƟng Limits Involving Indeterminate Forms

00, 1∞ and∞0

If lim
x→c

ln
(
f(x)
)
= L, then lim

x→c
f(x) = lim

x→c
eln(f(x)) = e L.

Notes:

317



Chapter 6 Techniques of AnƟdifferenƟaƟon

.. Example 190 ..Using l’Hôpital’s Rule with indeterminate forms involving
exponents
Evaluate the following limits.

1. lim
x→∞

(
1+

1
x

)x

2. lim
x→0+

xx.

SÊ½çã®ÊÄ

1. This equivalent to a special limit given in Theorem 3; these limits have
important applicaƟons within mathemaƟcs and finance. Note that the
exponent approaches ∞ while the base approaches 1, leading to the in-
determinate form 1∞. Let f(x) = (1+1/x)x; the problem asks to evaluate
lim
x→∞

f(x). Let’s first evaluate lim
x→∞

ln
(
f(x)
)
.

lim
x→∞

ln
(
f(x)
)
= lim

x→∞
ln
(
1+

1
x

)x

= lim
x→∞

x ln
(
1+

1
x

)
= lim

x→∞

ln
(
1+ 1

x

)
1/x

This produces the indeterminate form 0/0, so we apply l’Hôpital’s Rule.

= lim
x→∞

1
1+1/x · (−1/x2)

(−1/x2)

= lim
x→∞

1
1+ 1/x

= 1.

Thus lim
x→∞

ln
(
f(x)
)
= 1.We return to the original limit and apply Key Idea

20.

lim
x→∞

(
1+

1
x

)x

= lim
x→∞

f(x) = lim
x→∞

eln(f(x)) = e1 = e.

..

2. This limit leads to the indeterminate form 00. Let f(x) = xx and consider

Notes:
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Figure 6.17: A graph of f(x) = xx support-
ing the fact that as x → 0+, f(x) → 1.

6.7 L’Hôpital’s Rule

first lim
x→0+

ln
(
f(x)
)
.

lim
x→0+

ln
(
f(x)
)
= lim

x→0+
ln (xx)

= lim
x→0+

x ln x

= lim
x→0+

ln x
1/x

.

This produces the indeterminate form−∞/∞ soweapply l’Hôpital’s Rule.

= lim
x→0+

1/x
−1/x2

= lim
x→0+

−x

= 0.

Thus lim
x→0+

ln
(
f(x)
)
= 0. We return to the original limit and apply Key Idea

20.
lim

x→0+
xx = lim

x→0+
f(x) = lim

x→0+
eln(f(x)) = e0 = 1.

This result is supported by the graph of f(x) = xx given in Figure 6.17.
...

Our brief revisit of limits will be rewarded in the next secƟon where we con-
sider improper integraƟon. So far, we have only considered definite integrals

where the bounds are finite numbers, such as
∫ 1

0
f(x) dx. Improper integraƟon

considers integrals where one, or both, of the bounds are “infinity.” Such inte-
grals have many uses and applicaƟons, in addiƟon to generaƟng ideas that are
enlightening.

Notes:
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Exercises 6.7
Terms and Concepts
1. List the different indeterminate forms described in this sec-

Ɵon.

2. T/F: l’Hôpital’s Rule provides a faster method of compuƟng
derivaƟves.

3. T/F: l’Hôpital’s Rule states that
d
dx

[
f(x)
g(x)

]
=

f ′(x)
g′(x)

.

4. Explain what the indeterminate form “1∞” means.

5. Fill in the blanks: TheQuoƟent Rule is applied to
f(x)
g(x)

when

taking ; l’Hôpital’s Rule is applied when taking
certain .

6. Create (but do not evaluate!) a limit that returns “∞0”.

7. Create a funcƟon f(x) such that lim
x→1

f(x) returns “00”.

Problems
In Exercises 8 – 52, evaluate the given limit.

8. lim
x→1

x2 + x− 2
x− 1

9. lim
x→2

x2 + x− 6
x2 − 7x+ 10

10. lim
x→π

sin x
x− π

11. lim
x→π/4

sin x− cos x
cos(2x)

12. lim
x→0

sin(5x)
x

13. lim
x→0

sin(2x)
x+ 2

14. lim
x→0

sin(2x)
sin(3x)

15. lim
x→0

sin(ax)
sin(bx)

16. lim
x→0+

ex − 1
x2

17. lim
x→0+

ex − x− 1
x2

18. lim
x→0+

x− sin x
x3 − x2

19. lim
x→∞

x4

ex

20. lim
x→∞

√
x

ex

21. lim
x→∞

ex√
x

22. lim
x→∞

ex

2x

23. lim
x→∞

ex

3x

24. lim
x→3

x3 − 5x2 + 3x+ 9
x3 − 7x2 + 15x− 9

25. lim
x→−2

x3 + 4x2 + 4x
x3 + 7x2 + 16x+ 12

26. lim
x→∞

ln x
x

27. lim
x→∞

ln(x2)
x

28. lim
x→∞

(
ln x
)2

x
29. lim

x→0+
x · ln x

30. lim
x→0+

√
x · ln x

31. lim
x→0+

xe1/x

32. lim
x→∞

x3 − x2

33. lim
x→∞

√
x− ln x

34. lim
x→−∞

xex

35. lim
x→0+

1
x2
e−1/x

36. lim
x→0+

(1+ x)1/x

37. lim
x→0+

(2x)x

38. lim
x→0+

(2/x)x

39. lim
x→0+

(sin x)x Hint: use the Squeeze Theorem.

40. lim
x→1+

(1− x)1−x

41. lim
x→∞

(x)1/x

42. lim
x→∞

(1/x)x

43. lim
x→1+

(ln x)1−x

44. lim
x→∞

(1+ x)1/x

45. lim
x→∞

(1+ x2)1/x

46. lim
x→π/2

tan x cos x

47. lim
x→π/2

tan x sin(2x)

48. lim
x→1+

1
ln x

− 1
x− 1

49. lim
x→3+

5
x2 − 9

− x
x− 3

50. lim
x→∞

x tan(1/x)

51. lim
x→∞

(ln x)3

x

52. lim
x→1

x2 + x− 2
ln x
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1

1+ x2
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6.8 Improper IntegraƟon

6.8 Improper IntegraƟon
We begin this secƟon by considering the following definite integrals:

•
∫ 100

0

1
1+ x2

dx ≈ 1.5608,

•
∫ 1000

0

1
1+ x2

dx ≈ 1.5698,

•
∫ 10,000

0

1
1+ x2

dx ≈ 1.5707.

NoƟce how the integrand is 1/(1+ x2) in each integral (which is sketched in
Figure 6.18). As the upper bound gets larger, one would expect the “area under
the curve” would also grow. While the definite integrals do increase in value as
the upper bound grows, they are not increasing by much. In fact, consider:∫ b

0

1
1+ x2

dx = tan−1 x
∣∣∣b
0
= tan−1 b− tan−1 0 = tan−1 b.

As b → ∞, tan−1 b → π/2. Therefore it seems that as the upper bound b grows,

the value of the definite integral
∫ b

0

1
1+ x2

dx approaches π/2 ≈ 1.5708. This

should strike the reader as being a bit amazing: even though the curve extends
“to infinity,” it has a finite amount of area underneath it.

Whenwe defined the definite integral
∫ b

a
f(x) dx, wemade two sƟpulaƟons:

1. The interval over which we integrated, [a, b], was a finite interval, and

2. The funcƟon f(x) was conƟnuous on [a, b] (ensuring that the range of f
was finite).

In this secƟon we consider integrals where one or both of the above condi-
Ɵons do not hold. Such integrals are called improper integrals.

Notes:
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Figure 6.19: A graph of f(x) = 1
x2 in Ex-

ample 191.

Chapter 6 Techniques of AnƟdifferenƟaƟon

Improper Integrals with Infinite Bounds

..
DefiniƟon 24 Improper Integrals with Infinite Bounds; Coverge, Diverge

1. Let f be a conƟnuous funcƟon on [a,∞). Define∫ ∞

a
f(x) dx to be lim

b→∞

∫ b

a
f(x) dx.

2. Let f be a conƟnuous funcƟon on (−∞, b]. Define∫ b

−∞
f(x) dx to be lim

a→−∞

∫ b

a
f(x) dx.

3. Let f be a conƟnuous funcƟon on (−∞,∞). Let c be any real number; define∫ ∞

−∞
f(x) dx to be lim

a→−∞

∫ c

a
f(x) dx + lim

b→∞

∫ b

c
f(x) dx.

An improper integral is said to converge if its corresponding limit exists; otherwise, it di-
verges. The improper integral in part 3 converges if and only if both of its limits exist.

.. Example 191 ..EvaluaƟng improper integrals
Evaluate the following improper integrals.

1.
∫ ∞

1

1
x2

dx

2.
∫ ∞

1

1
x
dx

3.
∫ 0

−∞
ex dx

4.
∫ ∞

−∞

1
1+ x2

dx

SÊ½çã®ÊÄ

1.
∫ ∞

1

1
x2

dx = lim
b→∞

∫ b

1

1
x2

dx

= lim
b→∞

−1
x

∣∣∣b
1

= lim
b→∞

−1
b

+ 1

= 1.
A graph of the area defined by this integral is given in Figure 6.19.

Notes:

322



.....

f(x) =
1
x

. 1. 5. 10.

0.5

.

1

.
x

.

y

Figure 6.20: A graph of f(x) = 1
x in Exam-

ple 191.
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Figure 6.21: A graph of f(x) = ex in Exam-
ple 191.
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Figure 6.22: A graph of f(x) = 1
1+x2 in Ex-

ample 191.
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2.
∫ ∞

1

1
x
dx = lim

b→∞

∫ b

1

1
x
dx

= lim
b→∞

ln |x|
∣∣∣b
1

= lim
b→∞

ln(b)

= ∞.

The limit does not exist, hence the improper integral
∫ ∞

1

1
x
dx diverges.

Compare the graphs in Figures 6.19 and 6.20; noƟce how the graph of
f(x) = 1/x is noƟceably larger. This difference is enough to cause the
improper integral to diverge.

3.
∫ 0

−∞
ex dx = lim

a→−∞

∫ 0

a
ex dx

= lim
a→−∞

ex
∣∣∣0
a

= lim
a→−∞

e0 − ea

= 1.
A graph of the area defined by this integral is given in Figure 6.21.

4. We will need to break this into two improper integrals and choose a value
of c as in part 3 of DefiniƟon 24. Any value of c is fine; we choose c = 0.

∫ ∞

−∞

1
1+ x2

dx = lim
a→−∞

∫ 0

a

1
1+ x2

dx+ lim
b→∞

∫ b

0

1
1+ x2

dx

= lim
a→−∞

tan−1 x
∣∣∣0
a
+ lim

b→∞
tan−1 x

∣∣∣b
0

= lim
a→−∞

(
tan−1 0− tan−1 a

)
+ lim

b→∞

(
tan−1 b− tan−1 0

)
=

(
0− −π

2

)
+
(π
2
− 0
)
.

Each limit exists, hence the original integral converges and has value:

= π.

A graph of the area defined by this integral is given in Figure 6.22.
...

Notes:
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Figure 6.23: A graph of f(x) = ln x
x2 in Ex-

ample 192.

Chapter 6 Techniques of AnƟdifferenƟaƟon

The previous secƟon introduced l’Hôpital’s Rule, a method of evaluaƟng lim-
its that return indeterminate forms. It is not uncommon for the limits resulƟng
from improper integrals to need this rule as demonstrated next.

.. Example 192 Improper integraƟon and l’Hôpital’s Rule

Evaluate the improper integral
∫ ∞

1

ln x
x2

dx.

SÊ½çã®ÊÄ This integral will require the use of IntegraƟon by Parts. Let
u = ln x and dv = 1/x2 dx. Then∫ ∞

1

ln x
x2

dx = lim
b→∞

∫ b

1

ln x
x2

dx

= lim
b→∞

(
− ln x

x

∣∣∣b
1
+

∫ b

1

1
x2

dx

)

= lim
b→∞

(
− ln x

x
− 1

x

)∣∣∣∣b
1

= lim
b→∞

(
− ln b

b
− 1

b
− (− ln 1− 1)

)
.

The 1/b and ln 1 terms go to 0, leaving lim
b→∞

− ln b
b

+ 1. We need to evaluate

lim
b→∞

ln b
b

with l’Hôpital’s Rule. We have:

lim
b→∞

ln b
b

by LHR
= lim

b→∞

1/b
1

= 0.

Thus the improper integral evaluates as:∫ ∞

1

ln x
x2

dx = 1.
..

Improper Integrals with Infinite Range

We have just considered definite integrals where the interval of integraƟon
was infinite. We now consider another type of improper integraƟon, where the
range of the integrand is infinite.

Notes:
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Note: In DefiniƟon 25, c can be one of the
endpoints (a or b). In that case, there is
only one limit to consider as part of the
definiƟon as the other is 0.
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Figure 6.24: A graph of f(x) = 1√
x in Ex-

ample 193.
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Figure 6.25: A graph of f(x) = 1
x2 in Ex-

ample 193.

6.8 Improper IntegraƟon

..
DefiniƟon 25 Improper IntegraƟon with Infinite Range

Let f(x) be a conƟnuous funcƟon on [a, b] except at c, a ≤ c ≤ b, where
x = c is a verƟcal asymptote of f. Define∫ b

a
f(x) dx = lim

t→c−

∫ t

a
f(x) dx+ lim

t→c+

∫ b

t
f(x) dx.

.. Example 193 ..Improper integraƟon of funcƟons with infinite range
Evaluate the following improper integrals:

1.
∫ 1

0

1√
x
dx 2.

∫ 1

−1

1
x2

dx.

SÊ½çã®ÊÄ

1. A graph of f(x) = 1/
√
x is given in Figure 6.24. NoƟce that f has a verƟcal

asymptote at x = 0; in some sense, we are trying to compute the area of
a region that has no “top.” Could this have a finite value?∫ 1

0

1√
x
dx = lim

a→0+

∫ 1

a

1√
x
dx

= lim
a→0+

2
√
x
∣∣∣1
a

= lim
a→0+

2
(√

1−
√
a
)

= 2.

It turns out that the region does have a finite area even though it has no
upper bound (strange things can occur in mathemaƟcs when considering
the infinite).

2. The funcƟon f(x) = 1/x2 has a verƟcal asymptote at x = 0, as shown
in Figure 6.25, so this integral is an improper integral. Let’s eschew using
limits for amoment and proceedwithout recognizing the improper nature
of the integral. This leads to:∫ 1

−1

1
x2

dx = −1
x

∣∣∣1
−1

= −1− (1)
= −2!

Notes:
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Figure 6.26: Ploƫng funcƟons of the form
1/x p in Example 194.

Chapter 6 Techniques of AnƟdifferenƟaƟon

Clearly the area in quesƟon is above the x-axis, yet the area is supposedly
negaƟve! Why does our answer not match our intuiƟon? To answer this,
evaluate the integral using DefiniƟon 25.∫ 1

−1

1
x2

dx = lim
t→0−

∫ t

−1

1
x2

dx+ lim
t→0+

∫ 1

t

1
x2

dx

= lim
t→0−

−1
x

∣∣∣t
−1

+ lim
t→0+

−1
x

∣∣∣1
t

= lim
t→0−

−1
t
− 1+ lim

t→0+
−1+

1
t

⇒
(
∞− 1

)
+
(
− 1+∞

)
.

Neither limit converges hence the original improper integral diverges. The
nonsensical answer we obtained by ignoring the improper nature of the
integral is just that: nonsensical....

Understanding Convergence and Divergence

OŌenƟmes we are interested in knowing simply whether or not an improper
integral converges, and not necessarily the value of a convergent integral. We
provide here several tools that help determine the convergence or divergence
of improper integrals without integraƟng.

Our first tool is to understand the behavior of funcƟons of the form
1
xp

.

.. Example 194 ..Improper integraƟon of 1/xp

Determine the values of p for which
∫ ∞

1

1
xp

dx converges.

SÊ½çã®ÊÄ We begin by integraƟng and then evaluaƟng the limit.∫ ∞

1

1
xp

dx = lim
b→∞

∫ b

1

1
xp

dx

= lim
b→∞

∫ b

1
x−p dx (assume p ̸= 1)

= lim
b→∞

1
−p+ 1

x−p+1
∣∣∣b
1

= lim
b→∞

1
1− p

(
b1−p − 11−p).

When does this limit converge – i.e., when is this limit not ∞? This limit con-
verges precisely when the power of b is less than 0: when 1− p < 0 ⇒ 1 < p.

Notes:
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Note: We used the upper and lower
bound of “1” in Key Idea 21 for conve-
nience. It can be replaced by any awhere
a > 0.

6.8 Improper IntegraƟon

Our analysis shows that if p > 1, then
∫ ∞

1

1
xp

dx converges. When p < 1

the improper integral diverges; we showed in Example 191 that when p = 1 the
integral also diverges.

Figure 6.26 graphs y = 1/xwith a dashed line, alongwith graphs of y = 1/xp,
p < 1, and y = 1/xq, q > 1. Somehow the dashed line forms a dividing line
between convergence and divergence. ...

The result of Example 194 provides an important tool in determining the
convergence of other integrals. A similar result is proved in the exercises about

improper integrals of the form
∫ 1

0

1
xp

dx. These results are summarized in the

following Key Idea.

..

Key Idea 21 Convergence of Improper Integrals
∫ ∞

1

1
xp

dx and
∫ 1

0

1
xp

dx.

1. The improper integral
∫ ∞

1

1
xp

dx converges when p > 1 and diverges when p ≤ 1.

2. The improper integral
∫ 1

0

1
xp

dx converges when p < 1 and diverges when p ≥ 1.

A basic technique in determining convergence of improper integrals is to
compare an integrand whose convergence is unknown to an integrand whose
convergence is known. We oŌen use integrands of the form 1/xp to compare
to as their convergence on certain intervals is known. This is described in the
following theorem.

..
Theorem 51 Direct Comparison Test for Improper Integrals

Let f and g be conƟnuous on [a,∞) where 0 ≤ f(x) ≤ g(x) for all x in
[a,∞).

1. If
∫ ∞

a
g(x) dx converges, then

∫ ∞

a
f(x) dx converges.

2. If
∫ ∞

a
f(x) dx diverges, then

∫ ∞

a
g(x) dx diverges.

Notes:
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Figure 6.27: Graphs of f(x) = e−x2 and
f(x) = 1/x2 in Example 195.
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Figure 6.28: Graphs of f(x) = 1/
√
x2 − x

and f(x) = 1/x in Example 195.

Chapter 6 Techniques of AnƟdifferenƟaƟon

.. Example 195 Determining convergence of improper integrals
Determine the convergence of the following improper integrals.

1.
∫ ∞

1
e−x2 dx 2.

∫ ∞

3

1√
x2 − x

dx

SÊ½çã®ÊÄ

1. The funcƟon f(x) = e−x2 does not have an anƟderivaƟve expressible in
terms of elementary funcƟons, so we cannot integrate directly. It is com-
parable to g(x) = 1/x2, and as demonstrated in Figure 6.27, e−x2 < 1/x2

on [1,∞). We know from Key Idea 21 that
∫ ∞

1

1
x2

dx converges, hence∫ ∞

1
e−x2 dx also converges.

2. Note that for large values of x,
1√

x2 − x
≈ 1√

x2
=

1
x
. We know from Key

Idea 21 and the subsequent note that
∫ ∞

3

1
x
dx diverges, so we seek to

compare the original integrand to 1/x.

It is easy to see that when x > 0, we have x =
√
x2 >

√
x2 − x. Taking

reciprocals reverses the inequality, giving

1
x
<

1√
x2 − x

.

Using Theorem51,we conclude that since
∫ ∞

3

1
x
dxdiverges,

∫ ∞

3

1√
x2 − x

dx

diverges as well. Figure 6.28 illustrates this.
..

Being able to compare “unknown” integrals to “known” integrals is very use-
ful in determining convergence. However, some of our examples were a liƩle

“too nice.” For instance, it was convenient that
1
x
<

1√
x2 − x

, but what if the

“−x” were replaced with a “+2x+ 5”? That is, what can we say about the con-

vergence of
∫ ∞

3

1√
x2 + 2x+ 5

dx? We have
1
x
>

1√
x2 + 2x+ 5

, so we cannot

use Theorem 51.
In cases like this (and many more) it is useful to employ the following theo-

rem.

Notes:
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Figure 6.29: Graphing f(x) = 1√
x2+2x+5

and f(x) = 1
x in Example 196.

6.8 Improper IntegraƟon

..
Theorem 52 Limit Comparison Test for Improper Integrals

Let f and g be conƟnuous funcƟons on [a,∞) where f(x) > 0 and g(x) > 0
for all x. If

lim
x→∞

f(x)
g(x)

= L, 0 < L < ∞,

then ∫ ∞

a
f(x) dx and

∫ ∞

a
g(x) dx

either both converge or both diverge.

.. Example 196 Determining convergence of improper integrals

Determine the convergence of
∫ ∞

3

1√
x2 + 2x+ 5

dx.

SÊ½çã®ÊÄ As x gets large, the quadraƟc inside the square root funcƟon
will begin to behave much like y = x. So we compare

1√
x2 + 2x+ 5

to
1
x
with

the Limit Comparison Test:

lim
x→∞

1/
√
x2 + 2x+ 5
1/x

= lim
x→∞

x√
x2 + 2x+ 5

.

The immediate evaluaƟonof this limit returns∞/∞, an indeterminate form.
Using l’Hôpital’s Rule seems appropriate, but in this situaƟon, it does not lead
to useful results. (We encourage the reader to employ l’Hôpital’s Rule at least
once to verify this.)

The trouble is the square root funcƟon. To get rid of it, we employ the fol-
lowing fact: If lim

x→c
f(x) = L, then lim

x→c
f(x)2 = L2. (This is true when either c or L

is∞.) So we consider now the limit

lim
x→∞

x2

x2 + 2x+ 5
.

This converges to 1, meaning the original limit also converged to 1. As x gets very
large, the funcƟon

1√
x2 + 2x+ 5

looks very much like
1
x
. Since we know that∫ ∞

3

1
x
dxdiverges, by the Limit Comparison Testwe know that

∫ ∞

3

1√
x2 + 2x+ 5

dx

also diverges. Figure 6.29 graphs f(x) = 1/
√
x2 + 2x+ 5 and f(x) = 1/x, illus-

traƟng that as x gets large, the funcƟons become indisƟnguishable. ..

Both the Direct and Limit Comparison Tests were given in terms of integrals
over an infinite interval. There are versions that apply to improper integrals with
an infinite range, but as they are a bit wordy and a liƩle more difficult to employ,
they are omiƩed from this text.

Notes:

329



Exercises 6.8
Terms and Concepts
1. The definite integral was defined with what two sƟpula-

Ɵons?

2. If lim
b→∞

∫ b

0
f(x) dx exists, then the integral

∫ ∞

0
f(x) dx is

said to .

3. If
∫ ∞

1
f(x) dx = 10, and 0 ≤ g(x) ≤ f(x) for all x, then we

know that
∫ ∞

1
g(x) dx .

4. For what values of p will
∫ ∞

1

1
xp

dx converge?

5. For what values of p will
∫ ∞

10

1
xp

dx converge?

6. For what values of p will
∫ 1

0

1
xp

dx converge?

Problems
In Exercises 7 – 33, evaluate the given improper integral.

7.
∫ ∞

0
e5−2x dx

8.
∫ ∞

1

1
x3

dx

9.
∫ ∞

1
x−4 dx

10.
∫ ∞

−∞

1
x2 + 9

dx

11.
∫ 0

−∞
2x dx

12.
∫ 0

−∞

(
1
2

)x

dx

13.
∫ ∞

−∞

x
x2 + 1

dx

14.
∫ ∞

−∞

x
x2 + 4

dx

15.
∫ ∞

2

1
(x− 1)2

dx

16.
∫ 2

1

1
(x− 1)2

dx

17.
∫ ∞

2

1
x− 1

dx

18.
∫ 2

1

1
x− 1

dx

19.
∫ 1

−1

1
x
dx

20.
∫ 3

1

1
x− 2

dx

21.
∫ π

0
sec2 x dx

22.
∫ 1

−2

1√
|x|

dx

23.
∫ ∞

0
xe−x dx

24.
∫ ∞

0
xe−x2 dx

25.
∫ ∞

−∞
xe−x2 dx

26.
∫ ∞

−∞

1
ex + e−x dx

27.
∫ 1

0
x ln x dx

28.
∫ ∞

1

ln x
x

dx

29.
∫ 1

0
ln x dx

30.
∫ ∞

1

ln x
x2

dx

31.
∫ ∞

1

ln x√
x
dx

32.
∫ ∞

0
e−x sin x dx

33.
∫ ∞

0
e−x cos x dx
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In Exercises 34 – 43, use the Direct Comparison Test or the
Limit Comparison Test to determine whether the given def-
inite integral converges or diverges. Clearly state what test
is being used and what funcƟon the integrand is being com-
pared to.

34.
∫ ∞

10

3√
3x2 + 2x− 5

dx

35.
∫ ∞

2

4√
7x3 − x

dx

36.
∫ ∞

0

√
x+ 3√

x3 − x2 + x+ 1
dx

37.
∫ ∞

1
e−x ln x dx

38.
∫ ∞

5
e−x2+3x+1 dx

39.
∫ ∞

0

√
x

ex
dx

40.
∫ ∞

2

1
x2 + sin x

dx

41.
∫ ∞

0

x
x2 + cos x

dx

42.
∫ ∞

0

1
x+ ex

dx

43.
∫ ∞

0

1
ex − x

dx
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7: AÖÖ½®��ã®ÊÄÝ Ê¥ IÄã�¦Ù�ã®ÊÄ

We begin this chapter with a reminder of a few key concepts from Chapter 5. Let f be a conƟnuous
funcƟon on [a, b] which is parƟƟoned into n subintervals as

a < x1 < x2 < · · · < xn < xn+1 = b.

Let∆xi denote the length of the ith subinterval, and let ci be any x-value in that subinterval. DefiniƟon
21 states that the sum

n∑
i=1

f(ci)∆xi

is a Riemann Sum. Riemann Sums are oŌen used to approximate some quanƟty (area, volume, work,
pressure, etc.). The approximaƟon becomes exact by taking the limit

lim
||∆xi||→0

n∑
i=1

f(ci)∆xi,

where ||∆xi|| the length of the largest subinterval in the parƟƟon. Theorem 38 connects limits of
Riemann Sums to definite integrals:

lim
||∆xi||→0

n∑
i=1

f(ci)∆xi =
∫ b

a
f(x) dx.

Finally, the Fundamental Theorem of Calculus states how definite integrals can be evaluated using
anƟderivaƟves.
This chapter employs the following technique to a variety of applicaƟons. Suppose the value Q of a
quanƟty is to be calculated. We first approximate the value of Q using a Riemann Sum, then find the
exact value via a definite integral. We spell out this technique in the following Key Idea.

..
Key Idea 22 ApplicaƟon of Definite Integrals Strategy

Let a quanƟty be given whose value Q is to be computed.

1. Divide the quanƟty into n smaller “subquanƟƟes” of value Qi.

2. IdenƟfy a variable x and funcƟon f(x) such that each subquanƟty can be approximated with
the product f(ci)∆xi, where ∆xi represents a small change in x. Thus Qi ≈ f(ci)∆xi. A
sample approximaƟon f(ci)∆xi of Qi is called a differenƟal element.

3. Recognize that Q =
n∑

i=1

Qi ≈
n∑

i=1

f(ci)∆xi, which is a Riemann Sum.

4. Taking the appropriate limit gives Q =

∫ b

a
f(x) dx

This Key Idea will make more sense aŌer we have had a chance to use it
several Ɵmes. We begin Area Between Curves, which we addressed briefly in
SecƟon 5.5.4.
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Figure 7.1: Subdividing a region into ver-
Ɵcal slices and approximaƟng the areas
with rectangles.

Chapter 7 ApplicaƟons of IntegraƟon

7.1 Area Between Curves
We are oŌen interested in knowing the area of a region. Forget momentarily
that we addressed this already in SecƟon 5.5.4 and approach it instead using
the technique described in Key Idea 22.

LetQ be the area of a region bounded by conƟnuous funcƟons f and g. If we
break the region into many subregions, we have an obvious equaƟon:

Total Area = sum of the areas of the subregions.
The issue to address next is how to systemaƟcally break a region into sub-

regions. A graph will help. Consider Figure 7.1 (a) where a region between two
curves is shaded. While there are many ways to break this into subregions, one
parƟcularly efficient way is to “slice” it verƟcally, as shown in Figure 7.1 (b).

We now approximate the area of a slice. Again, we have many opƟons, but
using a rectangle seems simplest. Picking any x-value ci in the i th slice, we set
the height of the rectangle to be f(ci)− g(ci), the difference of the correspond-
ing y-values. The width of the rectangle is a small difference in x-values, which
we represent with ∆xi. Figure 7.1 (c) shows sample points ci chosen in each
subinterval and appropriate rectangles drawn. (Each of these rectangles rep-
resents a differenƟal element.) Each slice has an area approximately equal to(
f(ci)− g(ci)

)
∆xi; hence, the total area is approximately the Riemann Sum

Q =
n∑

i=1

(
f(ci)− g(ci)

)
∆xi.

Taking the limit as ||∆xi|| → 0 gives the exact area as
∫ b
a

(
f(x)− g(x)

)
dx.

..
Theorem 53 Area Between Curves (restatement of Theorem 41)

Let f(x) and g(x) be conƟnuous funcƟons defined on [a, b]where f(x) ≥
g(x) for all x in [a, b]. The area of the region bounded by the curves
y = f(x), y = g(x) and the lines x = a and x = b is∫ b

a

(
f(x)− g(x)

)
dx.

.. Example 197 ..Finding area enclosed by curves
Find the area of the region bounded by f(x) = sin x+ 2, g(x) = 1

2 cos(2x)− 1,
x = 0 and x = 4π, as shown in Figure 7.2.

SÊ½çã®ÊÄ The graph verifies that the upper boundary of the region is
given by f and the lower bound is given by g. Therefore the area of the region is

Notes:
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Figure 7.3: Graphing a region enclosed by
two funcƟons in Example 198.
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7.1 Area Between Curves

the value of the integral∫ 4π

0

(
f(x)− g(x)

)
dx =

∫ 4π

0

(
sin x+ 2−

(1
2
cos(2x)− 1

))
dx

= − cos x− 1
4
sin(2x) + 3x

∣∣∣4π
0

= 12π ≈ 37.7 units2.
...

.. Example 198 Finding total area enclosed by curves
Find the total area of the region enclosed by the funcƟons f(x) = −2x+ 5 and
g(x) = x3 − 7x2 + 12x− 3 as shown in Figure 7.3.

SÊ½çã®ÊÄ A quick calculaƟon shows that f = g at x = 1, 2 and 4. One

can proceed thoughtlessly by compuƟng
∫ 4

1

(
f(x) − g(x)

)
dx, but this ignores

the fact that on [1, 2], g(x) > f(x). (In fact, the thoughtless integraƟon returns
−9/4, hardly the expected value of an area.) Thus we compute the total area by
breaking the interval [1, 4] into two subintervals, [1, 2] and [2, 4] and using the
proper integrand in each.

Total Area =

∫ 2

1

(
g(x)− f(x)

)
dx+

∫ 4

2

(
f(x)− g(x)

)
dx

=

∫ 2

1

(
x3 − 7x2 + 14x− 8

)
dx+

∫ 4

2

(
− x3 + 7x2 − 14x+ 8

)
dx

= 5/12+ 8/3

= 37/12 = 3.083 units2.
..

The previous example makes note that we are expecƟng area to be posiƟve.
When first learning about the definite integral, we interpreted it as “signed area
under the curve,” allowing for “negaƟve area.” That doesn’t apply here; area is
to be posiƟve.

The previous example also demonstrates that we oŌen have to break a given
region into subregions before applying Theorem 53. The following example
shows another situaƟon where this is applicable, along with an alternate view
of applying the Theorem.

.. Example 199 ..Finding area: integraƟng with respect to y
Find the area of the region enclosed by the funcƟons y =

√
x + 2, y = −(x −

1)2 + 3 and y = 2, as shown in Figure 7.4.
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Figure 7.5: The region used in Example
199 with boundaries relabeled as func-
Ɵons of y.

Chapter 7 ApplicaƟons of IntegraƟon

SÊ½çã®ÊÄ We give two approaches to this problem. In the first ap-
proach, we noƟce that the region’s “top” is defined by two different curves.
On [0, 1], the top funcƟon is y =

√
x + 2; on [1, 2], the top funcƟon is y =

−(x− 1)2 + 3. Thus we compute the area as the sum of two integrals:

Total Area =

∫ 1

0

((√
x+ 2

)
− 2
)
dx+

∫ 2

1

((
− (x− 1)2 + 3

)
− 2
)
dx

= 2/3+ 2/3
= 4/3

The second approach is clever and very useful in certain situaƟons. We are
used to viewing curves as funcƟons of x; we input an x-value and a y-value is re-
turned. Some curves can also be described as funcƟons of y: input a y-value and
an x-value is returned. We can rewrite the equaƟons describing the boundary
by solving for x:

y =
√
x+ 2 ⇒ x = (y− 2)2

y = −(x− 1)2 + 3 ⇒ x =
√

3− y+ 1.

Figure 7.5 shows the region with the boundaries relabeled. A differenƟal
element, a horizontal rectangle, is also pictured. The width of the rectangle is
a small change in y: ∆y. The height of the rectangle is a difference in x-values.
The “top” x-value is the largest value, i.e., the rightmost. The “boƩom” x-value
is the smaller, i.e., the leŌmost. Therefore the height of the rectangle is(√

3− y+ 1
)
− (y− 2)2.

The area is found by integraƟng the above funcƟon with respect to y with
the appropriate bounds. We determine these by considering the y-values the
region occupies. It is bounded below by y = 2, and bounded above by y = 3.
That is, both the “top” and “boƩom” funcƟons exist on the y interval [2, 3]. Thus

Total Area =

∫ 3

2

(√
3− y+ 1− (y− 2)2

)
dy

=
(
− 2

3
(3− y)3/2 + y− 1

3
(y− 2)3

)∣∣∣3
2

= 4/3.
...

This calculus–based technique of finding area can be useful evenwith shapes
that we normally think of as “easy.” Example 200 computes the area of a trian-
gle. While the formula “ 12 × base× height” is well known, in arbitrary triangles
it can be nontrivial to compute the height. Calculus makes the problem simple.
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Figure 7.6: Graphing a triangular region in
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.
(a)

.....

2.
25

.

5.
08

.
6.

35
.

5.
21

.

2.
76

.
1

.
2

.
3

.
4

.
5

.
6

.
7

.
8

.
9

.
10

.
11

.
12

.
1

.

2

.

3

.

4

.

5

.

6

.

7

.

8

. x.

y

(b)

Figure 7.7: (a) A sketch of a lake, and (b)
the lake with length measurements.

7.1 Area Between Curves

.. Example 200 Finding the area of a triangle
Compute the area of the regions bounded by the lines
y = x+ 1, y = −2x+ 7 and y = − 1

2x+
5
2 , as shown in Figure 7.6.

SÊ½çã®ÊÄ Recognize that there are two “top” funcƟons to this region,
causing us to use two definite integrals.

Total Area =

∫ 2

1

(
(x+ 1)− (−1

2
x+

5
2
)
)
dx+

∫ 3

2

(
(−2x+ 7)− (−1

2
x+

5
2
)
)
dx

= 3/4+ 3/4
= 3/2.

We can also approach this by converƟng each funcƟon into a funcƟon of y. This
also requires 2 integrals, so there isn’t really any advantage to doing so. We do
it here for demonstraƟon purposes.

The “top” funcƟon is always x = 7−y
2 while there are two “boƩom” func-

Ɵons. Being mindful of the proper integraƟon bounds, we have

Total Area =

∫ 2

1

(7− y
2

− (5− 2y)
)
dy+

∫ 3

2

(7− y
2

− (y− 1)
)
dy

= 3/4+ 3/4
= 3/2.

Of course, the final answer is the same. (It is interesƟng to note that the area of
all 4 subregions used is 3/4. This is coincidental.) ..

While we have focused on producing exact answers, we are also able make
approximaƟons using the principle of Theorem 53. The integrand in the theo-
rem is a distance (“top minus boƩom”); integraƟng this distance funcƟon gives
an area. By taking discrete measurements of distance, we can approximate an
area using Numerical IntegraƟon techniques developed in SecƟon 5.5. The fol-
lowing example demonstrates this.

.. Example 201 ..Numerically approximaƟng area
To approximate the area of a lake, shown in Figure 7.7 (a), the “length” of the
lake is measured at 200-foot increments as shown in Figure 7.7 (b), where the
lengths are given in hundreds of feet. Approximate the area of the lake.

SÊ½çã®ÊÄ The measurements of length can be viewed as measuring
“top minus boƩom” of two funcƟons. The exact answer is found by integraƟng∫ 12

0

(
f(x) − g(x)

)
dx, but of course we don’t know the funcƟons f and g. Our

discrete measurements instead allow us to approximate.

Notes:
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We have the following data points:

(0, 0), (2, 2.25), (4, 5.08), (6, 6.35), (8, 5.21), (10, 2.76), (12, 0).

We also have that∆x = b−a
n = 2, so Simpson’s Rule gives

Area ≈ 2
3

(
1 · 0+ 4 · 2.25+ 2 · 5.08+ 4 · 6.35+ 2 · 5.21+ 4 · 2.76+ 1 · 0

)
= 44.013 units2.

Since the measurements are in hundreds of feet, units2 = (100 Ō)2 =
10, 000 Ō2, giving a total area of 440, 133 Ō2. (Since we are approximaƟng, we’d
likely say the area was about 440, 000 Ō2, which is a liƩle more than 10 acres.) ...

Notes:
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Exercises 7.1
Terms and Concepts
1. T/F: The area between curves is always posiƟve.

2. T/F: Calculus can be used to find the area of basic geometric
shapes.

3. In your own words, describe how to find the total area en-
closed by y = f(x) and y = g(x).

Problems

In Exercises 4 – 10, find the area of the shaded region in the
given graph.

4.

.....

y = 1
2 cos x + 1

.

y = 1
2 x + 3

.

2

.

4

.

6

.
π

.
2π

. x.

y

5.

.....
y = x2 + x − 1

.

y = −3x3 + 3x + 2

.

−1

.

1

.
−1

.

1

.

2

.

3

.

x

.

y

6.

.....

y = 1

.

y = 2

.

1

.

2

.
π

.
π/2

.

x

.

y

7.

...

..

y = sin x

.

y = sin x + 1

.

1

.

2

.

π

.

π/2
.

x

.

y

8.

...

..

y = sin(4x)

.

y = sec2 x

.

1

.

2

.
π/4

.
π/8.

x
.

y

9.

.....

y = sin x

.

y = cos x

.−1 .

−0.5

.

0.5

.

1

.

π/4

.

π/2

.

3π/4

.

π

.

5π/4

.

x

.

y

10.

.....

y = 2x

.

y = 4x

.
0.5

.
1

.

1

.

2

.

3

.

4

. x.

y

339



In Exercises 11 – 16, find the total area enclosed by the func-
Ɵons f and g.

11. f(x) = 2x2 + 5x− 3, g(x) = x2 + 4x− 1
12. f(x) = x2 − 3x+ 2, g(x) = −3x+ 3
13. f(x) = sin x, g(x) = 2x/π
14. f(x) = x3 − 4x2 + x− 1, g(x) = −x2 + 2x− 4
15. f(x) = x, g(x) =

√
x

16. f(x) = −x3 + 5x2 + 2x+ 1, g(x) = 3x2 + x+ 3
17. The funcƟons f(x) = cos(2x) and g(x) = sin x intersect

infinitely many Ɵmes, forming an infinite number of re-
peated, enclosed regions. Find the areas of these regions.

In Exercises 18 – 22, find the area of the enclosed region in
two ways:

1. by treaƟng the boundaries as funcƟons of x, and
2. by treaƟng the boundaries as funcƟons of y.
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In Exercises 23 – 26, find the area triangle formed by the given
three points.

23. (1, 1), (2, 3), and (3, 3)

24. (−1, 1), (1, 3), and (2,−1)

25. (1, 1), (3, 3), and (3, 3)

26. (0, 0), (2, 5), and (5, 2)

27. Use the Trapezoidal Rule to approximate the area of the
pictured lake whose lengths, in hundreds of feet, are mea-
sured in 100-foot increments.

..
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2. 7.

3. 4.
5

28. Use Simpson’s Rule to approximate the area of the pictured
lake whose lengths, in hundreds of feet, are measured in
200-foot increments.
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Figure 7.9: OrienƟng a pyramid along the
x-axis in Example 202.

7.2 Volume by Cross-SecƟonal Area; Disk and Washer Methods

7.2 VolumebyCross-SecƟonal Area; Disk andWasher
Methods

The volume of a general right cylinder, as shown in Figure 7.8, is
Area of the base× height.

We can use this fact as the building block in finding volumes of a variety of
shapes.

Given an arbitrary solid, we can approximate its volume by cuƫng it into n
thin slices. When the slices are thin, each slice can be approximated well by a
general right cylinder. Thus the volume of each slice is approximately its cross-
secƟonal area× thickness. (These slices are the differenƟal elements.)

By orienƟng a solid along the x-axis, we can let A(xi) represent the cross-
secƟonal area of the i th slice, and let∆xi represent the thickness of this slice (the
thickness is a small change in x). The total volume of the solid is approximately:

Volume ≈
n∑

i=1

[
Area × thickness

]
=

n∑
i=1

A(xi)∆xi.

Recognize that this is a Riemann Sum. By taking a limit (as the thickness of
the slices goes to 0) we can find the volume exactly.

..
Theorem 54 Volume By Cross-SecƟonal Area

The volume V of a solid, oriented along the x-axis with cross-secƟonal
area A(x) from x = a to x = b, is

V =

∫ b

a
A(x) dx.

.. Example 202 ..Finding the volume of a solid
Find the volume of a pyramidwith a square base of side length 10 in and a height
of 5 in.

SÊ½çã®ÊÄ There are many ways to “orient” the pyramid along the x-
axis; Figure 7.9 gives one such way, with the pointed top of the pyramid at the
origin and the x-axis going through the center of the base.

Each cross secƟon of the pyramid is a square; this is a sample differenƟal
element. To determine its area A(x), we need to determine the side lengths of

Notes:

341



Chapter 7 ApplicaƟons of IntegraƟon

the square.
When x = 5, the square has side length 10; when x = 0, the square has side

length 0. Since the edges of the pyramid are lines, it is easy to figure that each
cross-secƟonal square has side length 2x, giving A(x) = (2x)2 = 4x2. Following
Theorem 54, we have

V =

∫ 5

0
4x2 dx

=
4
3
x3
∣∣∣5
0

=
500
3

in3 ≈ 166.67 in3.

We can check our work by consulƟng the general equaƟon for the volume of a
pyramid (see the back cover under “Volume of A General Cone”):

1
3 × area of base× height.

Certainly, using this formula from geometry is faster than our new method, but
the calculus-based method can be applied to much more than just cones. ...

An important special case of Theorem 54 is when the solid is a solid of rev-
oluƟon, that is, when the solid is formed by rotaƟng a shape around an axis.

Start with a funcƟon y = f(x) from x = a to x = b. Revolving this curve
about a horizontal axis creates a three-dimensional solid whose cross secƟons
are disks (thin circles). Let R(x) represent the radius of the cross-secƟonal disk
at x; the area of this disk is πR(x)2. Applying Theorem 54 gives the DiskMethod.

..
Key Idea 23 The Disk Method

Let a solid be formed by revolving the curve y = f(x) from x = a to x = b
around a horizontal axis, and let R(x) be the radius of the cross-secƟonal
disk at x. The volume of the solid is

V = π

∫ b

a
R(x)2 dx.

.. Example 203 ..Finding volume using the Disk Method
Find the volume of the solid formed by revolving the curve y = 1/x, from x = 1
to x = 2, around the x-axis.

SÊ½çã®ÊÄ A sketch can help us understand this problem. In Figure 7.10
(a) the curve y = 1/x is sketched along with the differenƟal element – a disk –

Notes:
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Figure 7.10: Sketching a solid in Example
203.
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Figure 7.11: Sketching the solid in Exam-
ple 204.

7.2 Volume by Cross-SecƟonal Area; Disk and Washer Methods

at x with radius R(x) = 1/x. In Figure 7.10 (b) the whole solid is pictured, along
with the differenƟal element.

Using Key Idea 23, we have

V = π

∫ 2

1

(
1
x

)2

dx

= π

∫ 2

1

1
x2

dx

= π

[
−1
x

] ∣∣∣2
1

= π

[
−1
2
− (−1)

]
=

π

2
units3.

...

While Key Idea 23 is given in terms of funcƟons of x, the principle involved
can be applied to funcƟons of y when the axis of rotaƟon is verƟcal, not hori-
zontal. We demonstrate this in the next example.

.. Example 204 Finding volume using the Disk Method
Find the volume of the solid formed by revolving the curve y = 1/x, from x = 1
to x = 2, about the y-axis.

SÊ½çã®ÊÄ Since the axis of rotaƟon is verƟcal, we need to convert the
funcƟon into a funcƟon of y and convert the x-bounds to y-bounds. Since y =
1/x defines the curve, we rewrite it as x = 1/y. The bound x = 1 corresponds to
the y-bound y = 1, and the bound x = 2 corresponds to the y-bound y = 1/2.

Thus we are rotaƟng the curve x = 1/y, from y = 1/2 to y = 1 about the
y-axis to form a solid. The curve and sample differenƟal element are sketched
in Figure 7.11 (a), with a full sketch of the solid in Figure 7.11 (b). We integrate
to find the volume:

V = π

∫ 1

1/2

1
y2

dy

= −π

y

∣∣∣1
1/2

= π units3.

..
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Figure 7.13: A sketch of the region used
in Example 205.

Chapter 7 ApplicaƟons of IntegraƟon

We can also compute the volume of solids of revoluƟon that have a hole in
the center. The general principle is simple: compute the volume of the solid
irrespecƟve of the hole, then subtract the volume of the hole. If the outside
radius of the solid is R(x) and the inside radius (defining the hole) is r(x), then
the volume is

V = π

∫ b

a
R(x)2 dx− π

∫ b

a
r(x)2 dx = π

∫ b

a

(
R(x)2 − r(x)2

)
dx.

One can generate a solid of revoluƟon with a hole in the middle by revolving
a region about an axis. Consider Figure 7.12 (a), where a region is sketched along
with a dashed, horizontal axis of rotaƟon. By rotaƟng the region about the axis, a
solid is formed as sketched in Figure 7.12 (b). The outside of the solid has radius
R(x), whereas the inside has radius r(x). Each cross secƟon of this solid will be
a washer (a disk with a hole in the center) as sketched in Figure 7.12 (c). This
leads us to the Washer Method.

..
Key Idea 24 The Washer Method

Let a region bounded by y = f(x), y = g(x), x = a and x = b be ro-
tated about a horizontal axis that does not intersect the region, forming
a solid. Each cross secƟon at x will be a washer with outside radius R(x)
and inside radius r(x). The volume of the solid is

V = π

∫ b

a

(
R(x)2 − r(x)2

)
dx.

Even though we introduced it first, the Disk Method is just a special case of
the Washer Method with an inside radius of r(x) = 0.

.. Example 205 ..Finding volume with the Washer Method
Find the volume of the solid formed by rotaƟng the region bounded by y =
x2 − 2x+ 2 and y = 2x− 1 about the x-axis.

SÊ½çã®ÊÄ A sketch of the region will help, as given in Figure 7.13. Ro-
taƟng about the x-axis will produce cross secƟons in the shape of washers, as
shown in Figure 7.14 (a); the complete solid is shown in part (b). The outside
radius of this washer is R(x) = 2x+ 1; the inside radius is r(x) = x2− 2x+ 4. As
the region is bounded from x = 1 to x = 3, we integrate as follows to compute

Notes:
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Figure 7.15: Sketching the solid in Exam-
ple 206.

7.2 Volume by Cross-SecƟonal Area; Disk and Washer Methods

the volume.

V = π

∫ 3

1

(
(2x− 1)2 − (x2 − 2x+ 2)2

)
dx

= π

∫ 3

1

(
− x4 + 4x3 − 4x2 + 4x− 3

)
dx

= π
[
− 1

5
x5 + x4 − 4

3
x3 + 2x2 − 3x

]∣∣∣3
1

=
104
15

π ≈ 21.78 units3.
...

When rotaƟng about a verƟcal axis, the outside and inside radius funcƟons
must be funcƟons of y.

.. Example 206 Finding volume with the Washer Method
Find the volume of the solid formed by rotaƟng the triangular region with ver-
Ɵces at (1, 1), (2, 1) and (2, 3) about the y-axis.

SÊ½çã®ÊÄ The triangular region is sketched in Figure 7.15 (a); the dif-
ferenƟal element is sketched in (b) and the full solid is drawn in (c). They help us
establish the outside and inside radii. Since the axis of rotaƟon is verƟcal, each
radius is a funcƟon of y.

The outside radius R(y) is formed by the line connecƟng (2, 1) and (2, 3); it
is a constant funcƟon, as regardless of the y-value the distance from the line to
the axis of rotaƟon is 2. Thus R(y) = 2.

The inside radius is formedby the line connecƟng (1, 1) and (2, 3). The equa-
Ɵon of this line is y = 2x−1, but we need to refer to it as a funcƟon of y. Solving
for x gives r(y) = 1

2 (y+ 1).
We integrate over the y-bounds of y = 1 to y = 3. Thus the volume is

V = π

∫ 3

1

(
22 −

(1
2
(y+ 1)

)2) dy

= π

∫ 3

1

(
− 1

4
y2 − 1

2
y+

15
4

)
dy

= π
[
− 1

12
y3 − 1

4
y2 +

15
4
y
]∣∣∣3

1

=
10
3
π ≈ 10.47 units3.

..
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Exercises 7.2
Terms and Concepts
1. T/F: A solid of revoluƟon is formed by revolving a shape

around an axis.

2. In your ownwords, explain how the Disk andWasherMeth-
ods are related.

3. Explain the how the units of volume are found in the in-
tegral of Theorem 54: if A(x) has units of in2, how does∫
A(x) dx have units of in3?

Problems

In Exercises 4 – 7, a region of the Cartesian plane is shaded.
Use the Disk/Washer Method to find the volume of the solid
of revoluƟon formed by revolving the region about the x-
axis.

4.

.....

y = 3 − x2
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In Exercises 8 – 11, a region of the Cartesian plane is shaded.
Use the Disk/Washer Method to find the volume of the solid
of revoluƟon formed by revolving the region about the y-
axis.

8.

.....

y = 3 − x2
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y = cos x
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(Hint: IntegraƟon By Parts will be necessary, twice. First let
u = arccos2 x, then let u = arccos x.)
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11.

.....

y =
√

x

.

y = x

. 0.5. 1.
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1

.
x

.

y

In Exercises 12 – 17, a region of the Cartesian plane is de-
scribed. Use the Disk/Washer Method to find the volume of
the solid of revoluƟon formed by rotaƟng the region about
each of the given axes.

12. Region bounded by: y =
√
x, y = 0 and x = 1.

Rotate about:

(a) the x-axis

(b) y = 1

(c) the y-axis

(d) x = 1

13. Region bounded by: y = 4− x2 and y = 0.
Rotate about:

(a) the x-axis

(b) y = 4

(c) y = −1

(d) x = 2

14. The triangle with verƟces (1, 1), (1, 2) and (2, 1).
Rotate about:

(a) the x-axis

(b) y = 2

(c) the y-axis

(d) x = 1

15. Region bounded by y = x2 − 2x+ 2 and y = 2x− 1.
Rotate about:

(a) the x-axis

(b) y = 1

(c) y = 5

16. Region bounded by y = 1/
√
x2 + 1, x = −1, x = 1 and

the x-axis.
Rotate about:

(a) the x-axis

(b) y = 1

(c) y = −1

17. Region bounded by y = 2x, y = x and x = 2.
Rotate about:

(a) the x-axis

(b) y = 4

(c) the y-axis

(d) x = 2

In Exercises 18 – 21, a solid is described. Orient the solid along
the x-axis such that a cross-secƟonal area funcƟon A(x) can
be obtained, then apply Theorem 54 to find the volume of
the solid.

18. A right circular cone with height of 10 and base radius of 5.

.. 5.

10

19. A skew right circular cone with height of 10 and base radius
of 5. (Hint: all cross-secƟons are circles.)

.. 5.

10

20. A right triangular cone with height of 10 and whose base is
a right, isosceles triangle with side length 4.

..
4

.
4

.

10

21. A solid with length 10 with a rectangular base and triangu-
lar top, wherein one end is a square with side length 5 and
the other end is a triangle with base and height of 5.

..
10

.

5

.

5

.

5
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Figure 7.16: Introducing the Shell
Method.

Chapter 7 ApplicaƟons of IntegraƟon

7.3 The Shell Method
OŌen a given problem can be solved in more than one way. A parƟcular method
may be chosen out of convenience, personal preference, or perhaps necessity.
UlƟmately, it is good to have opƟons.

The previous secƟon introduced the Disk and Washer Methods, which com-
puted the volume of solids of revoluƟon by integraƟng the cross-secƟonal area
of the solid. This secƟon develops another method of compuƟng volume, the
Shell Method. Instead of slicing the solid perpendicular to the axis of rotaƟon
creaƟng cross-secƟons, we now slice it parallel to the axis of rotaƟon, creaƟng
“shells.”

Consider Figure 7.16, where the region shown in (a) rotated around the y-
axis forming the solid shown in (b). A small slice of the region is drawn in (a),
parallel to the axis of rotaƟon. When the region is rotated, this thin slice forms
a cylindrical shell, as pictured in part (c) of the figure. The previous secƟon
approximated a solid with lots of thin disks (or washers); we now approximate
a solid with many thin cylindrical shells.

To compute the volume of one shell, first consider the paper label on a soup
can with radius r and height h. What is the area of this label? A simple way of
determining this is to cut the label and lay it out flat, forming a rectangle with
height h and length 2πr. Thus the area is A = 2πrh; see Figure 7.17 (a).

Do a similar process with a cylindrical shell, with height h, thickness∆x, and
approximate radius r. Cuƫng the shell and laying it flat forms a rectangular solid
with length 2πr, height h and depth ∆x. Thus the volume is V ≈ 2πrh∆x; see
Figure 7.17 (b). (We say “approximately” since our radius was an approxima-
Ɵon.)

By breaking the solid into n cylindrical shells, we can approximate the volume
of the solid as

V =
n∑

i=1

2πrihi∆xi,

where ri, hi and∆xi are the radius, height and thickness of the i th shell, respec-
Ɵvely.

This is a Riemann Sum. Taking a limit as the thickness of the shells ap-
proaches 0 leads to a definite integral.

Notes:
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Figure 7.18: Graphing a region in Example
207.

7.3 The Shell Method
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Figure 7.17: Determining the volume of a thin cylindrical shell.

..
Key Idea 25 The Shell Method

Let a solid be formed by revolving a region R, bounded by x = a and
x = b, around a verƟcal axis. Let r(x) represent the distance from the axis
of rotaƟon to x (i.e., the radius of a sample shell) and let h(x) represent
the height of the solid at x (i.e., the height of the shell). The volume of
the solid is

V = 2π
∫ b

a
r(x)h(x) dx.

Special Cases:

1. When the region R is bounded above by y = f(x) and below by y = g(x),
then h(x) = f(x)− g(x).

2. When the axis of rotaƟon is the y-axis (i.e., x = 0) then r(x) = x.

Let’s pracƟce using the Shell Method.

.. Example 207 ..Finding volume using the Shell Method
Find the volume of the solid formed by rotaƟng the region bounded by y = 0,
y = 1/(1+ x2), x = 0 and x = 1 about the y-axis.

SÊ½çã®ÊÄ This is the region used to introduce the Shell Method in Fig-
ure 7.16, but is sketched again in Figure 7.18 for closer reference. A line is drawn
in the region parallel to the axis of rotaƟon represenƟng a shell that will be

Notes:
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Figure 7.19: Graphing a region in Example
208.

Chapter 7 ApplicaƟons of IntegraƟon

carved out as the region is rotated about the y-axis. (This is the differenƟal ele-
ment.)

The distance this line is from the axis of rotaƟon determines r(x); as the
distance from x to the y-axis is x, we have r(x) = x. The height of this line
determines h(x); the top of the line is at y = 1/(1 + x2), whereas the boƩom
of the line is at y = 0. Thus h(x) = 1/(1+ x2)− 0 = 1/(1+ x2). The region is
bounded from x = 0 to x = 1, so the volume is

V = 2π
∫ 1

0

x
1+ x2

dx.

This requires subsƟtuƟon. Let u = 1 + x2, so du = 2x dx. We also change the
bounds: u(0) = 1 and u(1) = 2. Thus we have:

= π

∫ 2

1

1
u
du

= π ln u
∣∣∣2
1

= π ln 2 ≈ 2.178 units3.

Note: in order to find this volume using the Disk Method, two integrals would
be needed to account for the regions above and below y = 1/2. ...

With the Shell Method, nothing special needs to be accounted for to com-
pute the volume of a solid that has a hole in the middle, as demonstrated next.

.. Example 208 ..Finding volume using the Shell Method
Find the volumeof the solid formed by rotaƟng the triangular region determined
by the points (0, 1), (1, 1) and (1, 3) about the line x = 3.

SÊ½çã®ÊÄ The region is sketched in Figure 7.19 (a) along with the dif-
ferenƟal element, a line within the region parallel to the axis of rotaƟon. The
height of the differenƟal element is the distance from y = 1 to y = 2x+ 1, the
line that connects the points (0, 1) and (1, 3). Thus h(x) = 2x + 1 − 1 = 2x.
The radius of the shell formed by the differenƟal element is the distance from
x to x = 3; that is, it is r(x) = 3 − x. The x-bounds of the region are x = 0 to

Notes:
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Figure 7.20: Graphing a region in Example
209.

7.3 The Shell Method

x = 1, giving

V = 2π
∫ 1

0
(3− x)(2x) dx

= 2π
∫ 1

0

(
6x− 2x2) dx

= 2π
(
3x2 − 2

3
x3
) ∣∣∣1

0

=
14
3
π ≈ 14.66 units3.

...

When revolving a region around a horizontal axis, we must consider the ra-
dius and height funcƟons in terms of y, not x.

.. Example 209 Finding volume using the Shell Method
Find the volume of the solid formed by rotaƟng the region given in Example 208
about the x-axis.

SÊ½çã®ÊÄ The region is sketched in Figure 7.20 (a) with a sample dif-
ferenƟal element and the solid is sketched in (b). (Note that the region looks
slightly different than it did in the previous example as the bounds on the graph
have changed.)

The height of the differenƟal element is an x-distance, between x = 1
2y−

1
2

and x = 1. Thus h(y) = 1−( 12y−
1
2 ) = − 1

2y+
3
2 . The radius is the distance from

y to the x-axis, so r(y) = y. The y bounds of the region are y = 1 and y = 3,
leading to the integral

V = 2π
∫ 3

1

[
y
(
−1
2
y+

3
2

)]
dy

= 2π
∫ 3

1

[
−1
2
y2 +

3
2
y
]
dy

= 2π
[
−1
6
y3 +

3
4
y2
] ∣∣∣3

1

= 2π
[
9
4
− 7

12

]
=

10
3
π ≈ 10.472 units3.

..

Notes:
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Figure 7.21: Graphing a region in Example
210.

Chapter 7 ApplicaƟons of IntegraƟon

At the beginning of this secƟon it was stated that “it is good to have opƟons.”
The next example finds the volume of a solid rather easily with the ShellMethod,
but using the Washer Method would be quite a chore.

.. Example 210 Finding volume using the Shell Method
Find the volumeof the solid formedby revolving the region boundedby y = sin x
and the x-axis from x = 0 to x = π about the y-axis.

SÊ½çã®ÊÄ The region and the resulƟng solid are given in Figure 7.21.
The radius of a sample shell is r(x) = x; the height of a sample shell is h(x) =
sin x, each from x = 0 to x = π. Thus the volume of the solid is

V = 2π
∫ π

0
x sin x dx.

This requires IntegraƟon By Parts. Set u = x and dv = sin x dx; we leave it to
the reader to fill in the rest. We have:

= 2π
[
− x cos x

∣∣∣π
0
+

∫ π

0
cos x dx

]
= 2π

[
π + sin x

∣∣∣π
0

]
= 2π

[
π + 0

]
= 2π2 ≈ 19.74 units3.

Note that in order to use the Washer Method, we would need to solve y =
sin x for x, requiring the use of the arcsine funcƟon. We leave it to the reader
to verify that the outside radius funcƟon is R(y) = π − arcsin y and the inside
radius funcƟon is r(y) = arcsin y. Thus the volume can be computed as

π

∫ 1

0

[
(π − arcsin y)2 − (arcsin y)2

]
dy.

This integral isn’t terrible given that the arcsin2 y terms cancel, but it is more
onerous than the integral created by the Shell Method. ..

We end this secƟon with a table summarizing the usage of the Washer and
Shell Methods.

Notes:
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7.3 The Shell Method

..
Key Idea 26 Summary of the Washer and Shell Methods

Let a region R be given with x-bounds x = a and x = b and y-bounds
y = c and y = d.

Washer Method Shell Method

Horizontal
Axis

π

∫ b

a

(
R(x)2 − r(x)2

)
dx 2π

∫ d

c
r(y)h(y) dy

VerƟcal
Axis

π

∫ d

c

(
R(y)2 − r(y)2

)
dy 2π

∫ b

a
r(x)h(x) dx

Notes:
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Exercises 7.3
Terms and Concepts
1. T/F: A solid of revoluƟon is formed by revolving a shape

around an axis.

2. T/F: The Shell Method can only be used when the Washer
Method fails.

3. T/F: The Shell Method works by integraƟng cross–secƟonal
areas of a solid.

4. T/F: When finding the volume of a solid of revoluƟon that
was revolved around a verƟcal axis, the Shell Method inte-
grates with respect to x.

Problems
In Exercises 5 – 8, a region of the Cartesian plane is shaded.
Use the Shell Method to find the volume of the solid of revo-
luƟon formed by revolving the region about the y-axis.
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In Exercises 9 – 12, a region of the Cartesian plane is shaded.
Use the Shell Method to find the volume of the solid of revo-
luƟon formed by revolving the region about the x-axis.
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12.

.....

y =
√

x

.

y = x
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y

In Exercises 13 – 18, a region of the Cartesian plane is de-
scribed. Use the Shell Method to find the volume of the solid
of revoluƟon formed by rotaƟng the region about each of the
given axes.

13. Region bounded by: y =
√
x, y = 0 and x = 1.

Rotate about:

(a) the y-axis

(b) x = 1

(c) the x-axis

(d) y = 1

14. Region bounded by: y = 4− x2 and y = 0.
Rotate about:

(a) x = 2

(b) x = −2

(c) the x-axis

(d) y = 4

15. The triangle with verƟces (1, 1), (1, 2) and (2, 1).
Rotate about:

(a) the y-axis

(b) x = 1

(c) the x-axis

(d) y = 2

16. Region bounded by y = x2 − 2x+ 2 and y = 2x− 1.
Rotate about:

(a) the y-axis

(b) x = 1

(c) x = −1

17. Region bounded by y = 1/
√
x2 + 1, x = 1 and the x and

y-axes.
Rotate about:

(a) the y-axis (b) x = 1

18. Region bounded by y = 2x, y = x and x = 2.
Rotate about:

(a) the y-axis

(b) x = 2

(c) the x-axis

(d) y = 4
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Figure 7.22: Graphing y = sin x on [0, π]
and approximaƟng the curve with line
segments.
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Figure 7.23: Zooming in on the i th subin-
terval [xi, xi+1] of a parƟƟon of [a, b].

Chapter 7 ApplicaƟons of IntegraƟon

7.4 Arc Length and Surface Area

In previous secƟonswe have used integraƟon to answer the following quesƟons:

1. Given a region, what is its area?

2. Given a solid, what is its volume?

In this secƟon, we address a related quesƟon: Given a curve, what is its
length? This is oŌen referred to as arc length.

Consider the graph of y = sin x on [0, π] given in Figure 7.22 (a). How long is
this curve? That is, if we were to use a piece of string to exactly match the shape
of this curve, how long would the string be?

As we have done in the past, we start by approximaƟng; later, we will refine
our answer using limits to get an exact soluƟon.

The length of straight–line segments is easy to compute using the Distance
Formula. We can approximate the length of the given curve by approximaƟng
the curve with straight lines and measuring their lengths.

In Figure 7.22 (b), the curve y = sin x has been approximated with 4 line
segments (the interval [0, π] has been divided into 4 equally–lengthed subinter-
vals). It is clear that these four line segments approximate y = sin x very well
on the first and last subinterval, though not so well in the middle. Regardless,
the sum of the lengths of the line segments is 3.79, so we approximate the arc
length of y = sin x on [0, π] to be 3.79.

In general, we can approximate the arc length of y = f(x) on [a, b] in the
following manner. Let a = x1 < x2 < . . . < xn < xn+1 = b be a parƟƟon
of [a, b] into n subintervals. Let ∆xi represent the length of the i th subinterval
[xi, xi+1].

Figure 7.23 zooms in on the i th subinterval where y = f(x) is approximated
by a straight line segment. The dashed lines show that we can view this line
segment as they hypotenuse of a right triangle whose sides have length ∆xi
and ∆yi. Using the Pythagorean Theorem, the length of this line segment is√

∆x2i +∆y2i . Summing over all subintervals gives an arc length approximaƟon

L ≈
n∑

i=1

√
∆x2i +∆y2i .

As shown here, this is not a Riemann Sum. While we could conclude that
taking a limit as the subinterval length goes to zero gives the exact arc length,
we would not be able to compute the answer with a definite integral. We need
first to do a liƩle algebra.

Notes:

356



7.4 Arc Length and Surface Area

In the above expression factor out a∆x2i term:

n∑
i=1

√
∆x2i +∆y2i =

n∑
i=1

√
∆x2i

(
1+

∆y2i
∆x2i

)
.

Now pull the∆x2i term out of the square root:

=
n∑

i=1

√
1+

∆y2i
∆x2i

∆xi.

This is nearly a Riemann Sum. Consider the ∆y2i /∆x2i term. The expression
∆yi/∆xi measures the “change in y/change in x,” that is, the “rise over run” of
f on the i th subinterval. The Mean Value Theorem of DifferenƟaƟon (Theorem
27) states that there is a ci in the i th subinterval where f ′(ci) = ∆yi/∆xi. Thus
we can rewrite our above expression as:

=

n∑
i=1

√
1+ f ′(ci)2 ∆xi.

This is a Riemann Sum. As long as f ′ is conƟnuous, we can invoke Theorem 38
and conclude

=

∫ b

a

√
1+ f ′(x)2 dx.

..
Key Idea 27 Arc Length

Let f be differenƟable on an open interval containing [a, b], where f ′ is
also conƟnuous on [a, b]. Then the arc length of f from x = a to x = b is

L =
∫ b

a

√
1+ f ′(x)2 dx.

As the integrand contains a square root, it is oŌen difficult to use the for-
mula in Key Idea 27 to find the length exactly. When exact answers are difficult
to come by, we resort to using numerical methods of approximaƟng definite in-
tegrals. The following examples will demonstrate this.

Notes:
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Figure 7.24: A graph of f(x) = x3/2 from
Example 211.

Chapter 7 ApplicaƟons of IntegraƟon

.. Example 211 Finding arc length
Find the arc length of f(x) = x3/2 from x = 0 to x = 4.

SÊ½çã®ÊÄ We begin by finding f ′(x) = 3
2x

1/2. Using the formula, we
find the arc length L as

L =
∫ 4

0

√
1+

(
3
2
x1/2

)2

dx

=

∫ 4

0

√
1+

9
4
x dx

=

∫ 4

0

(
1+

9
4
x
)1/2

dx

=
2
3
4
9

(
1+

9
4
x
)3/2 ∣∣∣4

0

=
8
27

(
103/2 − 1

)
≈ 9.07units.

A graph of f is given in Figure 7.24. ..

.. Example 212 ..Finding arc length
Find the arc length of f(x) =

1
8
x2 − ln x from x = 1 to x = 2.

SÊ½çã®ÊÄ This funcƟon was chosen specifically because the resulƟng
integral can be evaluated exactly. We begin by finding f ′(x) = x/4 − 1/x. The
arc length is

L =
∫ 2

1

√
1+

(
x
4
− 1

x

)2

dx

=

∫ 2

1

√
1+

x2

16
− 1

2
+

1
x2

dx

Notes:
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Figure 7.25: A graph of f(x) = 1
8 x

2 − ln x
from Example 212.

x
√
1+ cos2 x
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√
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π/2 1
3π/4

√
3/2

π
√
2

Figure 7.26: A table of values of y =√
1+ cos2 x to evaluate a definite inte-

gral in Example 213.

7.4 Arc Length and Surface Area

=

∫ 2

1

√
x2

16
+

1
2
+

1
x2

dx

=

∫ 2

1

√(
x
4
+

1
x

)2

dx

=

∫ 2

1

(
x
4
+

1
x

)
dx

=

(
x2

8
+ ln x

) ∣∣∣∣∣
2

1

=
3
8
+ ln 2 ≈ 1.07 units.

A graph of f is given in Figure 7.25; the porƟon of the curve measured in this
problem is in bold. ...

The previous examples found the arc length exactly through careful choice
of the funcƟons. In general, exact answers are much more difficult to come by
and numerical approximaƟons are necessary.

.. Example 213 ApproximaƟng arc length numerically
Find the length of the sine curve from x = 0 to x = π.

SÊ½çã®ÊÄ This is somewhat of a mathemaƟcal curiosity; in Example
125 we found the area under one “hump” of the sine curve is 2 square units;
now we are measuring its arc length.

The setup is straighƞorward: f(x) = sin x and f ′(x) = cos x. Thus

L =
∫ π

0

√
1+ cos2 x dx.

This integral cannot be evaluated in terms of elementary funcƟons sowewill ap-
proximate it with Simpson’s Method with n = 4. Figure 7.26 gives

√
1+ cos2 x

evaluated at 5 evenly spaced points in [0, π]. Simpson’s Rule then states that∫ π

0

√
1+ cos2 x dx ≈ π − 0

4 · 3

(√
2+ 4

√
3/2+ 2(1) + 4

√
3/2+

√
2
)

= 3.82918.

Using a computer with n = 100 the approximaƟon is L ≈ 3.8202; our approxi-
maƟon with n = 4 is quite good. ..

Notes:
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Figure 7.27: Establishing the formula for
surface area.

Chapter 7 ApplicaƟons of IntegraƟon

Surface Area of Solids of RevoluƟon

We have already seen how a curve y = f(x) on [a, b] can be revolved around
an axis to form a solid. Instead of compuƟng its volume, we now consider its
surface area.

We begin as we have in the previous secƟons: we parƟƟon the interval [a, b]
with n subintervals, where the i th subinterval is [xi, xi+1]. On each subinterval,
we can approximate the curve y = f(x) with a straight line that connects f(xi)
and f(xi+1) as shown in Figure 7.27 (a). Revolving this line segment about the
x-axis creates part of a cone (called the frustum of a cone) as shown in Figure
7.27 (b). The surface area of a frustum of a cone is

2π · length · average of the two radii R and r.

The length is given by L; we use the material just covered by arc length to
state that

L ≈
√

1+ f ′(ci)∆xi

for some ci in the i th subinterval. The radii are just the funcƟon evaluated at the
endpoints of the interval. That is,

R = f(xi+1) and r = f(xi).

Thus the surface area of this sample frustum of the cone is approximately

2π
f(xi) + f(xi+1)

2

√
1+ f ′(ci)2∆xi.

Since f is a conƟnuous funcƟon, the IntermediateValue Theoremstates there

is some di in [xi, xi+1] such that f(di) =
f(xi) + f(xi+1)

2
; we can use this to rewrite

the above equaƟon as

2πf(di)
√

1+ f ′(ci)2∆xi.

Summing over all the subintervals we get the total surface area to be approxi-
mately

Surface Area ≈
n∑

i=1

2πf(di)
√

1+ f ′(ci)2∆xi,

which is a Riemann Sum. Taking the limit as the subinterval lengths go to zero
gives us the exact surface area, given in the following Key Idea.

Notes:
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Figure 7.28: Revolving y = sin x on [0, π]
about the x-axis.

7.4 Arc Length and Surface Area

..
Key Idea 28 Surface Area of a Solid of RevoluƟon

Let f be differenƟable on an open interval containing [a, b] where f ′ is
also conƟnuous on [a, b].

1. The surface area of the solid formed by revolving the graph of y =
f(x), where f(x) ≥ 0, about the x-axis is

Surface Area = 2π
∫ b

a
f(x)
√

1+ f ′(x)2 dx.

2. The surface area of the solid formed by revolving the graph of y =
f(x) about the y-axis, where a, b ≥ 0, is

Surface Area = 2π
∫ b

a
x
√

1+ f ′(x)2 dx.

(When revolving y = f(x) about the y-axis, the radii of the resulƟng frustum
are xi and xi+1; their average value is simply the midpoint of the interval. In the
limit, this midpoint is just x. This gives the second part of Key Idea 28.)

.. Example 214 Finding surface area of a solid of revoluƟon
Find the surface area of the solid formed by revolving y = sin x on [0, π] around
the x-axis, as shown in Figure 7.28.

SÊ½çã®ÊÄ The setup is relaƟvely straighƞorward. Using Key Idea 28,
we have the surface area SA is:

SA = 2π
∫ π

0
sin x

√
1+ cos2 x dx

= −2π
1
2

(
sinh−1(cos x) + cos x

√
1+ cos2 x

)∣∣∣π
0

= 2π
(√

2+ sinh−1 1
)

≈ 14.42 units2.

The integraƟon step above is nontrivial, uƟlizing an integraƟon method called
Trigonometric SubsƟtuƟon.

It is interesƟng to see that the surface area of a solid, whose shape is defined
by a trigonometric funcƟon, involves both a square root and an inverse hyper-
bolic trigonometric funcƟon. ..

Notes:
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Figure 7.29: The solids used in Example
215.

Chapter 7 ApplicaƟons of IntegraƟon

.. Example 215 Finding surface area of a solid of revoluƟon
Find the surface area of the solid formed by revolving the curve y = x2 on [0, 1]
about:

1. the x-axis

2. the y-axis.

SÊ½çã®ÊÄ

1. The integral is straighƞorward to setup:

SA = 2π
∫ 1

0
x2
√

1+ (2x)2 dx.

Like the integral in Example 214, this requires Trigonometric SubsƟtuƟon.

=
π

32

(
2(8x3 + x)

√
1+ 4x2 − sinh−1(2x)

)∣∣∣1
0

=
π

32

(
18

√
5− sinh−1 2

)
≈ 3.81 units2.

The solid formed by revolving y = x2 around the x-axis is graphed in Figure
7.29 (a).

2. Since we are revolving around the y-axis, the “radius” of the solid is not
f(x) but rather x. Thus the integral to compute the surface area is:

SA = 2π
∫ 1

0
x
√

1+ (2x)2 dx.

This integral can be solved using subsƟtuƟon. Set u = 1 + 4x2; the new
bounds are u = 1 to u = 5. We then have

=
π

4

∫ 5

1

√
u du

=
π

4
2
3
u3/2

∣∣∣∣5
1

=
π

6

(
5
√
5− 1

)
≈ 5.33 units2.

The solid formed by revolving y = x2 about the y-axis is graphed in Figure
7.29 (b)...

This last example is a famous mathemaƟcal “paradox.”

Notes:
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Figure 7.30: A graph of Gabriel’s Horn.

7.4 Arc Length and Surface Area

.. Example 216 The surface area and volume of Gabriel’s Horn
Consider the solid formed by revolving y = 1/x about the x-axis on [1,∞). Find
the volume and surface area of this solid. (This shape, as graphed in Figure 7.30,
is known as “Gabriel’s Horn” since it looks like a very long horn that only a su-
pernatural person, such as an angel, could play.)

SÊ½çã®ÊÄ To compute the volume it is natural to use the Disk Method.
We have:

V = π

∫ ∞

1

1
x2

dx

= lim
b→∞

π

∫ b

1

1
x2

dx

= lim
b→∞

π

(
−1
x

)∣∣∣∣b
1

= lim
b→∞

π

(
1− 1

b

)
= π units3.

Gabriel’s Horn has a finite volume of π cubic units. Since we have already seen
that objects with infinite length can have a finite area, this is not too difficult to
accept.

We now consider its surface area. The integral is straighƞorward to setup:

SA = 2π
∫ ∞

1

1
x
√

1+ 1/x4 dx.

IntegraƟng this expression is not trivial. We can, however, compare it to other
improper integrals. Since 1 <

√
1+ 1/x4 on [1,∞), we can state that

2π
∫ ∞

1

1
x
dx < 2π

∫ ∞

1

1
x
√

1+ 1/x4 dx.

By Key Idea 21, the improper integral on the leŌ diverges. Since the integral
on the right is larger, we conclude it also diverges, meaning Gabriel’s Horn has
infinite surface area.

Hence the “paradox”: we can fill Gabriel’s Hornwith a finite amount of paint,
but since it has infinite surface area, we can never paint it.

Somehow this paradox is striking when we think about it in terms of vol-
ume and area. However, we have seen a similar paradox before, as referenced
above. We know that the area under the curve y = 1/x2 on [1,∞) is finite, yet
the shape has an infinite perimeter. Strange things can occur when we deal with
the infinite. ..

Notes:
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Exercises 7.4
Terms and Concepts
1. T/F: The integral formula for compuƟng Arc Length was

found by first approximaƟng arc length with straight line
segments.

2. T/F: The integral formula for compuƟng Arc Length includes
a square–root, meaning the integraƟon is probably easy.

Problems
In Exercises 3 – 13, find the arc length of the funcƟon on the
given interval.

3. f(x) = x on [0, 1].

4. f(x) =
√
8x on [−1, 1].

5. f(x) =
1
3
x3/2 − x1/2 on [0, 1].

6. f(x) =
1
12

x3 +
1
x
on [1, 4].

7. f(x) = 2x3/2 − 1
6
√
x on [0, 9].

8. f(x) = cosh x on [− ln 2, ln 2].

9. f(x) =
1
2
(
ex + e−x) on [0, ln 5].

10. f(x) =
1
12

x5 +
1
5x3

on [.1, 1].

11. f(x) = ln
(
sin x

)
on [π/6, π/2].

12. f(x) = ln
(
cos x

)
on [0, π/4].

In Exercises 13 – 21, set up the integral to compute the arc
length of the funcƟon on the given interval. Do not evaluate
the integral.

13. f(x) = x2 on [0, 1].

14. f(x) = x10 on [0, 1].

15. f(x) =
√
x on [0, 1].

16. f(x) = ln x on [1, e].

17. f(x) =
√
1− x2 on [−1, 1]. (Note: this describes the top

half of a circle with radius 1.)

18. f(x) =
√

1− x2/9 on [−3, 3]. (Note: this describes the top
half of an ellipse with a major axis of length 6 and a minor
axis of length 2.)

19. f(x) =
1
x
on [1, 2].

20. f(x) = sec x on [−π/4, π/4].

In Exercises 21 – 29, use Simpson’s Rule, with n = 4, to ap-
proximate the arc length of the funcƟon on the given interval.
Note: these are the same problems as in Exercises 13–20.

21. f(x) = x2 on [0, 1].

22. f(x) = x10 on [0, 1].

23. f(x) =
√
x on [0, 1]. (Note: f ′(x) is not defined at x = 0.)

24. f(x) = ln x on [1, e].

25. f(x) =
√
1− x2 on [−1, 1]. (Note: f ′(x) is not defined at

the endpoints.)

26. f(x) =
√

1− x2/9 on [−3, 3]. (Note: f ′(x) is not defined
at the endpoints.)

27. f(x) =
1
x
on [1, 2].

28. f(x) = sec x on [−π/4, π/4].

In Exercises 29 – 33, find the Surface Area of the described
solid of revoluƟon.

29. The solid formed by revolving y = 2x on [0, 1] about the
x-axis.

30. The solid formed by revolving y = x2 on [0, 1] about the
y-axis.

31. The solid formed by revolving y = x3 on [0, 1] about the
x-axis.

32. The solid formed by revolving y =
√
x on [0, 1] about the

x-axis.

33. The sphere formed by revolving y =
√
1− x2 on [−1, 1]

about the x-axis.
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Note: Mass and weight are closely re-
lated, yet different, concepts. The mass
m of an object is a quanƟtaƟve measure
of that object’s resistance to acceleraƟon.
The weight w of an object is a measure-
ment of the force applied to the object by
the acceleraƟon of gravity g.
Since the two measurements are pro-

porƟonal, w = m · g, they are oŌen
used interchangeably in everyday conver-
saƟon. When compuƟng Work, one must
be careful to note which is being referred
to. When mass is given, it must be mulƟ-
plied by the acceleraƟon of gravity to ref-
erence the related force.

7.5 Work

7.5 Work
Work is the scienƟfic term used to describe the acƟon of a force which moves
an object. When a constant force F is applied to move an object a distance d,
the amount of work performed isW = F · d.

The SI unit of force is the Newton, (kg·m/s2), and the SI unit of distance is
a meter (m). The fundamental unit of work is one Newton–meter, or a joule
(J). That is, applying a force of one Newton for one meter performs one joule
of work. In Imperial units (as used in the United States), force is measured in
pounds (lb) and distance is measured in feet (Ō), hence work is measured in
Ō–lb.

When force is constant, the measurement of work is straighƞorward. For
instance, liŌing a 200 lb object 5 Ō performs 200 · 5 = 1000 Ō–lb of work.

What if the force applied is variable? For instance, imagine a climber pulling
a 200 Ō rope up a verƟcal face. The rope becomes lighter as more is pulled in,
requiring less force and hence the climber performs less work.

In general, let F(x) be a force funcƟon on an interval [a, b]. We want to mea-
sure the amount of work done applying the force F from x = a to x = b. We can
approximate the amount of work being done by parƟƟoning [a, b] into subinter-
vals a = x1 < x2 < · · · < xn+1 = b and assuming that F is constant on each
subinterval. Let ci be a value in the i th subinterval [xi, xi+1]. Then the work done
on this interval is approximatelyWi ≈ F(ci) · (xi+1 − xi) = F(ci)∆xi, a constant
force× the distance over which it is applied. The total work is

W =
n∑

i=1

Wi ≈
n∑

i=1

F(ci)∆xi.

This, of course, is a Riemann sum. Taking a limit as the subinterval lengths go
to zero give an exact value of work which can be evaluated through a definite
integral.

..
Key Idea 29 Work

Let F(x) be a conƟnuous funcƟon on [a, b] describing the amount of force
being applied to an object in the direcƟon of travel from distance x = a
to distance x = b. The total workW done on [a, b] is

W =

∫ b

a
F(x) dx.

Notes:
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Chapter 7 ApplicaƟons of IntegraƟon

.. Example 217 CompuƟng work performed: applying variable force
Howmuch work is performed pulling a 60 m climbing rope up a cliff face, where
the rope has a mass of 66 g/m?

SÊ½çã®ÊÄ Weneed to create a force funcƟon F(x)on the interval [0, 60].
To do so, we must first decide what x is measuring: it is the length of the rope
sƟll hanging or is it the amount of rope pulled in? As long as we are consistent,
either approach is fine. We adopt for this example the convenƟon that x is the
amount of rope pulled in. This seems to match intuiƟon beƩer; pulling up the
first 10 meters of rope involves x = 0 to x = 10 instead of x = 60 to x = 50.

As x is the amount of rope pulled in, the amount of rope sƟll hanging is 60−x.
This length of rope has a mass of 66 g/m, or 0.066 kg/m. The the mass of the
rope sƟll hanging is 0.066(60− x) kg; mulƟplying this mass by the acceleraƟon
of gravity, 9.8 m/s2, gives our variable force funcƟon

F(x) = (9.8)(0.066)(60− x) = 0.6468(60− x).

Thus the total work performed in pulling up the rope is

W =

∫ 60

0
0.6468(60− x) dx = 1, 164.24 J.

By comparison, consider the work done in liŌing the enƟre rope 60 meters.
The rope weights 60× 0.066× 9.8 = 38.808 N, so the work applying this force
for 60 meters is 60× 38.808 = 2, 328.48 J. This is exactly twice the work calcu-
lated before (and we leave it to the reader to understand why.) ..

.. Example 218 ..CompuƟng work performed: applying variable force
Consider again pulling a 60 m rope up a cliff face, where the rope has a mass of
66 g/m. At what point is exactly half the work performed?

SÊ½çã®ÊÄ From Example 217 we know the total work performed is
11, 642.4 J. We want to find a height h such that the work in pulling the rope
from a height of x = 0 to a height of x = h is 5821.2, half the total work. Thus
we want to solve the equaƟon

∫ h

0
6.468(60− x) dx = 5821.2

Notes:
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Note: In Example 218, we find that half of
the work performed in pulling up a 60 m
rope is done in the last 42.43 m. Why is it
not coincidental that 60/

√
2 = 42.43?

7.5 Work

for h. ∫ h

0
6.468(60− x) dx = 5821.2

(
388.08x− 3.234x2

) ∣∣∣h
0
= 5821.2

388.08h− 3.234h2 = 5821.2

−3.234h2 + 388.08h− 5821.2 = 0.

Apply the QuadraƟc Formula.

h = 17.57 and 102.43

As the rope is only 60m long, the only sensible answer is h = 17.57. Thus about
half the work is done pulling up the first 17.5 m; the other half of the work is
done pulling up the remaining 42.43 m. ...

.. Example 219 ..CompuƟng work performed: applying variable force
A box of 100 lb of sand is being pulled up at a uniform rate a distance of 50 Ō
over 1 minute. The sand is leaking from the box at a rate of 1 lb/s. The box itself
weighs 5 lb and is pulled by a rope weighing .2 lb/Ō.

1. How much work is done liŌing just the rope?

2. How much work is done liŌing just the box and sand?

3. What is the total amount of work performed?

SÊ½çã®ÊÄ

1. We start by forming the force funcƟon Fr(x) for the rope (where the sub-
script denotes we are considering the rope). As in the previous example,
let x denote the amount of rope, in feet, pulled in. (This is the same as
saying x denotes the height of the box.) The weight of the rope with x
feet pulled in is Fr(x) = 0.2(50 − x) = 10 − 0.2x. (Note that we do not
have to include the acceleraƟon of gravity here, for theweight of the rope
per foot is given, not its mass per meter as before.) The work performed
liŌing the rope is

Wr =

∫ 50

0
(10− 0.2x) dx = 250 Ō–lb.

Notes:
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2. The sand is leaving the box at a rate of 1 lb/s. As the verƟcal trip is to take
oneminute, we know that 60 lbwill have leŌwhen the box reaches its final
height of 50 Ō. Again leƫng x represent the height of the box, we have
two points on the line that describes the weight of the sand: when x = 0,
the sand weight is 100 lb, producing the point (0, 100); when x = 50, the
sand in the box weighs 40 lb, producing the point (50, 40). The slope of
this line is 100−40

0−50 = −1.2, giving the equaƟon of the weight of the sand
at height x as w(x) = −1.2x+ 100. The box itself weighs a constant 5 lb,
so the total force funcƟon is Fb(x) = −1.2x+105. IntegraƟng from x = 0
to x = 50 gives the work performed in liŌing box and sand:

Wb =

∫ 50

0
(−1.2x+ 105) dx = 3750 Ō–lb.

3. The total work is the sum of Wr and Wb: 250 + 3750 = 4000 Ō–lb. We
can also arrive at this via integraƟon:

W =

∫ 50

0
(Fr(x) + Fb(x)) dx

=

∫ 50

0
(10− 0.2x− 1.2x+ 105) dx

=

∫ 50

0
(−1.4x+ 115) dx

= 4000 Ō–lb....

Hooke’s Law and Springs

Hooke’s Law states that the force required to compress or stretch a spring x
units from its natural length is proporƟonal to x; that is, this force is F(x) = kx
for some constant k. For example, if a force of 1 N stretches a given spring
2 cm, then a force of 5 N will stretch the spring 10 cm. ConverƟng the dis-
tances to meters, we have that stretching a this spring 0.02 m requires a force
of F(0.02) = k(0.02) = 1 N, hence k = 1/0.02 = 50 N/m.

.. Example 220 ..CompuƟng work performed: stretching a spring
A force of 20 lb stretches a spring from a length of 7 inches to a length of 12
inches. How much work was performed in stretching the spring to this length?

SÊ½çã®ÊÄ In many ways, we are not at all concerned with the actual
length of the spring, only with the amount of its change. Hence, we do not care
that 20 lb of force stretches the spring to a length of 12 inches, but rather that

Notes:
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Fluid lb/Ō3 kg/m3

Concrete 150 2400
Fuel Oil 55.46 890.13
Gasoline 45.93 737.22
Iodine 307 4927

Methanol 49.3 791.3
Mercury 844 13546
Milk 63.6–65.4 1020 – 1050
Water 62.4 1000

Figure 7.32: Weight and Mass densiƟes

7.5 Work

a force of 20 lb stretches the spring by 5 in. This is illustrated in Figure 7.31;
we only measure the change in the spring’s length, not the overall length of the
spring.
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Figure 7.31: IllustraƟng the important aspects of stretching a spring in compuƟng work
in Example 220.

ConverƟng the units of length to feet, we have

F(5/12) = 5/12k = 20 lb.

Thus k = 48 lb/Ō and F(x) = 48x.
We compute the total work performed by integraƟng F(x) from x = 0 to

x = 5/12:

W =

∫ 5/12

0
48x dx

= 24x2
∣∣∣5/12
0

= 25/6 ≈ 4.1667 Ō–lb....

Pumping Fluids

Another useful example of the applicaƟon of integraƟon to compute work
comes in the pumping of fluids, oŌen illustrated in the context of emptying a
storage tank by pumping the fluid out the top. This situaƟon is different than
our previous examples for the forces involved are constant. AŌer all, the force
required to move one cubic foot of water (about 62.4 lb) is the same regardless
of its locaƟon in the tank. What is variable is the distance that cubic foot of
water has to travel; water closer to the top travels less distance than water at
the boƩom, producing less work.

We demonstrate how to compute the total work done in pumping a fluid out
of the top of a tank in the next two examples.

Notes:
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Chapter 7 ApplicaƟons of IntegraƟon

.. Example 221 CompuƟng work performed: pumping fluids
A cylindrical storage tank with a radius of 10 Ō and a height of 30 Ō is filled with
water, which weighs approximately 62.4 lb/Ō3. Compute the amount of work
performed by pumping the water up to a point 5 feet above the top of the tank.

SÊ½çã®ÊÄ Wewill refer oŌen to Figure 7.33which illustrates the salient
aspects of this problem.

We start aswe oŌen do: we parƟƟon an interval into subintervals. We orient
our tank verƟcally since this makes intuiƟve sense with the base of the tank at
y = 0. Hence the top of the water is at y = 30, meaning we are interested in
subdividing the y-interval [0, 30] into n subintervals as

0 = y1 < y2 < · · · < yn+1 = 30.

Consider the workWi of pumping only the water residing in the i th subinterval,
illustrated in Figure 7.33. The force required to move this water is equal to its
weight which we calculate as volume × density. The volume of water in this
subinterval is Vi = 102π∆yi; its density is 62.4 lb/Ō3. Thus the required force is
6240π∆yi lb.

We approximate the distance the force is applied by using any y-value con-
tained in the i th subinterval; for simplicity, we arbitrarily use yi for now (it will
not maƩer later on). The water will be pumped to a point 5 feet above the top
of the tank, that is, to the height of y = 35 Ō. Thus the distance the water at
height yi travels is 35− yi Ō.

In all, the approximate work Wi peformed in moving the water in the i th
subinterval to a point 5 feet above the tank is

Wi ≈ 6240π∆yi(35− yi),

and the total work performed is

W ≈
n∑

i=1

Wi =
n∑

i=1

6240π∆yi(35− yi).

This is a Riemann sum. Taking the limit as the subinterval length goes to 0 gives

W =

∫ 30

0
6240π(35− y) dy

= (6240π
(
35y− 1/2y2

) ∣∣∣30
0

= 11, 762, 123 Ō–lb

≈ 1.176× 107 Ō–lb...

Notes:
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Figure 7.35: A graph of the conical water
tank in Example 222.

7.5 Work

We can “streamline” the above process a bit as we may now recognize what
the important features of the problem are. Figure 7.34 shows the tank from
Example 221 without the i th subinterval idenƟfied. Instead, we just draw one
differenƟal element. This helps establish the height a small amount of water
must travel along with the force required to move it (where the force is volume
× density).

We demonstrate the concepts again in the next examples.

.. Example 222 CompuƟng work performed: pumping fluids
A conicalwater tank has its top at ground level and its base 10 feet belowground.
The radius of the cone at ground level is 2 Ō. It is filled with water weighing 62.4
lb/Ō3 and is to be empƟed by pumping thewater to a spigot 3 feet above ground
level. Find the total amount of work performed in emptying the tank.

SÊ½çã®ÊÄ The conical tank is sketched in Figure 7.35. We can orient
the tank in a variety of ways; we could let y = 0 represent the base of the tank
and y = 10 represent the top of the tank, but we choose to keep the convenƟon
of the wording given in the problem and let y = 0 represent ground level and
hence y = −10 represents the boƩom of the tank. The actual “height” of the
water does not maƩer; rather, we are concerned with the distance the water
travels.

The figure also sketches a differenƟal element, a cross–secƟonal circle. The
radius of this circle is variable, depending on y. When y = −10, the circle has
radius 0; when y = 0, the circle has radius 2. These two points, (−10, 0) and
(0, 2), allow us to find the equaƟon of the line that gives the radius of the cross–
secƟonal circle, which is r(y) = 1/5y + 2. Hence the volume of water at this
height is V(y) = π(1/5y + 2)2dy, where dy represents a very small height of
the differenƟal element. The force required to move the water at height y is
F(y) = 62.4× V(y).

The distance the water at height y travels is given by h(y) = 3− y. Thus the
total work done in pumping the water from the tank is

W =

∫ 0

−10
62.4π(1/5y+ 2)2(3− y) dy

= 62.4π
∫ 0

−10

(
− 1
25

y3 − 17
25

y2 − 8
5
y+ 12

)
dy

= 62.2π · 220
3

≈ 14, 376 Ō–lb.
..

Notes:
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.. Example 223 CompuƟng work performed: pumping fluids
A rectangular swimming pool is 20 Ō wide and has a 3 Ō “shallow end” and a 6 Ō
“deep end.” It is to have its water pumped out to a point 2 Ō above the current
top of the water. The cross–secƟonal dimensions of the water in the pool are
given in Figure 7.36; note that the dimensions are for the water, not the pool
itself. Compute the amount of work performed in draining the pool.

SÊ½çã®ÊÄ For the purposes of this problem we choose to set y = 0
to represent the boƩom of the pool, meaning the top of the water is at y = 6.
Figure 7.37 shows the pool oriented with this y-axis, along with 2 differenƟal
elements as the pool must be split into two different regions.

The top region lies in the y-interval of [3, 6], where the length of the differen-
Ɵal element is 25 Ō as shown. As the pool is 20 Ō wide, this differenƟal element
represents a this slice of water with volume V(y) = 20 · 25 · dy. The water is
to be pumped to a height of y = 8, so the height funcƟon is h(y) = 8 − y. The
work done in pumping this top region of water is

Wt = 62.4
∫ 6

3
500(8− y) dy = 327, 600 Ō–lb.

The boƩom region lies in the y-interval of [0, 3]; we need to compute the
length of the differenƟal element in this interval.

One end of the differenƟal element is at x = 0 and the other is along the line
segment joining the points (10, 0) and (15, 3). The equaƟon of this line is y =
3/5(x−10); as we will be integraƟng with respect to y, we rewrite this equaƟon
as x = 5/3y + 10. So the length of the differenƟal element is a difference of
x-values: x = 0 and x = 5/3y+ 10, giving a length of x = 5/3y+ 10.

Again, as the pool is 20 Ō wide, this differenƟal element represents a thin
slice of water with volume V(y) = 20 · (5/3y + 10) · dy; the height funcƟon is
the same as before at h(y) = 8− y. The work performed in emptying this part
of the pool is

Wb = 62.4
∫ 3

0
20(5/3y+ 10)(8− y) dy = 299, 520 Ō–lb.

The total work in empyƟng the pool is

W = Wb +Wt = 327, 600+ 299, 520 = 627, 120 Ō–lb.

NoƟce how the emptying of the boƩom of the pool performs almost as much
work as emptying the top. The top porƟon travels a shorter distance but has
more water. In the end, this extra water produces more work. ..

Notes:
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Exercises 7.5
Terms and Concepts
1. What are the typical units of work?

2. If a man has a mass of 80 kg on Earth, will his mass on the
moon be bigger, smaller, or the same?

3. If a woman weighs 130 lb on Earth, will her weight on the
moon be bigger, smaller, or the same?

Problems
4. A 100 Ō rope, weighing 0.1 lb/Ō, hangs over the edge of a

tall building.

(a) Howmuchwork is done pulling the enƟre rope to the
top of the building?

(b) How much rope is pulled in when half of the total
work is done?

5. A 50 m rope, with a mass density of 0.2 kg/m, hangs over
the edge of a tall building.

(a) Howmuchwork is done pulling the enƟre rope to the
top of the building?

(b) How much work is done pulling in the first 20 m?

6. A rope of length ℓ Ō hangs over the edge of tall cliff. (As-
sume the cliff is taller than the length of the rope.) The
rope has a weight density of d lb/Ō.

(a) Howmuchwork is done pulling the enƟre rope to the
top of the cliff?

(b) What percentage of the total work is done pulling in
the first half of the rope?

(c) How much rope is pulled in when half of the total
work is done?

7. A 20 m rope with mass density of 0.5 kg/m hangs over the
edge of a 10 m building. How much work is done pulling
the rope to the top?

8. A crane liŌs a 2,000 lb load verƟcally 30 Ō with a 1” cable
weighing 1.68 lb/Ō.

(a) How much work is done liŌing the cable alone?

(b) How much work is done liŌing the load alone?

(c) Could one conclude that the work done liŌing the ca-
ble is negligible compared to thework done liŌing the
load?

9. A 100 lb bag of sand is liŌed uniformly 120 Ō in oneminute.
Sand leaks from the bag at a rate of 1/4 lb/s. What is the
total work done in liŌing the bag?

10. A boxweighing 2 lb liŌs 10 lb of sand verƟcally 50 Ō. A crack
in the box allows the sand to leak out such that 9 lb of sand
is in the box at the end of the trip. Assume the sand leaked
out at a uniform rate. What is the total work done in liŌing
the box and sand?

11. A force of 1000 lb compresses a spring 3 in. Howmuchwork
is performed in compressing the spring?

12. A force of 2 N stretches a spring 5 cm. How much work is
performed in stretching the spring?

13. A force of 50 lb compresses a spring from 18 in to 12 in.
How much work is performed in compressing the spring?

14. A force of 20 lb stretches a spring from 6 in to 8 in. How
much work is performed in stretching the spring?

15. A force of 7 N stretches a spring from 11 cm to 21 cm. How
much work is performed in stretching the spring?

16. A force of f N stretches a spring d m. How much work is
performed in stretching the spring?

17. A 20 lb weight is aƩached to a spring. The weight rests on
the spring, compressing the spring from a natural length of
1 Ō to 6 in.

How much work is done in liŌing the box 1.5 Ō (i.e, the
spring will be stretched 1 Ō beyond its natural length)?

18. A 20 lb weight is aƩached to a spring. The weight rests on
the spring, compressing the spring from a natural length of
1 Ō to 6 in.

How much work is done in liŌing the box 6 in (i.e, bringing
the spring back to its natural length)?

19. A 5 m tall cylindrical tank with radius of 2 m is filled with 3
m of gasoline, with a mass density of 737.22 kg/m3. Com-
pute the total work performed in pumping all the gasoline
to the top of the tank.

20. A 6 Ō cylindrical tank with a radius of 3 Ō is filled with wa-
ter, which has a weight density of 62.4 lb/Ō3. The water is
to be pumped to a point 2 Ō above the top of the tank.

(a) How much work is performed in pumping all the wa-
ter from the tank?

(b) How much work is performed in pumping 3 Ō of wa-
ter from the tank?

(c) At what point is 1/2 of the total work done?

21. A gasoline tanker is filled with gasoline with a weight den-
sity of 45.93 lb/Ō3. The dispensing valve at the base is
jammed shut, forcing the operator to empty the tank via
pumping the gas to a point 1 Ō above the top of the tank.
Assume the tank is a perfect cylinder, 20 Ō long with a di-
ameter of 7.5 Ō.

How much work is performed in pumping all the gasoline
from the tank?
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22. A fuel oil storage tank is 10 Ō deep with trapezoidal sides,
5 Ō at the top and 2 Ō at the boƩom, and is 15 Ō wide (see
diagram below). Given that fuel oil weighs 55.46 lb/Ō3, find
the work performed in pumping all the oil from the tank to
a point 3 Ō above the top of the tank.

..

10

.

2

.

15

.

5

23. A conical water tank is 5 m deep with a top radius of 3 m.
(This is similar to Example 222.) The tank is filled with pure
water, with a mass density of 1000 kg/m3.

(a) Find the work performed in pumping all the water to
the top of the tank.

(b) Find the work performed in pumping the top 2.5 m
of water to the top of the tank.

(c) Find the work performed in pumping the top half of
the water, by volume, to the top of the tank.

24. A water tank has the shape of a truncated cone, with di-
mensions given below, and is filledwithwaterwith aweight
density of 62.4 lb/Ō3. Find the work performed in pumping
all water to a point 1 Ō above the top of the tank.

.. 2 Ō.

5 Ō

.

10 Ō

25. A water tank has the shape of an inverted pyramid, with di-
mensions given below, and is filled with water with a mass
density of 1000 kg/m3. Find the work performed in pump-
ing all water to a point 5 m above the top of the tank.

..
2 m
.

2 m

.

7 m

26. A water tank has the shape of an truncated, inverted pyra-
mid, with dimensions given below, and is filled with wa-
ter with a mass density of 1000 kg/m3. Find the work per-
formed in pumping all water to a point 1 m above the top
of the tank.

...
5 m
..

5 m

......

2 m

..

2 m

.

9 m
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224.
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Figure 7.39: A rectangular tank in Exam-
ple 224.

7.6 Fluid Forces

7.6 Fluid Forces
In the unfortunate situaƟon of a car driving into a body of water, the conven-
Ɵonal wisdom is that the water pressure on the doors will quickly be so great
that they will be effecƟvely unopenable. (Survival techniques suggest immedi-
ately opening the door, rolling down or breaking the window, or waiƟng unƟl
the water fills up the interior at which point the pressure is equalized and the
door will open. See Mythbusters episode #72 to watch Adam Savage test these
opƟons.)

How can this be true? How much force does it take to open the door of
a submerged car? In this secƟon we will find the answer to this quesƟon by
examining the forces exerted by fluids.

We start with pressure, which is related to force by the following equaƟons:

Pressure =
Force
Area

⇔ Force = Pressure× Area.

In the context of fluids, we have the following definiƟon.

..
DefiniƟon 26 Fluid Pressure

Let w be the weight–density of a fluid. The pressure p exerted on an
object at depth d in the fluid is p = w · d.

We use this definiƟon to find the force exerted on a horizontal sheet by con-
sidering the sheet’s area.

.. Example 224 ..CompuƟng fluid force

1. A cylindrical storage tank has a radius of 2 Ō and holds 10 Ō of a fluid with
a weight–density of 50 lb/Ō3. (See Figure 7.38.) What is the force exerted
on the base of the cylinder by the fluid?

2. A rectangular tank whose base is a 5 Ō square has a circular hatch at the
boƩom with a radius of 2 Ō. The tank holds 10 Ō of a fluid with a weight–
density of 50 lb/Ō3. (See Figure 7.39.) What is the force exerted on the
hatch by the fluid?

SÊ½çã®ÊÄ

1. Using DefiniƟon 26, we calculate that the pressure exerted on the cylin-
der’s base isw · d = 50 lb/Ō3 × 10 Ō = 500 lb/Ō2. The area of the base is

Notes:
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Figure 7.40: A thin, verƟcally oriented
plate submerged in a fluid with weight–
density w.

Chapter 7 ApplicaƟons of IntegraƟon

π · 22 = 4π Ō2. So the force exerted by the fluid is

F = 500× 4π = 6283 lb.

Note that we effecƟvely just computed theweight of the fluid in the tank.

2. The dimensions of the tank in this problem are irrelevant. All we are con-
cerned with are the dimensions of the hatch and the depth of the fluid.
Since the dimensions of the hatch are the same as the base of the tank
in the previous part of this example, as is the depth, we see that the fluid
force is the same. That is, F = 6283 lb.

A key concept to understand here is that we are effecƟvely measuring the
weight of a 10 Ō column of water above the hatch. The size of the tank
holding the fluid does not maƩer....

The previous example demonstrates that compuƟng the force exerted on a
horizontally oriented plate is relaƟvely easy to compute. What about a verƟcally
oriented plate? For instance, supposewe have a circular porthole located on the
side of a submarine. How do we compute the fluid force exerted on it?

Pascal’s Principle states that the pressure exerted by a fluid at a depth is
equal in all direcƟons. Thus the pressure on any porƟon of a plate that is 1 Ō
below the surface of water is the same no maƩer how the plate is oriented.
(Thus a hollow cube submerged at a great depth will not simply be “crushed”
from above, but the sides will also crumple in. The fluid will exert force on all
sides of the cube.)

So consider a verƟcally oriented plate as shown in Figure 7.40 submerged in
a fluid with weight–densityw. What is the total fluid force exerted on this plate?
We find this force by first approximaƟng the force on small horizontal strips.

Let the top of the plate be at depth b and let the boƩom be at depth a. (For
now we assume that surface of the fluid is at depth 0, so if the boƩom of the
plate is 3 Ō under the surface, we have a = −3. Wewill come back to this later.)
We parƟƟon the interval [a, b] into n subintervals

a = y1 < y2 < · · · < yn+1 = b,

with the i th subinterval having length ∆yi. The force Fi exerted on the plate in
the i th subinterval is Fi = Pressure× Area.

The pressure is depth ×w. We approximate the depth of this thin strip by
choosing any value di in [yi, yi+1]; the depth is approximately−di. (Our conven-
Ɵon has di being a negaƟve number, so−di is posiƟve.) For convenience, we let
di be an endpoint of the subinterval; we let di = yi.

The area of the thin strip is approximately length×width. The width is∆yi.
The length is a funcƟon of some y-value ci in the i th subinterval. We state the

Notes:
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Figure 7.41: A thin plate in the shape of
an isosceles triangle in Example 225.

7.6 Fluid Forces

length is ℓ(ci). Thus

Fi = Pressure× Area
= −yi · w× ℓ(ci) ·∆yi.

The total force is then

F =
n∑

i=1

Fi ≈
n∑

i=1

−w · yi · ℓ(ci) ·∆yi.

This is, of course, another Riemann Sum. We can find the exact force by taking
a limit as the subinterval lengths go to 0; we evaluate this limit with a definite
integral.

..
Key Idea 30 Fluid Force on a VerƟcally Oriented Plate

Let a verƟcally oriented plate be submerged in a fluid with weight–
density w where the top of the plate is at y = b and the boƩom is at
y = a. Let ℓ(y) be the length of the plate at y.

1. If y = 0 corresponds to the surface of the fluid, then the force
exerted on the plate by the fluid is

F =
∫ b

a
w · (−y) · ℓ(y) dy.

2. In general, let d(y) represent the distance between the surface of
the fluid and the plate at y. Then the force exerted on the plate by
the fluid is

F =
∫ b

a
w · d(y) · ℓ(y) dy.

.. Example 225 ..Finding fluid force
Consider a thin plate in the shape of an isosceles triangle as shown in Figure 7.41
submerged in water with a weight–density of 62.4 lb/Ō3. If the boƩom of the
plate is 10 Ō below the surface of the water, what is the total fluid force exerted
on this plate?

SÊ½çã®ÊÄ We approach this problem in two different ways to illustrate
the different ways Key Idea 30 can be implemented. First we will let y = 0 rep-
resent the surface of the water, then we will consider an alternate convenƟon.

Notes:
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1. We let y = 0 represent the surface of the water; therefore the boƩom of
the plate is at y = −10. We center the triangle on the y-axis as shown in
Figure 7.42. The depth of the plate at y is−y as indicated by the Key Idea.
We now consider the length of the plate at y.
We need to find equaƟons of the leŌ and right edges of the plate. The
right hand side is a line that connects the points (0,−10) and (2,−6):
that line has equaƟon x = 1/2(y+ 10). (Find the equaƟon in the familiar
y = mx+b format and solve for x.) Likewise, the leŌhand side is described
by the line x = −1/2(y + 10). The total length is the distance between
these two lines: ℓ(y) = 1/2(y+ 10)− (−1/2(y+ 10)) = y+ 10.
The total fluid force is then:

F =
∫ −6

−10
62.4(−y)(y+ 10) dy

= 62.4 · 176
3

≈ 3660.8 lb.

2. SomeƟmes it seems easier to orient the thin plate nearer the origin. For
instance, consider the convenƟon that the boƩom of the triangular plate
is at (0, 0), as shown in Figure 7.43. The equaƟons of the leŌ and right
hand sides are easy to find. They are y = 2x and y = −2x, respecƟvely,
which we rewrite as x = 1/2y and x = −1/2y. Thus the length funcƟon
is ℓ(y) = 1/2y− (−1/2y) = y.
As the surface of the water is 10 Ō above the base of the plate, we have
that the surface of the water is at y = 10. Thus the depth funcƟon is the
distance between y = 10 and y; d(y) = 10 − y. We compute the total
fluid force as:

F =
∫ 4

0
62.4(10− y)(y) dy

≈ 3660.8 lb.

The correct answer is, of course, independent of the placement of the plate in
the coordinate plane as long as we are consistent. ...

.. Example 226 ..Finding fluid force
Find the total fluid force on a car door submerged up to the boƩomof its window
in water, where the car door is a rectangle 40” long and 27” high (based on the
dimensions of a 2005 Fiat Grande Punto.)

SÊ½çã®ÊÄ The car door, as a rectangle, is drawn in Figure 7.44. Its
length is 10/3 Ō and its height is 2.25 Ō. We adopt the convenƟon that the

Notes:

378



.. (3.3, 0).

(3.3,−2.25)

.

(0,−2.25)

.(0, 0) .

y

.

y

. x

Figure 7.44: Sketching a submerged car
door in Example 226.

..
y

.

y

. x.
−2

.
−1

.
1

.
2

.

−2

.

−1

.
1

.

2

.

50

.

water line

.

not to scale

.

d
(y)

=
50

−
y

Figure 7.45: Measuring the fluid force on
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7.6 Fluid Forces

top of the door is at the surface of the water, both of which are at y = 0. Using
the weight–density of water of 62.4 lb/Ō3, we have the total force as

F =
∫ 0

−2.25
62.4(−y)10/3 dy

=

∫ 0

−2.25
−208y dy

= −104y2
∣∣∣0
−2.25

= 526.5 lb.

Most adults would find it very difficult to apply over 500 lb of force to a car
door while seated inside, making the door effecƟvely impossible to open. This
is counter–intuiƟve as most assume that the door would be relaƟvely easy to
open. The truth is that it is not, hence the survival Ɵps menƟoned at the begin-
ning of this secƟon. ...

.. Example 227 ..Finding fluid force
An underwater observaƟon tower is being built with circular viewing portholes
enabling visitors to see underwater life. Each verƟcally oriented porthole is to
have a 3 Ō diameter whose center is to be located 50 Ō underwater. Find the
total fluid force exerted on each porthole. Also, compute the fluid force on a
horizontally oriented porthole that is under 50 Ō of water.

SÊ½çã®ÊÄ We place the center of the porthole at the origin, meaning
the surface of thewater is at y = 50 and the depth funcƟonwill be d(y) = 50−y;
see Figure 7.45

The equaƟon of a circle with a radius of 1.5 is x2 + y2 = 2.25; solving for
x we have x = ±

√
2.25− y2, where the posiƟve square root corresponds to

the right side of the circle and the negaƟve square root corresponds to the leŌ
side of the circle. Thus the length funcƟon at depth y is ℓ(y) = 2

√
2.25− y2.

IntegraƟng on [−1.5, 1.5] we have:

F = 62.4
∫ 1.5

−1.5
2(50− y)

√
2.25− y2 dy

= 62.4
∫ 1.5

−1.5

(
100
√

2.25− y2 − 2y
√

2.25− y2
)
dy

= 6240
∫ 1.5

−1.5

(√
2.25− y2

)
dy− 62.4

∫ 1.5

−1.5

(
2y
√

2.25− y2
)
dy

Notes:
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Chapter 7 ApplicaƟons of IntegraƟon

The second integral above can be evaluated using SubsƟtuƟon. Let u = 2.25−y2
with du = −2y dy. The new bounds are: u(−1.5) = 0 and u(1.5) = 0; the new
integral will integrate from u = 0 to u = 0, hence the integral is 0.

The first integral above finds the area of half a circle of radius 1.5, thus the
first integral evaluates to 6240 · π · 1.52/2 = 22, 054. Thus the total fluid force
on a verƟcally oriented porthole is 22, 054 lb.

Finding the force on a horizontally oriented porthole ismore straighƞorward:

F = Pressure× Area = 62.4 · 50× π · 1.52 = 22, 054 lb.

That these two forces are equal is not coincidental; it turns out that the fluid
force applied to a verƟcally oriented circle whose center is at depth d is the
same as force applied to a horizontally oriented circle at depth d. ...

Notes:
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Exercises 7.6
Terms and Concepts
1. State in your own words Pascal’s Principle.
2. State in your own words how pressure is different from

force.

Problems
In Exercises 3 – 12, find the fluid force exerted on the given
plate, submerged in water with a weight density of 62.4
lb/Ō3.

3.

..
2 Ō
.

2 Ō

.

1 Ō

4.

..
1 Ō
.

2 Ō

.

1 Ō

5.

..

4 Ō

.

5 Ō

.

6 Ō

6.

..

4 Ō

.

5 Ō

.

6 Ō

7.

.. 2 Ō.

5 Ō

8.
.. 4 Ō.

5 Ō

9.

..

4 Ō

.2 Ō .

5 Ō

10.

.. 4 Ō.

2 Ō

.

5 Ō

11.

..
2 Ō

.

2 Ō

.

1 Ō

12.

..
2 Ō

.

2 Ō

.

1 Ō
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In Exercises 13 – 18, the side of a container is pictured. Find
the fluid force exerted on this plate when the container is full
of:

1. water, with a weight density of 62.4 lb/Ō3, and
2. concrete, with a weight density of 150 lb/Ō3.

13.

..
3 Ō

.

5 Ō

14.

..

4 Ō

.
y = x2

.

4 Ō

15.

..
4 Ō
.

y = 4 − x2

.

4 Ō

16.

..2 Ō.

y = −
√
1 − x2

17.
..

2 Ō
.

y =
√
1 − x2

18.

..6 Ō.

y = −
√
9 − x2

19. How deep must the center of a verƟcally oriented circular
plate with a radius of 1 Ō be submerged in water, with a
weight density of 62.4 lb/Ō3, for the fluid force on the plate
to reach 1,000 lb?

20. How deep must the center of a verƟcally oriented square
plate with a side length of 2 Ō be submerged in water, with
a weight density of 62.4 lb/Ō3, for the fluid force on the
plate to reach 1,000 lb?
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NotaƟon: WeuseN to describe the set of
natural numbers, that is, the integers 1, 2,
3, …

Factorial: The expression 3! refers to the
number 3 · 2 · 1 = 6.

In general, n! = n·(n−1)·(n−2) · · · 2·1,
where n is a natural number.

We define 0! = 1. While this does not
immediately make sense, it makes many
mathemaƟcal formulas work properly.

.....

an =
3n

n!

.
1

.
2

.
3

.
4

.

1

.

2

.

3

.

4

.

5

. n.

y

Figure 8.1: Ploƫng a sequence from Ex-
ample 228.
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8.1 Sequences

We commonly refer to a set of events that occur one aŌer the other as a se-
quence of events. In mathemaƟcs, we use the word sequence to refer to an
ordered set of numbers, i.e., a set of numbers that “occur one aŌer the other.”

For instance, the numbers 2, 4, 6, 8, …, form a sequence. The order is impor-
tant; the first number is 2, the second is 4, etc. It seems natural to seek a formula
that describes a given sequence, and oŌen this can be done. For instance, the
sequence above could be described by the funcƟon a(n) = 2n, for the values of
n = 1, 2, . . . To find the 10th term in the sequence, we would compute a(10).
This leads us to the following, formal definiƟon of a sequence.

..
DefiniƟon 27 Sequence

A sequence is a funcƟon a(n) whose domain is N. The range of a
sequence is the set of all disƟnct values of a(n).

The terms of a sequence are the values a(1), a(2), …, which are usually
denoted with subscripts as a1, a2, ….

A sequence a(n) is oŌen denoted as {an}.

.. Example 228 ..LisƟng terms of a sequence
List the first four terms of the following sequences.

1. {an} =

{
3n

n!

}
2. {an} = {4+(−1)n} 3. {an} =

{
(−1)n(n+1)/2

n2

}
SÊ½çã®ÊÄ

1. a1 =
31

1!
= 3; a2 =

32

2!
=

9
2
; a3 =

33

3!
=

9
2
; a4 =

34

4!
=

27
8

We can plot the terms of a sequence with a scaƩer plot. The “x”-axis is
used for the values of n, and the values of the terms are ploƩed on the
y-axis. To visualize this sequence, see Figure 8.1.



.....

an = 4 + (−1)n

.
1

.
2

.
3

.
4

.

1

.

2

.

3

.

4

.

5

. n.

y

(a)

.....

an =
(−1)n(n+1)/2

n2

.

1

.

2

.

3

.

4

.

5

.−1 .

1/2

.

1/4

.

n

.

y

(b)

Figure 8.2: Ploƫng sequences in Example
228.

Chapter 8 Sequences and Series

2. a1 = 4+ (−1)1 = 3; a2 = 4+ (−1)2 = 5;
a3 = 4+(−1)3 = 3; a4 = 4+(−1)4 = 5. Note that the range of this
sequence is finite, consisƟng of only the values 3 and 5. This sequence is
ploƩed in Figure 8.2 (a).

3. a1 =
(−1)1(2)/2

12
= −1; a2 =

(−1)2(3)/2

22
= −1

4

a3 =
(−1)3(4)/2

32
=

1
9

a4 =
(−1)4(5)/2

42
=

1
16

;

a5 =
(−1)5(6)/2

52
= − 1

25
.

We gave one extra term to begin to show the paƩern of signs is “−,−,+,
+,−,−, . . ., due to the fact that the exponent of−1 is a special quadraƟc.
This sequence is ploƩed in Figure 8.2 (b).

...

.. Example 229 ..Determining a formula for a sequence
Find the nth term of the following sequences, i.e., find a funcƟon that describes
each of the given sequences.

1. 2, 5, 8, 11, 14, . . .

2. 2,−5, 10,−17, 26,−37, . . .

3. 1, 1, 2, 6, 24, 120, 720, . . .

4.
5
2
,
5
2
,
15
8
,
5
4
,
25
32

, . . .

SÊ½çã®ÊÄ Weshould first note that there is never exactly one funcƟon that
describes a finite set of numbers as a sequence. There are many sequences
that start with 2, then 5, as our first example does. We are looking for a simple
formula that describes the terms given, knowing there is possiblymore than one
answer.

1. Note how each term is 3more than the previous one. This implies a linear
funcƟon would be appropriate: a(n) = an = 3n+b for some appropriate
value of b. As we want a1 = 2, we set b = −1. Thus an = 3n− 1.

2. First noƟce how the sign changes from term to term. This is most com-
monly accomplished bymulƟplying the terms by either (−1)n or (−1)n+1.
Using (−1)n mulƟplies the odd terms by (−1); using (−1)n+1 mulƟplies
the even terms by (−1). As this sequence has negaƟve even terms, we
will mulƟply by (−1)n+1.

Notes:
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AŌer this, we might feel a bit stuck as to how to proceed. At this point,
we are just looking for a paƩern of some sort: what do the numbers 2, 5,
10, 17, etc., have in common? There are many correct answers, but the
one that we’ll use here is that each is one more than a perfect square.
That is, 2 = 11 + 1, 5 = 22 + 1, 10 = 32 + 1, etc. Thus our formula is
an = (−1)n+1(n2 + 1).

3. One who is familiar with the factorial funcƟon will readily recognize these
numbers. They are 0!, 1!, 2!, 3!, etc. Since our sequences start with n = 1,
we cannot write an = n!, for this misses the 0! term. Instead, we shiŌ by
1, and write an = (n− 1)!.

4. This one may appear difficult, especially as the first two terms are the
same, but a liƩle “sleuthing” will help. NoƟce how the terms in the nu-
merator are always mulƟples of 5, and the terms in the denominator are
always powers of 2. Does something as simple as an = 5n

2n work?

When n = 1, we see that we indeed get 5/2 as desired. When n = 2,
we get 10/4 = 5/2. Further checking shows that this formula indeed
matches the other terms of the sequence....

A common mathemaƟcal endeavor is to create a new mathemaƟcal object
(for instance, a sequence) and then apply previously knownmathemaƟcs to the
new object. We do so here. The fundamental concept of calculus is the limit, so
we will invesƟgate what it means to find the limit of a sequence.

..
DefiniƟon 28 Limit of a Sequence, Convergent, Divergent

Let {an} be a sequence and let L be a real number. Given any ε > 0, if
anm can be found such that |an − L| < ε for all n > m, then we say the
limit of {an}, as n approaches infinity, is L, denoted

lim
n→∞

an = L.

If lim
n→∞

an exists, we say the sequence converges; otherwise, the se-
quence diverges.

This definiƟon states, informally, that if the limit of a sequence is L, then if
you go far enough out along the sequence, all subsequent terms will be really
close to L. Of course, the terms “far enough” and “really close” are subjecƟve
terms, but hopefully the intent is clear.

Notes:
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an =
3x2 − 2x + 1
x2 − 1000
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an = cos n
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.....

an =
(−1)n

n

.

5

.
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.
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.
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1

.
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.

y
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Figure 8.3: ScaƩer plots of the sequences
in Example 230.

Chapter 8 Sequences and Series

This definiƟon is reminiscent of the ε–δ proofs of Chapter 1. In that chapter
we developed other tools to evaluate limits apart from the formal definiƟon; we
do so here as well.

..
Theorem 55 Limit of a Sequence

Let {an} be a sequence and let f(x) be a funcƟon where f(n) = an for all
n in N.

1. If lim
x→∞

f(x) = L, then lim
n→∞

an = L.

2. If lim
x→∞

f(x) does not exist, then {an} diverges.

When we considered limits before, the domain of the funcƟon was an inter-
val of real numbers. Now, as we consider limits, the domain is restricted to N,
the natural numbers. Theorem 55 states that this restricƟon of the domain does
not affect the outcome of the limit and whatever tools we developed in Chapter
1 to evaluate limits can be applied here as well.

.. Example 230 ..Determining convergence/divergence of a sequence
Determine the convergence or divergence of the following sequences.

1. {an} =

{
3n2 − 2n+ 1
n2 − 1000

}
2. {an} = {cos n} 3. {an} =

{
(−1)n

n

}
SÊ½çã®ÊÄ

1. Using Theorem 11, we can state that lim
x→∞

3x2 − 2x+ 1
x2 − 1000

= 3. (We could

have also directly applied l’Hôpital’s Rule.) Thus the sequence {an} con-
verges, and its limit is 3. A scaƩer plot of every 5 values of an is given in
Figure 8.3 (a). The values of an vary widely near n = 30, ranging from
about−73 to 125, but as n grows, the values approach 3.

2. The limit lim
x→∞

cos x does not exist, as the funcƟon oscillates (and takes on
every value in [−1, 1] infinitely many Ɵmes). Thus we conclude that the
sequence {cos n} diverges. (And in this parƟcular case, since the domain
is restricted to N, no value of cos n is repeated!) This sequence is ploƩed
in Figure 8.3 (b); because only discrete values of cosine are ploƩed, it does
not bear strong resemblance to the familiar cosine wave.

3. We cannot actually apply Theorem55here, as the funcƟon f(x) = (−1)x/x

Notes:
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is not well defined. (What does (−1)
√
2 mean? In actuality, there is an an-

swer, but it involves complex analysis, beyond the scope of this text.) So
for now we say that we cannot determine the limit. (But we will be able
to very soon.) By looking at the plot in Figure 8.3 (c), we would like to
conclude that the sequence converges to 0. That is true, but at this point
we are unable to decisively say so....

It seems very clear that a sequence such as
{
(−1)n

n

}
converges to 0 but we

lack the formal tool to prove it. The following theorem gives us that tool.

..
Theorem 56 Absolute Value Theorem

Let {an} be a sequence. If lim
n→∞

|an| = 0, then lim
n→∞

an = 0

.. Example 231 ..Determining the convergence/divergence of a sequence
Determine the convergence or divergence of the following sequences.

1. {an} =

{
(−1)n

n

}
2. {an} =

{
(−1)n(n+ 1)

n

}
SÊ½çã®ÊÄ

1. This appeared in Example 230. Wewant to apply Theorem 56, so consider
the limit of {|an|}:

lim
n→∞

|an| = lim
n→∞

∣∣∣∣ (−1)n

n

∣∣∣∣
= lim

n→∞

1
n

= 0.

Since this limit is 0, we can apply Theorem 56 and state that lim
n→∞

an = 0.

2. Because of the alternaƟng nature of this sequence (i.e., every other term

ismulƟplied by−1), we cannot simply look at the limit lim
x→∞

(−1)x(x+ 1)
x

.
We can try to apply the techniques of Theorem 56:

lim
n→∞

|an| = lim
n→∞

∣∣∣∣ (−1)n(n+ 1)
n

∣∣∣∣
= lim

n→∞

n+ 1
n

= 1.

Notes:

387



.....

an =
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Figure 8.4: A plot of a sequence in Exam-
ple 231, part 2.

Chapter 8 Sequences and Series

Wehave concluded thatwhenwe ignore the alternaƟng sign, the sequence
approaches 1. This means we cannot apply Theorem 56; it states the the
limit must be 0 in order to conclude anything.
In fact, since we know that the signs of the terms alternate and we know
that the limit of |an| is 1, we know that as n approaches infinity, the terms
will alternate between values close to 1 and −1, meaning the sequence
diverges. A plot of this sequence is given in Figure 8.4....

We conƟnue our study of the limits of sequences by considering some of the
properƟes of these limits.

..
Theorem 57 ProperƟes of the Limits of Sequences

Let {an} and {bn} be sequences such that lim
n→∞

an = L, lim
n→∞

bn = K, and
let c be a real number.

1. lim
n→∞

(an ± bn) = L± K

2. lim
n→∞

(an · bn) = L · K

3. lim
n→∞

(an/bn) = L/K, K ̸= 0

4. lim
n→∞

c · an = c · L

.. Example 232 ..Applying properƟes of limits of sequences
Let the following sequences, and their limits, be given:

• {an} =

{
n+ 1
n2

}
, and lim

n→∞
an = 0;

• {bn} =

{(
1+

1
n

)n}
, and lim

n→∞
bn = e; and

• {cn} =
{
n · sin(5/n)

}
, and lim

n→∞
cn = 5.

Evaluate the following limits.

1. lim
n→∞

(an + bn) 2. lim
n→∞

(bn · cn) 3. lim
n→∞

(1000 · an)

SÊ½çã®ÊÄ We will use Theorem 57 to answer each of these.

1. Since lim
n→∞

an = 0 and lim
n→∞

bn = e, we conclude that lim
n→∞

(an + bn) =

0+ e = e. So even though we are adding something to each term of the
sequence bn, we are adding something so small that the final limit is the
same as before.

Notes:
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Figure 8.5: A plot of {an} = {1/n} from
Example 233.
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an = 2n

.
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.
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.
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y

Figure 8.6: A plot of {an} = {2n} from
Example 233.

8.1 Sequences

2. Since lim
n→∞

bn = e and lim
n→∞

cn = 5, we conclude that lim
n→∞

(bn · cn) =

e · 5 = 5e.

3. Since lim
n→∞

an = 0, we have lim
n→∞

1000an = 1000 · 0 = 0. It does not
maƩer that wemulƟply each term by 1000; the sequence sƟll approaches
0. (It just takes longer to get close to 0.)...

There is more to learn about sequences than just their limits. We will also
study their range and the relaƟonships terms have with the terms that follow.
We start with some definiƟons describing properƟes of the range.

..
DefiniƟon 29 Bounded and Unbounded Sequences

A sequence {an} is said to be bounded if there exists real numbers m
andM such thatm < an < M for all n in N.

A sequence {an} is said to be unbounded if it is not bounded.

A sequence {an} is said to be bounded above if there exists an M such
that an < M for all n in N; it is bounded below if there exists anm such
thatm < an for all n in N.

It follows from this definiƟon that an unbounded sequencemay be bounded
above or bounded below; a sequence that is both bounded above and below is
simply a bounded sequence.

.. Example 233 Determining boundedness of sequences
Determine the boundedness of the following sequences.

1. {an} =

{
1
n

}
2. {an} = {2n}

SÊ½çã®ÊÄ

1. The terms of this sequence are always posiƟve but are decreasing, so we
have 0 < an < 2 for all n. Thus this sequence is bounded. Figure 8.5
illustrates this.

2. The terms of this sequence obviously grow without bound. However, it
is also true that these terms are all posiƟve, meaning 0 < an. Thus we
can say the sequence is unbounded, but also bounded below. Figure 8.6
illustrates this...

Notes:
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Note: Keep in mind what Theorem 58
does not say. It does not say that
bounded sequences must converge, nor
does it say that if a sequence does not
converge, it is not bounded.

Note: It is someƟmes useful to call
a monotonically increasing sequence
strictly increasing if an < an+1 for all
n; i.e, we remove the possibility that
subsequent terms are equal.
A similar statement holds for strictly de-
creasing.

Chapter 8 Sequences and Series

The previous example produces some interesƟng concepts. First, we can
recognize that the sequence {1/n} converges to 0. This says, informally, that
“most” of the terms of the sequence are “really close” to 0. This implies that
the sequence is bounded, using the following logic. First, “most” terms are near
0, so we could find some sort of bound on these terms (using DefiniƟon 28, the
bound is ε). That leaves a “few” terms that are not near 0 (i.e., a finite number
of terms). A finite list of numbers is always bounded.

This logic implies that if a sequence converges, it must be bounded. This is
indeed true, as stated by the following theorem.

..
Theorem 58 Convergent Sequences are Bounded

Let {an} be a convergent sequence. Then {an} is bounded.

In Example 232 we saw the sequence {bn} =
{
(1+ 1/n)n

}
, where it was

stated that lim
n→∞

bn = e. (Note that this is simply restaƟng part of Theorem 5.)
Even though it may be difficult to intuiƟvely grasp the behavior of this sequence,
we know immediately that it is bounded.

Another interesƟng concept to come out of Example 233 again involves the
sequence {1/n}. We stated, without proof, that the terms of the sequencewere
decreasing. That is, that an+1 < an for all n. (This is easy to show. Clearly
n < n + 1. Taking reciprocals flips the inequality: 1/n > 1/(n + 1). This is the
same as an > an+1.) Sequences that either steadily increase or decrease are
important, so we give this property a name.

..
DefiniƟon 30 Monotonic Sequences

1. A sequence {an} is monotonically increasing if an ≤ an+1 for all
n, i.e.,

a1 ≤ a2 ≤ a3 ≤ · · · an ≤ an+1 · · ·

2. A sequence {an} is monotonically decreasing if an ≥ an+1 for all
n, i.e.,

a1 ≥ a2 ≥ a3 ≥ · · · an ≥ an+1 · · ·

3. A sequence ismonotonic if it is monotonically increasing ormono-
tonically decreasing.

Notes:
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Figure 8.7: Plots of sequences in Example
234.

8.1 Sequences

.. Example 234 ..Determining monotonicity
Determine the monotonicity of the following sequences.

1. {an} =

{
n+ 1
n

}

2. {an} =

{
n2 + 1
n+ 1

}
3. {an} =

{
n2 − 9

n2 − 10n+ 26

}

4. {an} =

{
n2

n!

}

SÊ½çã®ÊÄ In each of the following, wewill examine an+1−an. If an+1−
an > 0, we conclude that an < an+1 and hence the sequence is increasing. If
an+1 − an < 0, we conclude that an > an+1 and the sequence is decreasing. Of
course, a sequence need not be monotonic and perhaps neither of the above
will apply.

We also give a scaƩer plot of each sequence. These are useful as they sug-
gest a paƩern of monotonicity, but analyƟc work should be done to confirm a
graphical trend.

1. an+1 − an =
n+ 2
n+ 1

− n+ 1
n

=
(n+ 2)(n)− (n+ 1)2

(n+ 1)n

=
−1

n(n+ 1)
< 0 for all n.

Since an+1−an < 0 for all n, we conclude that the sequence is decreasing.

2. an+1 − an =
(n+ 1)2 + 1

n+ 2
− n2 + 1

n+ 1

=

(
(n+ 1)2 + 1

)
(n+ 1)− (n2 + 1)(n+ 2)

(n+ 1)(n+ 2)

=
n2 + 4n+ 1

(n+ 1)(n+ 2)
> 0 for all n.

Since an+1 − an > 0 for all n, we conclude the sequence is increasing. ..

3. We can clearly see in Figure 8.7 (c), where the sequence is ploƩed, that
it is not monotonic. However, it does seem that aŌer the first 4 terms
it is decreasing. To understand why, perform the same analysis as done
before:

Notes:
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an+1 − an =
(n+ 1)2 − 9

(n+ 1)2 − 10(n+ 1) + 26
− n2 − 9

n2 − 10n+ 26

=
n2 + 2n− 8
n2 − 8n+ 17

− n2 − 9
n2 − 10n+ 26

=
(n2 + 2n− 8)(n2 − 10n+ 26)− (n2 − 9)(n2 − 8n+ 17)

(n2 − 8n+ 17)(n2 − 10n+ 26)

=
−10n2 + 60n− 55

(n2 − 8n+ 17)(n2 − 10n+ 26)
.

We want to know when this is greater than, or less than, 0, therefore we
are only concerned with the numerator. Using the quadraƟc formula, we
can determine that −10n2 + 60n − 55 = 0 when n ≈ 1.13, 4.87. So for
n < 1.13, the sequence is decreasing. Since we are only dealing with the
natural numbers, this means that a1 > a2.

Between 1.13 and 4.87, i.e., for n = 2, 3 and 4, we have that an+1 >
an and the sequence is increasing. (That is, when n = 2, 3 and 4, the
numerator−10n2 + 60n+ 55 from the fracƟon above is> 0.)

When n > 4.87, i.e, for n ≥ 5, we have that −10n2 + 60n + 55 < 0,
hence an+1 − an < 0, so the sequence is decreasing.

In short, the sequence is simply not monotonic. However, it is useful to
note that for n ≥ 5, the sequence is monotonically decreasing.

4. Again, the plot in Figure 8.8 shows that the sequence is not monotonic,
but it suggests that it is monotonically decreasing aŌer the first term. We
perform the usual analysis to confirm this.

an+1 − an =
(n+ 1)2

(n+ 1)!
− n2

n!

=
(n+ 1)2 − n2(n+ 1)

(n+ 1)!

=
−n3 + 2n+ 1

(n+ 1)!
When n = 1, the above expression is > 0; for n ≥ 2, the above expres-
sion is < 0. Thus this sequence is not monotonic, but it is monotonically
decreasing aŌer the first term....

Knowing that a sequence is monotonic can be useful. In parƟcular, if we
know that a sequence is bounded andmonotonic, we can conclude it converges!
Consider, for example, a sequence that ismonotonically decreasing and is bounded
below. We know the sequence is always geƫng smaller, but that there is a

Notes:
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bound to how small it can become. This is enough to prove that the sequence
will converge, as stated in the following theorem.

..
Theorem 59 Bounded Monotonic Sequences are Convergent

1. Let {an} be a bounded, monotonic sequence. Then {an} con-
verges; i.e., lim

n→∞
an exists.

2. Let {an} be a monotonically increasing sequence that is bounded
above. Then {an} converges.

3. Let {an} be a monotonically decreasing sequence that is bounded
below. Then {an} converges.

Consider once again the sequence {an} = {1/n}. It is easy to show it is
monotonically decreasing and that it is always posiƟve (i.e., bounded below by
0). Therefore we can conclude by Theorem 59 that the sequence converges. We
already knew this by other means, but in the following secƟon this theoremwill
become very useful.

Sequences are a great source of mathemaƟcal inquiry. The On-Line Ency-
clopedia of Integer Sequences (http://oeis.org) contains thousands of se-
quences and their formulae. (As of this wriƟng, there are 218,626 sequences
in the database.) Perusing this database quickly demonstrates that a single se-
quence can represent several different “real life” phenomena.

InteresƟng as this is, our interest actually lies elsewhere. We are more in-
terested in the sum of a sequence. That is, given a sequence {an}, we are very
interested in a1 + a2 + a3 + · · · . Of course, one might immediately counter
with “Doesn’t this just add up to infinity?” Many Ɵmes, yes, but there are many
important cases where the answer is no. This is the topic of series, which we
begin to invesƟgate in the next secƟon.

Notes:
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Exercises 8.1
Terms and Concepts
1. Use your own words to define a sequence.
2. The domain of a sequence is the numbers.
3. Use your own words to describe the range of a sequence.
4. Describe what it means for a sequence to be bounded.

Problems
In Exercises 5 – 8, give the first five terms of the given se-
quence.

5. {an} =

{
4n

(n+ 1)!

}
6. {bn} =

{(
−3
2

)n}
7. {cn} =

{
− nn+1

n+ 2

}
8. {dn} =

{
1√
5

((
1+

√
5

2

)n

−
(
1−

√
5

2

)n
)}

In Exercises 9 – 12, determine the nth term of the given se-
quence.
9. 4, 7, 10, 13, 16, . . .

10. 3, −3
2
,
3
4
, −3

8
, . . .

11. 10, 20, 40, 80, 160, . . .

12. 1, 1,
1
2
,
1
6
,

1
24

,
1

120
, . . .

In Exercises 13 – 16, use the following informaƟon to deter-
mine the limit of the given sequences.

• {an} =

{
2n − 20

2n

}
; lim

n→∞
an = 1

• {bn} =

{(
1+

2
n

)n}
; lim

n→∞
bn = e2

• {cn} = {sin(3/n)}; lim
n→∞

cn = 0

13. {an} =

{
2n − 20
7 · 2n

}
14. {an} = {3bn − an}

15. {an} =

{
sin(3/n)

(
1+

2
n

)n}
16. {an} =

{(
1+

2
n

)2n
}

In Exercises 17 – 28, determine whether the sequence con-
verges or diverges. If convergent, give the limit of the se-
quence.

17. {an} =

{
(−1)n

n
n+ 1

}
18. {an} =

{
4n2 − n+ 5
3n2 + 1

}
19. {an} =

{
4n

5n

}

20. {an} =

{
n− 1
n

− n
n− 1

}
, n ≥ 2

21. {an} = {ln(n)}

22. {an} =

{
3n√
n2 + 1

}
23. {an} =

{(
1+

1
n

)n}
24. {an} =

{
5− 1

n

}
25. {an} =

{
(−1)n+1

n

}
26. {an} =

{
1.1n

n

}
27. {an} =

{
2n

n+ 1

}
28. {an} =

{
(−1)n

n2

2n − 1

}
In Exercises 29 – 34, determine whether the sequence is
bounded, bounded above, bounded below, or none of the
above.

29. {an} = {sin n}
30. {an} = {tan n}

31. {an} =

{
(−1)n

3n− 1
n

}
32. {an} =

{
3n2 − 1

n

}
33. {an} = {n cos n}
34. {an} = {2n − n!}
In Exercises 35 – 38, determine whether the sequence is
monotonically increasing or decreasing. If it is not, determine
if there is anm such that it is monotonic for all n ≥ m.

35. {an} =

{
n

n+ 2

}
36. {an} =

{
n2 − 6n+ 9

n

}
37. {an} =

{
(−1)n

1
n3

}
38. {an} =

{
n2

2n

}
39. Prove Theorem56; that is, use the definiƟonof the limit of a

sequence to show that if lim
n→∞

|an| = 0, then lim
n→∞

an = 0.

40. Let {an} and {bn} be sequences such that lim
n→∞

an = L and
lim

n→∞
bn = K.

(a) Show that if an < bn for all n, then L ≤ K.
(b) Give an example where L = K.

41. Prove the Squeeze Theorem for sequences: Let {an} and
{bn} be such that lim

n→∞
an = L and lim

n→∞
bn = L, and let

{cn} be such that an ≤ cn ≤ bn for all n. Then lim
n→∞

cn = L
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8.2 Infinite Series

8.2 Infinite Series
Given the sequence {an} = {1/2n} = 1/2, 1/4, 1/8, . . ., consider the follow-
ing sums:

a1 = 1/2 = 1/2
a1 + a2 = 1/2+ 1/4 = 3/4

a1 + a2 + a3 = 1/2+ 1/4+ 1/8 = 7/8
a1 + a2 + a3 + a4 = 1/2+ 1/4+ 1/8+ 1/16 = 15/16

In general, we can show that

a1 + a2 + a3 + · · ·+ an =
2n − 1
2n

= 1− 1
2n

.

Let Sn be the sum of the first n terms of the sequence {1/2n}. From the above,
we see that S1 = 1/2, S2 = 3/4, etc. Our formula at the end shows that Sn =
1− 1/2n.

Now consider the following limit: lim
n→∞

Sn = lim
n→∞

(
1−1/2n

)
= 1. This limit

can be interpreted as saying something amazing: the sum of all the terms of the
sequence {1/2n} is 1.

This example illustrates some interesƟng concepts that we explore in this
secƟon. We begin this exploraƟon with some definiƟons.

..
DefiniƟon 31 Infinite Series, nth ParƟal Sums, Convergence, Divergence

Let {an} be a sequence.

1. The sum
∞∑
n=1

an is an infinite series (or, simply series).

2. Let Sn =
n∑

i=1

ai; the sequence {Sn} is the sequence of nth parƟal sums of {an}.

3. If the sequence {Sn} converges to L, we say the series
∞∑
n=1

an converges to L,

and we write
∞∑
n=1

an = L.

4. If the sequence {Sn} diverges, the series
∞∑
n=1

an diverges.

Notes:
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Chapter 8 Sequences and Series

Using our new terminology, we can state that the series
∞∑
n=1

1/2n converges,

and
∞∑
n=1

1/2n = 1.

We will explore a variety of series in this secƟon. We start with two series
that diverge, showing how we might discern divergence.

.. Example 235 ..Showing series diverge

1. Let {an} = {n2}. Show
∞∑
n=1

an diverges.

2. Let {bn} = {(−1)n+1}. Show
∞∑
n=1

bn diverges.

SÊ½çã®ÊÄ

1. Consider Sn, the nth parƟal sum.

Sn = a1 + a2 + a3 + · · ·+ an
= 12 + 22 + 32 · · ·+ n2.

By Theorem 37, this is

=
n(n+ 1)(2n+ 1)

6
.

Since lim
n→∞

Sn = ∞, we conclude that the series
∞∑
n=1

n2 diverges. It is

instrucƟve to write
∞∑
n=1

n2 = ∞ for this tells us how the series diverges: it

grows without bound.

A scaƩer plot of the sequences {an} and {Sn} is given in Figure 8.9(a).
The terms of {an} are growing, so the terms of the parƟal sums {Sn} are
growing even faster, illustraƟng that the series diverges.

Notes:
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Figure 8.9: ScaƩer plots relaƟng to Exam-
ple 235.

8.2 Infinite Series

2. Consider some of the parƟal sums Sn of {bn}:

S1 = 1
S2 = 0
S3 = 1
S4 = 0

This paƩern repeats; we find that Sn =

{
1 n is odd
0 n is even . As {Sn} oscil-

lates, repeaƟng 1, 0, 1, 0, . . ., we conclude that lim
n→∞

Sn does not exist,

hence
∞∑
n=1

(−1)n+1 diverges.

A scaƩer plot of the sequence {bn} and the parƟal sums {Sn} is given in
Figure 8.9(b). When n is odd, bn = Sn so the marks for bn are drawn
oversized to show they coincide.

...

While it is important to recognize when a series diverges, we are generally
more interested in the series that converge. In this secƟon we will demonstrate
a few general techniques for determining convergence; later secƟons will delve
deeper into this topic.

Geometric Series

One important type of series is a geometric series.

..
DefiniƟon 32 Geometric Series

A geometric series is a series of the form

∞∑
n=0

rn = 1+ r+ r2 + r3 + · · ·+ rn + · · ·

Note that the index starts at n = 0, not n = 1.

We started this secƟon with a geometric series, although we dropped the
first term of 1. One reason geometric series are important is that they have nice
convergence properƟes.

Notes:
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series in Example 236.
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..
Theorem 60 Convergence of Geometric Series

Consider the geometric series
∞∑
n=0

rn.

1. The nth parƟal sum is: Sn =
1− r n+1

1− r
.

2. The series converges if, and only if, |r| < 1. When |r| < 1,

∞∑
n=0

rn =
1

1− r
.

According to Theorem 60, the series
∞∑
n=0

1
2n

= 1+
1
2
+

1
4
+ · · · converges,

and
∞∑
n=0

1
2n

=
1

1− 1/2
= 2. This concurs with our introductory example; while

there we got a sum of 1, we skipped the first term of 1.

.. Example 236 ..Exploring geometric series
Check the convergence of the following series. If the series converges, find its
sum.

1.
∞∑
n=2

(
3
4

)n

2.
∞∑
n=0

(
−1
2

)n

3.
∞∑
n=0

3n

SÊ½çã®ÊÄ

1. Since r = 3/4 < 1, this series converges. By Theorem 60, we have that

∞∑
n=0

(
3
4

)n

=
1

1− 3/4
= 4.

However, note the subscript of the summaƟon in the given series: we are
to start with n = 2. Therefore we subtract off the first two terms, giving:

∞∑
n=2

(
3
4

)n

= 4− 1− 3
4
=

9
4
.

This is illustrated in Figure 8.10.
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398



.....

2

.

4

.

6

.

8

.

10

.−1.

−0.5

.

0.5

.

1

.

n

.

y

.
..an. Sn

(a)

.....
2

.
4

.
6

.

500

.

1,000

. n.

y

.

..an. Sn

(b)

Figure 8.11: ScaƩer plots relaƟng to the
series in Example 236.

Note: Theorem 61 assumes that an+b ̸=
0 for all n. If an+ b = 0 for some n, then
of course the series does not converge re-
gardless of p as not all of the terms of the
sequence are defined.

8.2 Infinite Series

2. Since |r| = 1/2 < 1, this series converges, and by Theorem 60,
∞∑
n=0

(
−1
2

)n

=
1

1− (−1/2)
=

2
3
.

The parƟal sums of this series are ploƩed in Figure 8.11(a). Note how
the parƟal sums are not purely increasing as some of the terms of the
sequence {(−1/2)n} are negaƟve.

3. Since r > 1, the series diverges. (This makes “common sense”; we expect
the sum

1+ 3+ 9+ 27+ 81+ 243+ · · ·
to diverge.) This is illustrated in Figure 8.11(b)....

p–Series

Another important type of series is the p-series.

..
DefiniƟon 33 p–Series, General p–Series

1. A p–series is a series of the form

∞∑
n=1

1
np

, where p > 0.

2. A general p–series is a series of the form

∞∑
n=1

1
(an+ b)p

, where p > 0 and a, b are real numbers.

Like geometric series, one of the nice things about p–series is that they have
easy to determine convergence properƟes.

..
Theorem 61 Convergence of General p–Series

A general p–series
∞∑
n=1

1
(an+ b)p

will converge if, and only if, p > 1.

Notes:
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.. Example 237 Determining convergence of series
Determine the convergence of the following series.

1.
∞∑
n=1

1
n

2.
∞∑
n=1

1
n2

3.
∞∑
n=1

1√
n

4.
∞∑
n=1

(−1)n

n

5.
∞∑

n=10

1
( 12n− 5)3

6.
∞∑
n=1

1
2n

SÊ½çã®ÊÄ

1. This is a p–series with p = 1. By Theorem 61, this series diverges.

This series is a famous series, called the Harmonic Series, so named be-
cause of its relaƟonship to harmonics in the study of music and sound.

2. This is a p–series with p = 2. By Theorem 61, it converges. Note that
the theorem does not give a formula by which we can determine what
the series converges to; we just know it converges. A famous, unexpected

result is that this series converges to
π2

6
.

3. This is a p–series with p = 1/2; the theorem states that it diverges.

4. This is not a p–series; the definiƟon does not allow for alternaƟng signs.
Therefore we cannot apply Theorem 61. (Another famous result states
that this series, the AlternaƟng Harmonic Series, converges to ln 2.)

5. This is a general p–series with p = 3, therefore it converges.

6. This is not a p–series, but a geometric series with r = 2. It converges...

Later secƟons will provide tests by which we can determine whether or not
a given series converges. This, in general, is much easier than determiningwhat
a given series converges to. There are many cases, though, where the sum can
be determined.

.. Example 238 ..Telescoping series

Evaluate the sum
∞∑
n=1

(
1
n
− 1

n+ 1

)
.

Notes:
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SÊ½çã®ÊÄ It will help to write down some of the first few parƟal sums
of this series.

S1 =
1
1
− 1

2
= 1− 1

2

S2 =
(
1
1
− 1

2

)
+

(
1
2
− 1

3

)
= 1− 1

3

S3 =
(
1
1
− 1

2

)
+

(
1
2
− 1

3

)
+

(
1
3
− 1

4

)
= 1− 1

4

S4 =
(
1
1
− 1

2

)
+

(
1
2
− 1

3

)
+

(
1
3
− 1

4

)
+

(
1
4
− 1

5

)
= 1− 1

5

Note how most of the terms in each parƟal sum are canceled out! In general,

we see that Sn = 1 − 1
n+ 1

. The sequence {Sn} converges, as lim
n→∞

Sn =

lim
n→∞

(
1− 1

n+ 1

)
= 1, and so we conclude that

∞∑
n=1

(
1
n
− 1

n+ 1

)
= 1. Par-

Ɵal sums of the series are ploƩed in Figure 8.12. ...

The series in Example 238 is an example of a telescoping series. Informally, a
telescoping series is one in which the parƟal sums reduce to just a finite number
of terms. The parƟal sum Sn did not contain n terms, but rather just two: 1 and
1/(n+ 1).

When possible, seek away towrite an explicit formula for the nth parƟal sum
Sn. This makes evaluaƟng the limit lim

n→∞
Sn much more approachable. We do so

in the next example.

.. Example 239 ..EvaluaƟng series
Evaluate each of the following infinite series.

1.
∞∑
n=1

2
n2 + 2n

2.
∞∑
n=1

ln
(
n+ 1
n

)
SÊ½çã®ÊÄ

1. We can decompose the fracƟon 2/(n2 + 2n) as

2
n2 + 2n

=
1
n
− 1

n+ 2
.

(See SecƟon 6.5, ParƟal FracƟonDecomposiƟon, to recall how this is done,
if necessary.)

Notes:
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Figure 8.13: ScaƩer plots relaƟng to the
series in Example 239.
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Expressing the terms of {Sn} is now more instrucƟve:

S1 = 1−
1
3

= 1−
1
3

S2 =

(
1−

1
3

)
+

(
1
2
−

1
4

)
= 1+

1
2
−

1
3
−

1
4

S3 =

(
1−

1
3

)
+

(
1
2
−

1
4

)
+

(
1
3
−

1
5

)
= 1+

1
2
−

1
4
−

1
5

S4 =

(
1−

1
3

)
+

(
1
2
−

1
4

)
+

(
1
3
−

1
5

)
+

(
1
4
−

1
6

)
= 1+

1
2
−

1
5
−

1
6

S5 =

(
1−

1
3

)
+

(
1
2
−

1
4

)
+

(
1
3
−

1
5

)
+

(
1
4
−

1
6

)
+

(
1
5
−

1
7

)
= 1+

1
2
−

1
6
−

1
7

We again have a telescoping series. In each parƟal sum, most of the terms

cancel and we obtain the formula Sn = 1 +
1
2
− 1

n+ 1
− 1

n+ 2
. Taking

limits allows us to determine the convergence of the series:

lim
n→∞

Sn = lim
n→∞

(
1+

1
2
− 1

n+ 1
− 1

n+ 2

)
=

3
2
, so

∞∑
n=1

1
n2 + 2n

=
3
2
.

This is illustrated in Figure 8.13(a).

2. We begin by wriƟng the first few parƟal sums of the series:

S1 = ln (2)

S2 = ln (2) + ln
(
3
2

)
S3 = ln (2) + ln

(
3
2

)
+ ln

(
4
3

)
S4 = ln (2) + ln

(
3
2

)
+ ln

(
4
3

)
+ ln

(
5
4

)
At first, this does not seem helpful, but recall the logarithmic idenƟty:
ln x+ ln y = ln(xy). Applying this to S4 gives:

S4 = ln (2)+ ln
(
3
2

)
+ ln

(
4
3

)
+ ln

(
5
4

)
= ln

(
2
1
· 3
2
· 4
3
· 5
4

)
= ln (5) .

We can conclude that {Sn} =
{
ln(n+ 1)

}
. This sequence does not con-

verge, as lim
n→∞

Sn = ∞. Therefore
∞∑
n=1

ln
(
n+ 1
n

)
= ∞; the series di-

verges. Note in Figure 8.13(b) how the sequence of parƟal sums grows
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8.2 Infinite Series

slowly; aŌer 100 terms, it is not yet over 5. Graphically we may be fooled
into thinking the series converges, but our analysis above shows that it
does not....

We are learning about a new mathemaƟcal object, the series. As done be-
fore, we apply “old” mathemaƟcs to this new topic.

..
Theorem 62 ProperƟes of Infinite Series

Let
∞∑
n=1

an = L,
∞∑
n=1

bn = K, and let c be a constant.

1. Constant MulƟple Rule:
∞∑
n=1

c · an = c ·
∞∑
n=1

an = c · L.

2. Sum/Difference Rule:
∞∑
n=1

(
an ± bn

)
=

∞∑
n=1

an ±
∞∑
n=1

bn = L± K.

Before using this theorem, we provide a few “famous” series.

..
Key Idea 31 Important Series

1.
∞∑
n=0

1
n!

= e. (Note that the index starts with n = 0.)

2.
∞∑
n=1

1
n2

=
π2

6
.

3.
∞∑
n=1

(−1)n+1

n2
=

π2

12
.

4.
∞∑
n=0

(−1)n

2n+ 1
=

π

4
.

5.
∞∑
n=1

1
n

diverges. (This is called the Harmonic Series.)

6.
∞∑
n=1

(−1)n+1

n
= ln 2. (This is called the AlternaƟng Harmonic Series.)
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Figure 8.14: ScaƩer plots relaƟng to the
series in Example 240.

Chapter 8 Sequences and Series

.. Example 240 ..EvaluaƟng series
Evaluate the given series.

1.
∞∑
n=1

(−1)n+1
(
n2 − n

)
n3

2.
∞∑
n=1

1000
n!

3.
1
16

+
1
25

+
1
36

+
1
49

+ · · ·

SÊ½çã®ÊÄ

1. We start by using algebra to break the series apart:

∞∑
n=1

(−1)n+1
(
n2 − n

)
n3

=
∞∑
n=1

(
(−1)n+1n2

n3
− (−1)n+1n

n3

)

=
∞∑
n=1

(−1)n+1

n
−

∞∑
n=1

(−1)n+1

n2

= ln(2)− π2

12
≈ −0.1293.

This is illustrated in Figure 8.14(a).

2. This looks very similar to the series that involves e in Key Idea 31. Note,
however, that the series given in this example starts with n = 1 and not
n = 0. The first term of the series in the Key Idea is 1/0! = 1, so we will
subtract this from our result below:

∞∑
n=1

1000
n!

= 1000 ·
∞∑
n=1

1
n!

= 1000 · (e− 1) ≈ 1718.28.

This is illustrated in Figure 8.14(b). The graph shows how this parƟcular
series converges very rapidly.

3. The denominators in each term are perfect squares; we are adding
∞∑
n=4

1
n2

(note we start with n = 4, not n = 1). This series will converge. Using the
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8.2 Infinite Series

formula from Key Idea 31, we have the following:

∞∑
n=1

1
n2

=
3∑

n=1

1
n2

+
∞∑
n=4

1
n2

∞∑
n=1

1
n2

−
3∑

n=1

1
n2

=
∞∑
n=4

1
n2

π2

6
−
(
1
1
+

1
4
+

1
9

)
=

∞∑
n=4

1
n2

π2

6
− 49

36
=

∞∑
n=4

1
n2

0.2838 ≈
∞∑
n=4

1
n2

...

It may take a while before one is comfortable with this statement, whose
truth lies at the heart of the study of infinite series: it is possible that the sum of
an infinite list of nonzero numbers is finite. We have seen this repeatedly in this
secƟon, yet it sƟll may “take some geƫng used to.”

As one contemplates the behavior of series, a few facts become clear.

1. In order to add an infinite list of nonzero numbers and get a finite result,
“most” of those numbers must be “very near” 0.

2. If a series diverges, it means that the sum of an infinite list of numbers is
not finite (it may approach±∞ or it may oscillate), and:

(a) The series will sƟll diverge if the first term is removed.

(b) The series will sƟll diverge if the first 10 terms are removed.

(c) The series will sƟll diverge if the first 1, 000, 000 terms are removed.

(d) The series will sƟll diverge if any finite number of terms from any-
where in the series are removed.

These concepts are very important and lie at the heart of the next two the-
orems.
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..
Theorem 63 nth–Term Test for Convergence/Divergence

Consider the series
∞∑
n=1

an.

1. If
∞∑
n=1

an converges, then lim
n→∞

an = 0.

2. If lim
n→∞

an ̸= 0, then
∞∑
n=1

an diverges.

Note that the two statements in Theorem 63 are really the same. In order
to converge, the limit of the terms of the sequence must approach 0; if they do
not, the series will not converge.

Looking back, we can apply this theorem to the series in Example 235. In
that example, the nth terms of both sequences do not converge to 0, therefore
we can quickly conclude that each series diverges.

Important! This theorem does not state that if lim
n→∞

an = 0 then
∞∑
n=1

an

converges. The standard example of this is the Harmonic Series, as given in Key
Idea 31. The Harmonic Sequence, {1/n}, converges to 0; the Harmonic Series,
∞∑
n=1

1/n, diverges.

..
Theorem 64 Infinite Nature of Series

The convergence or divergence remains unchanged by the addiƟon or
subtracƟon of any finite number of terms. That is:

1. A divergent series will remain divergent with the addiƟon or sub-
tracƟon of any finite number of terms.

2. A convergent series will remain convergent with the addiƟon or
subtracƟon of any finite number of terms. (Of course, the sumwill
likely change.)

Consider once more the Harmonic Series
∞∑
n=1

1
n
which diverges; that is, the
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8.2 Infinite Series

sequence of parƟal sums {Sn} grows (very, very slowly) without bound. One
might think that by removing the “large” terms of the sequence that perhaps
the series will converge. This is simply not the case. For instance, the sum of the
first 10million terms of the Harmonic Series is about 16.7. Removing the first 10
million terms from the Harmonic Series changes the nth parƟal sums, effecƟvely
subtracƟng 16.7 from the sum. However, a sequence that is growing without
bound will sƟll grow without bound when 16.7 is subtracted from it.

The equaƟons below illustrate this. The first line shows the infinite sum of
the Harmonic Series split into the sum of the first 10 million terms plus the sum
of “everything else.” The next equaƟon shows us subtracƟng these first 10 mil-
lion terms from both sides. The final equaƟon employs a bit of “psuedo–math”:
subtracƟng 16.7 from “infinity” sƟll leaves one with “infinity.”

∞∑
n=1

1
n =

10,000,000∑
n=1

1
n

+

∞∑
n=10,000,001

1
n

∞∑
n=1

1
n −

10,000,000∑
n=1

1
n

=

∞∑
n=10,000,001

1
n

∞ − 16.7 = ∞
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Exercises 8.2
Terms and Concepts
1. Use your own words to describe how sequences and series

are related.

2. Use your own words to define a parƟal sum.

3. Given a series
∞∑
n=1

an, describe the two sequences related

to the series that are important.

4. Use your own words to explain what a geometric series is.

5. T/F: If {an} is convergent, then
∞∑
n=1

an is also convergent.

Problems

In Exercises 6 – 13, a series
∞∑
n=1

an is given.

(a) Give the first 5 parƟal sums of the series.

(b) Give a graph of the first 5 terms of an and Sn on the
same axes.

6.
∞∑
n=1

(−1)n

n

7.
∞∑
n=1

1
n2

8.
∞∑
n=1

cos(πn)

9.
∞∑
n=1

n

10.
∞∑
n=1

1
n!

11.
∞∑
n=1

1
3n

12.
∞∑
n=1

(
− 9
10

)n

13.
∞∑
n=1

(
1
10

)n

In Exercises 14 – 19, use Theorem 63 to show the given series
diverges.

14.
∞∑
n=1

3n2

n(n+ 2)

15.
∞∑
n=1

2n

n2

16.
∞∑
n=1

n!
10n

17.
∞∑
n=1

5n − n5

5n + n5

18.
∞∑
n=1

2n + 1
2n+1

19.
∞∑
n=1

(
1+

1
n

)n

In Exercises 20 – 29, state whether the given series converges
or diverges.

20.
∞∑
n=1

1
n5

21.
∞∑
n=0

1
5n

22.
∞∑
n=0

6n

5n

23.
∞∑
n=1

n−4

24.
∞∑
n=1

√
n

25.
∞∑
n=1

10
n!

26.
∞∑
n=1

(
1
n!

+
1
n

)

27.
∞∑
n=1

2
(2n+ 8)2

28.
∞∑
n=1

1
2n

29.
∞∑
n=1

1
2n− 1

In Exercises 30 – 44, a series is given.
(a) Find a formula for Sn, the nth parƟal sum of the series.
(b) Determine whether the series converges or diverges.

If it converges, state what it converges to.

30.
∞∑
n=0

1
4n

31. 13 + 23 + 33 + 43 + · · ·

32.
∞∑
n=1

(−1)nn

33.
∞∑
n=0

5
2n
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34.
∞∑
n=1

e−n

35. 1− 1
3
+

1
9
− 1

27
+

1
81

+ · · ·

36.
∞∑
n=1

1
n(n+ 1)

37.
∞∑
n=1

3
n(n+ 2)

38.
∞∑
n=1

1
(2n− 1)(2n+ 1)

39.
∞∑
n=1

ln
(

n
n+ 1

)

40.
∞∑
n=1

2n+ 1
n2(n+ 1)2

41.
1

1 · 4 +
1

2 · 5 +
1

3 · 6 +
1

4 · 7 + · · ·

42. 2+
(
1
2
+

1
3

)
+

(
1
4
+

1
9

)
+

(
1
8
+

1
27

)
+ · · ·

43.
∞∑
n=2

1
n2 − 1

44.
∞∑
n=0

(
sin 1

)n
45. Break theHarmonic Series into the sumof the odd and even

terms:
∞∑
n=1

1
n
=

∞∑
n=1

1
2n− 1

+

∞∑
n=1

1
2n

.

The goal is to show that each of the series on the right di-
verge.

(a) Show why
∞∑
n=1

1
2n− 1

>

∞∑
n=1

1
2n

.

(Compare each nth parƟal sum.)

(b) Show why
∞∑
n=1

1
2n− 1

< 1+
∞∑
n=1

1
2n

(c) Explain why (a) and (b) demonstrate that the series
of odd terms is convergent, if, and only if, the series
of even terms is also convergent. (That is, show both
converge or both diverge.)

(d) Explain why knowing the Harmonic Series is diver-
gent determines that the even and odd series are also
divergent.

46. Show the series
∞∑
n=1

n
(2n− 1)(2n+ 1)

diverges.

409



Note: Theorem 65 does not state that
the integral and the summaƟon have the
same value.
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Figure 8.15: IllustraƟng the truth of the
Integral Test.

Chapter 8 Sequences and Series

8.3 Integral and Comparison Tests

Knowing whether or not a series converges is very important, especially when
we discuss Power Series in SecƟon 8.6. Theorems 60 and 61 give criteria for
when Geometric and p- series converge, and Theorem 63 gives a quick test to
determine if a series diverges. There are many important series whose conver-
gence cannot be determined by these theorems, though, so we introduce a set
of tests that allow us to handle a broad range of series. We start with the Inte-
gral Test.

Integral Test

We stated in SecƟon 8.1 that a sequence {an} is a funcƟon a(n) whose do-
main isN, the set of natural numbers. If we can extend a(n) toR, the real num-
bers, and it is both posiƟve and decreasing on [1,∞), then the convergence of
∞∑
n=1

an is the same as
∫ ∞

1
a(x) dx.

..
Theorem 65 Integral Test

Let a sequence {an} be defined by an = a(n), where a(n) is conƟnuous,

posiƟve and decreasing on [1,∞). Then
∞∑
n=1

an converges, if, and only if,∫ ∞

1
a(x) dx converges.

We can demonstrate the truth of the Integral Test with two simple graphs.
In Figure 8.15(a), the height of each rectangle is a(n) = an for n = 1, 2, . . .,
and clearly the rectangles enclose more area than the area under y = a(x).
Therefore we can conclude that∫ ∞

1
a(x) dx <

∞∑
n=1

an. (8.1)

In Figure 8.15(b), we draw rectangles under y = a(x) with the Right-Hand rule,
starƟng with n = 2. This Ɵme, the area of the rectangles is less than the area

under y = a(x), so
∞∑
n=2

an <

∫ ∞

1
a(x) dx. Note how this summaƟon starts

with n = 2; adding a1 to both sides lets us rewrite the summaƟon starƟng with
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Figure 8.16: Ploƫng the sequence and
series in Example 241.

8.3 Integral and Comparison Tests

n = 1:
∞∑
n=1

an < a1 +
∫ ∞

1
a(x) dx. (8.2)

Combining EquaƟons (8.1) and (8.2), we have
∞∑
n=1

an < a1 +
∫ ∞

1
a(x) dx < a1 +

∞∑
n=1

an. (8.3)

From EquaƟon (8.3) we can make the following two statements:

1. If
∞∑
n=1

an diverges, so does
∫ ∞

1
a(x)dx (because

∞∑
n=1

an < a1+
∫ ∞

1
a(x)dx)

2. If
∞∑
n=1

an converges, so does
∫ ∞

1
a(x)dx (because

∫ ∞

1
a(x)dx <

∞∑
n=1

an.)

Therefore the series and integral either both converge or both diverge. Theorem
64 allows us to extend this theorem to series where an is posiƟve and decreasing
on [b,∞) for some b > 1.

.. Example 241 ..Using the Integral Test

Determine the convergence of
∞∑
n=1

ln n
n2

. (The terms of the sequence {an} =

{ln n/n2} and the nth parƟal sums are given in Figure 8.16.)

SÊ½çã®ÊÄ Applying the Integral Test, we test the convergenceof
∫ ∞

1

ln x
x2

dx.

IntegraƟng this improper integral requires the use of IntegraƟon by Parts, with
u = ln x and dv = 1/x2 dx.∫ ∞

1

ln x
x2

dx = lim
b→∞

∫ b

1

ln x
x2

dx

= lim
b→∞

−1
x
ln x
∣∣∣b
1
+

∫ b

1

1
x2

dx

= lim
b→∞

−1
x
ln x− 1

x

∣∣∣b
1

= lim
b→∞

1− 1
b
− ln b

b
. Apply L’Hôpital’s Rule:

= 1.

Since
∫ ∞

1

ln x
x2

dx converges, so does
∞∑
n=1

ln n
n2

.
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Note how the sequence {an} is not strictly decreasing; it increases from
n = 1 to n = 2. However, this does not keep us from applying the Integral
Test as the sequence in posiƟve and decreasing on [2,∞). ...

Theorem 61 was given without jusƟficaƟon, staƟng that the general p-series
∞∑
n=1

1
(an+ b)p

converges if, and only if, p > 1. In the following example, we

prove this to be true by applying the Integral Test.

.. Example 242 Using the Integral Test to establish Theorem 61.

Use the Integral Test to prove that
∞∑
n=1

1
(an+ b)p

converges if, and only if, p > 1.

SÊ½çã®ÊÄ Consider the integral
∫ ∞

1

1
(ax+ b)p

dx; assuming p ̸= 1,

∫ ∞

1

1
(ax+ b)p

dx = lim
c→∞

∫ c

1

1
(ax+ b)p

dx

= lim
c→∞

1
a(1− p)

(ax+ b)1−p
∣∣∣c
1

= lim
c→∞

1
a(1− p)

(
(ac+ b)1−p − (a+ b)1−p).

This limit converges if, and only if, p > 1. It is easy to show that the integral also
diverges in the case of p = 1. (This result is similar to the work preceding Key
Idea 21.)

Therefore
∞∑
n=1

1
(an+ b)p

converges if, and only if, p > 1. ..

We consider two more convergence tests in this secƟon, both comparison
tests. That is, we determine the convergence of one series by comparing it to
another series with known convergence.
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Note: A sequence {an} is a posiƟve
sequence if an > 0 for all n.

Because of Theorem64, any theorem that
relies on a posiƟve sequence sƟll holds
true when an > 0 for all but a finite num-
ber of values of n.

8.3 Integral and Comparison Tests

Direct Comparison Test

..
Theorem 66 Direct Comparison Test

Let {an} and {bn} be posiƟve sequences where an ≤ bn for all n ≥ N,
for some N ≥ 1.

1. If
∞∑
n=1

bn converges, then
∞∑
n=1

an converges.

2. If
∞∑
n=1

an diverges, then
∞∑
n=1

bn diverges.

.. Example 243 Applying the Direct Comparison Test

Determine the convergence of
∞∑
n=1

1
3n + n2

.

SÊ½çã®ÊÄ This series is neither a geometric or p-series, but seems re-
lated. We predict it will converge, so we look for a series with larger terms that
converges. (Note too that the Integral Test seems difficult to apply here.)

Since 3n < 3n + n2,
1
3n

>
1

3n + n2
for all n ≥ 1. The series

∞∑
n=1

1
3n

is a

convergent geometric series; by Theorem 66,
∞∑
n=1

1
3n + n2

converges. ..

.. Example 244 Applying the Direct Comparison Test

Determine the convergence of
∞∑
n=1

1
n− ln n

.

SÊ½çã®ÊÄ We know the Harmonic Series
∞∑
n=1

1
n
diverges, and it seems

that the given series is closely related to it, hence we predict it will diverge.

Since n ≥ n− ln n for all n ≥ 1,
1
n
≤ 1

n− ln n
for all n ≥ 1.

The Harmonic Series diverges, so we conclude that
∞∑
n=1

1
n− ln n

diverges as

well. ..
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The concept of direct comparison is powerful and oŌen relaƟvely easy to
apply. PracƟce helps one develop the necessary intuiƟon to quickly pick a proper
series with which to compare. However, it is easy to construct a series for which
it is difficult to apply the Direct Comparison Test.

Consider
∞∑
n=1

1
n+ ln n

. It is very similar to the divergent series given in Ex-

ample 244. We suspect that it also diverges, as
1
n
≈ 1

n+ ln n
for large n. How-

ever, the inequality that we naturally want to use “goes the wrong way”: since

n ≤ n+ ln n for all n ≥ 1,
1
n
≥ 1

n+ ln n
for all n ≥ 1. The given series has terms

less than the terms of a divergent series, and we cannot conclude anything from
this.

Fortunately, we can apply another test to the given series to determine its
convergence.

Limit Comparison Test

..
Theorem 67 Limit Comparison Test

Let {an} and {bn} be posiƟve sequences.

1. If lim
n→∞

an
bn

= L, where L is a posiƟve real number, then
∞∑
n=1

an and

∞∑
n=1

bn either both converge or both diverge.

2. If lim
n→∞

an
bn

= 0, then if
∞∑
n=1

bn converges, then so does
∞∑
n=1

an.

3. If lim
n→∞

an
bn

= ∞, then if
∞∑
n=1

bn diverges, then so does
∞∑
n=1

an.

It is helpful to remember that when using Theorem 67, the terms of the
series with known convergence go in the denominator of the fracƟon.

We use the Limit Comparison Test in the next example to examine the series
∞∑
n=1

1
n+ ln n

which moƟvated this new test.
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.. Example 245 Applying the Limit Comparison Test

Determine the convergence of
∞∑
n=1

1
n+ ln n

using the Limit Comparison Test.

SÊ½çã®ÊÄ We compare the terms of
∞∑
n=1

1
n+ ln n

to the terms of the

Harmonic Sequence
∞∑
n=1

1
n
:

lim
n→∞

1/(n+ ln n)
1/n

= lim
n→∞

n
n+ ln n

= 1 (aŌer applying L’Hôpital’s Rule).

Since the Harmonic Series diverges, we conclude that
∞∑
n=1

1
n+ ln n

diverges as

well. ..

.. Example 246 Applying the Limit Comparison Test

Determine the convergence of
∞∑
n=1

1
3n − n2

SÊ½çã®ÊÄ This series is similar to the one in Example 243, but now we
are considering “3n − n2” instead of “3n + n2.” This difference makes applying
the Direct Comparison Test difficult.

Instead, weuse the Limit Comparison Test and comparewith the series
∞∑
n=1

1
3n

:

lim
n→∞

1/(3n − n2)
1/3n

= lim
n→∞

3n

3n − n2

= 1 (aŌer applying L’Hôpital’s Rule twice).

We know
∞∑
n=1

1
3n

is a convergent geometric series, hence
∞∑
n=1

1
3n − n2

converges

as well. ..

As menƟoned before, pracƟce helps one develop the intuiƟon to quickly
choose a series with which to compare. A general rule of thumb is to pick a
series based on the dominant term in the expression of {an}. It is also helpful
to note that factorials dominate exponenƟals, which dominate algebraic func-
Ɵons (e.g., polynomials), which dominate logarithms. In the previous example,

Notes:
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the dominant term of
1

3n − n2
was 3n, so we compared the series to

∞∑
n=1

1
3n

. It is

hard to apply the Limit Comparison Test to series containing factorials, though,
as we have not learned how to apply L’Hôpital’s Rule to n!.

.. Example 247 Applying the Limit Comparison Test

Determine the convergence of
∞∑
n=1

√
x+ 3

x2 − x+ 1
.

SÊ½çã®ÊÄ We naïvely aƩempt to apply the rule of thumb given above
and note that the dominant term in the expression of the series is 1/x2. Knowing

that
∞∑
n=1

1
n2

converges, we aƩempt to apply the Limit Comparison Test:

lim
n→∞

(
√
x+ 3)/(x2 − x+ 1)

1/x2
= lim

n→∞

x2(
√
x+ 3)

x2 − x+ 1
= ∞ (Apply L’Hôpital’s Rule).

Theorem 67 part (3) only applies when
∞∑
n=1

bn diverges; in our case, it con-

verges. UlƟmately, our test has not revealed anything about the convergence
of our series.

The problem is that we chose a poor series with which to compare. Since
the numerator and denominator of the terms of the series are both algebraic
funcƟons, we should have compared our series to the dominant term of the
numerator divided by the dominant term of the denominator.

The dominant term of the numerator is x1/2 and the dominant term of the
denominator is x2. Thus we should compare the terms of the given series to
x1/2/x2 = 1/x3/2:

lim
n→∞

(
√
x+ 3)/(x2 − x+ 1)

1/x3/2
= lim

n→∞

x3/2(
√
x+ 3)

x2 − x+ 1
= 1 (Applying L’Hôpital’s Rule).

Since the p-series
∞∑
n=1

1
x3/2

converges, we conclude that
∞∑
n=1

√
x+ 3

x2 − x+ 1
con-

verges as well. ..

Notes:
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Exercises 8.3
Terms and Concepts
1. In order to apply the Integral Test to a sequence {an}, the

funcƟon a(n) = an must be , and .

2. T/F: The Integral Test can be used to determine the sum of
a convergent series.

3. What test(s) in this secƟon do not work well with factori-
als?

4. Suppose
∞∑
n=0

an is convergent, and there are sequences

{bn} and {cn} such that bn ≤ an ≤ cn for all n. What

can be said about the series
∞∑
n=0

bn and
∞∑
n=0

cn?

Problems
In Exercises 5 – 12, use the Integral Test to determine the con-
vergence of the given series.

5.
∞∑
n=1

1
2n

6.
∞∑
n=1

1
n4

7.
∞∑
n=1

n
n2 + 1

8.
∞∑
n=2

1
n ln n

9.
∞∑
n=1

1
n2 + 1

10.
∞∑
n=2

1
n(ln n)2

11.
∞∑
n=1

n
2n

12.
∞∑
n=1

ln n
n3

In Exercises 13 – 22, use the Direct Comparison Test to deter-
mine the convergence of the given series; state what series is
used for comparison.

13.
∞∑
n=1

1
n2 + 3n− 5

14.
∞∑
n=1

1
4n + n2 − n

15.
∞∑
n=1

ln n
n

16.
∞∑
n=1

1
n! + n

17.
∞∑
n=2

1√
n2 − 1

18.
∞∑
n=5

1√
n− 2

19.
∞∑
n=1

n2 + n+ 1
n3 − 5

20.
∞∑
n=1

2n

5n + 10

21.
∞∑
n=2

n
n2 − 1

22.
∞∑
n=2

1
n2 ln n

In Exercises 23 – 32, use the Limit Comparison Test to deter-
mine the convergence of the given series; state what series is
used for comparison.

23.
∞∑
n=1

1
n2 − 3n+ 5

24.
∞∑
n=1

1
4n − n2

25.
∞∑
n=4

ln n
n− 3

26.
∞∑
n=1

1√
n2 + n

27.
∞∑
n=1

1
n+

√
n

28.
∞∑
n=1

n− 10
n2 + 10n+ 10

29.
∞∑
n=1

sin
(
1/n
)

30.
∞∑
n=1

n+ 5
n3 − 5

31.
∞∑
n=1

√
n+ 3

n2 + 17

32.
∞∑
n=1

1√
n+ 100
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In Exercises 33 – 40, determine the convergence of the given
series. State the test used; more than one test may be appro-
priate.

33.
∞∑
n=1

n2

2n

34.
∞∑
n=1

1
(2n+ 5)3

35.
∞∑
n=1

n!
10n

36.
∞∑
n=1

ln n
n!

37.
∞∑
n=1

1
3n + n

38.
∞∑
n=1

n− 2
10n+ 5

39.
∞∑
n=1

3n

n3

40.
∞∑
n=1

cos(1/n)√
n

41. Given that
∞∑
n=1

an converges, state which of the following

series converges, may converge, or does not converge.

(a)
∞∑
n=1

an
n

(b)
∞∑
n=1

anan+1

(c)
∞∑
n=1

(an)2

(d)
∞∑
n=1

nan

(e)
∞∑
n=1

1
an
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Note: Theorem 64 allows us to apply the
RaƟo Test to series where {an} is posiƟve
for all but a finite number of terms.

8.4 RaƟo and Root Tests

8.4 RaƟo and Root Tests

The nth–Term Test of Theorem 63 states that in order for a series
∞∑
n=1

an to con-

verge, lim
n→∞

an = 0. That is, the terms of {an}must get very small. Not onlymust
the terms approach 0, theymust approach 0 “fast enough”: while lim

n→∞
1/n = 0,

the Harmonic Series
∞∑
n=1

1
n
diverges as the terms of {1/n} do not approach 0

“fast enough.”
The comparison tests of the previous secƟondetermine convergenceby com-

paring terms of a series to terms of another series whose convergence is known.
This secƟon introduces the RaƟo and Root Tests, which determine convergence
by analyzing the terms of a series to see if they approach 0 “fast enough.”

RaƟo Test

..
Theorem 68 RaƟo Test

Let {an} be a posiƟve sequence where lim
n→∞

an+1

an
= L.

1. If L < 1, then
∞∑
n=1

an converges.

2. If L > 1 or L = ∞, then
∞∑
n=1

an diverges.

3. If L = 1, the RaƟo Test is inconclusive.

The principle of the RaƟo Test is this: if lim
n→∞

an+1

an
= L < 1, then for large n,

each term of {an} is significantly smaller than its previous term which is enough
to ensure convergence.

.. Example 248 ..Applying the RaƟo Test
Use the RaƟo Test to determine the convergence of the following series:

1.
∞∑
n=1

2n

n!
2.

∞∑
n=1

3n

n3
3.

∞∑
n=1

1
n2 + 1

.

Notes:

419



Chapter 8 Sequences and Series

SÊ½çã®ÊÄ

1.
∞∑
n=1

2n

n!
:

lim
n→∞

2n+1/(n+ 1)!
2n/n!

= lim
n→∞

2n+1n!
2n(n+ 1)!

= lim
n→∞

2
n+ 1

= 0.

Since the limit is 0 < 1, by the RaƟo Test
∞∑
n=1

2n

n!
converges.

2.
∞∑
n=1

3n

n3
:

lim
n→∞

3n+1/(n+ 1)3

3n/n3
= lim

n→∞

3n+1n3

3n(n+ 1)3

= lim
n→∞

3n3

(n+ 1)3

= 3.

Since the limit is 3 > 1, by the RaƟo Test
∞∑
n=1

3n

n3
diverges.

3.
∞∑
n=1

1
n2 + 1

:

lim
n→∞

1/
(
(n+ 1)2 + 1

)
1/(n2 + 1)

= lim
n→∞

n2 + 1
(n+ 1)2 + 1

= 1.

Since the limit is 1, the RaƟo Test is inconclusive. We can easily show this
series converges using the Direct or Limit Comparison Tests, with each

comparing to the series
∞∑
n=1

1
n2

.

...

Notes:
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8.4 RaƟo and Root Tests

The RaƟo Test is not effecƟve when the terms of a series only contain al-
gebraic funcƟons (e.g., polynomials). It is most effecƟve when the terms con-
tain some factorials or exponenƟals. The previous example also reinforces our
developing intuiƟon: factorials dominate exponenƟals, which dominate alge-
braic funcƟons, which dominate logarithmic funcƟons. In Part 1 of the example,
the factorial in the denominator dominated the exponenƟal in the numerator,
causing the series to converge. In Part 2, the exponenƟal in the numerator dom-
inated the algebraic funcƟon in the denominator, causing the series to diverge.

While we have used factorials in previous secƟons, we have not explored
them closely and one is likely to not yet have a strong intuiƟve sense for how
they behave. The following example gives more pracƟce with factorials.

.. Example 249 Applying the RaƟo Test

Determine the convergence of
∞∑
n=1

n!n!
(2n)!

.

SÊ½çã®ÊÄ Before we begin, be sure to note the difference between
(2n)! and 2n!. When n = 4, the former is 8! = 8 · 7 · . . . · 2 · 1 = 40, 320,
whereas the laƩer is 2(4 · 3 · 2 · 1) = 48.

Applying the RaƟo Test:

lim
n→∞

(n+ 1)!(n+ 1)!/
(
2(n+ 1)

)
!

n!n!/(2n)!
= lim

n→∞

(n+ 1)!(n+ 1)!(2n)!
n!n!(2n+ 2)!

NoƟng that (2n+ 2)! = (2n+ 2) · (2n+ 1) · (2n)!, we have

= lim
n→∞

(n+ 1)(n+ 1)
(2n+ 2)(2n+ 1)

= 1/4.

Since the limit is 1/4 < 1, by the RaƟo Test we conclude
∞∑
n=1

n!n!
(2n)!

converges. ..

Root Test

The final test we introduce is the Root Test, which works parƟcularly well on
series where each term is raised to a power, and does not work well with terms
containing factorials.

Notes:
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Note: Theorem 64 allows us to apply the
Root Test to series where {an} is posiƟve
for all but a finite number of terms.

Chapter 8 Sequences and Series

..
Theorem 69 Root Test

Let {an} be a posiƟve sequence, and let lim
n→∞

(an)1/n = L.

1. If L < 1, then
∞∑
n=1

an converges.

2. If L > 1 or L = ∞, then
∞∑
n=1

an diverges.

3. If L = 1, the Root Test is inconclusive.

.. Example 250 Applying the Root Test
Determine the convergence of the following series using the Root Test:

1.
∞∑
n=1

(
3n+ 1
5n− 2

)n

2.
∞∑
n=1

n4

(ln n)n
3.

∞∑
n=1

2n

n2
.

SÊ½çã®ÊÄ

1. lim
n→∞

((
3n+ 1
5n− 2

)n)1/n

= lim
n→∞

3n+ 1
5n− 2

=
3
5
.

Since the limit is less than 1, we conclude the series converges. Note: it is
difficult to apply the RaƟo Test to this series.

2. lim
n→∞

(
n4

(ln n)n

)1/n

= lim
n→∞

(
n1/n

)4
ln n

.

As n grows, the numerator approaches 1 (apply L’Hôpital’s Rule) and the
denominator grows to infinity. Thus

lim
n→∞

(
n1/n

)4
ln n

= 0.

Since the limit is less than 1, we conclude the series converges.

3. lim
n→∞

(
2n

n2

)1/n

= lim
n→∞

2(
n1/n

)2 = 2.

Since this is greater than 2, we conclude the series diverges...

Notes:
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Exercises 8.4
Terms and Concepts
1. The RaƟo Test is not effecƟvewhen the terms of a sequence

only contain funcƟons.

2. The RaƟo Test is most effecƟve when the terms of a se-
quence contains and/or funcƟons.

3. What three convergence tests do not work well with terms
containing factorials?

4. The Root Test works parƟcularly well on series where each
term is to a .

Problems
In Exercises 5 – 14, determine the convergence of the given
series using the RaƟo Test. If the RaƟo Test is inconclusive,
state so and determine convergence with another test.

5.
∞∑
n=0

2n
n!

6.
∞∑
n=0

5n − 3n
4n

7.
∞∑
n=0

n!10n

(2n)!

8.
∞∑
n=1

5n + n4

7n + n2

9.
∞∑
n=1

1
n

10.
∞∑
n=1

1
3n3 + 7

11.
∞∑
n=1

10 · 5n

7n − 3

12.
∞∑
n=1

n ·
(
3
5

)n

13.
∞∑
n=1

2 · 4 · 6 · 8 · · · 2n
3 · 6 · 9 · 12 · · · 3n

14.
∞∑
n=1

n!
5 · 10 · 15 · · · (5n)

In Exercises 15 – 24, determine the convergence of the given
series using the Root Test. If the Root Test is inconclusive,
state so and determine convergence with another test.

15.
∞∑
n=1

(
2n+ 5
3n+ 11

)n

16.
∞∑
n=1

(
.9n2 − n− 3
n2 + n+ 3

)n

17.
∞∑
n=1

2nn2

3n

18.
∞∑
n=1

1
nn

19.
∞∑
n=1

3n

n22n+1

20.
∞∑
n=1

4n+7

7n

21.
∞∑
n=1

(
n2 − n
n2 + n

)n

22.
∞∑
n=1

(
1
n
− 1

n2

)n

23.
∞∑
n=1

1(
ln n
)n

24.
∞∑
n=1

n2(
ln n
)n

In Exercises 25 – 34, determine the convergence of the given
series. State the test used; more than one test may be appro-
priate.

25.
∞∑
n=1

n2 + 4n− 2
n3 + 4n2 − 3n+ 7

26.
∞∑
n=1

n44n

n!

27.
∞∑
n=1

n2

3n + n

28.
∞∑
n=1

3n

nn

29.
∞∑
n=1

n√
n2 + 4n+ 1

30.
∞∑
n=1

n!n!n!
(3n)!

31.
∞∑
n=1

1
ln n

32.
∞∑
n=1

(
n+ 2
n+ 1

)n

33.
∞∑
n=1

n3(
ln n
)n

34.
∞∑
n=1

(
1
n
− 1

n+ 2

)
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Chapter 8 Sequences and Series

8.5 AlternaƟng Series and Absolute Convergence

All of the series convergence tests we have used require that the underlying
sequence {an} be a posiƟve sequence. (We can relax this with Theorem 64 and
state that there must be an N > 0 such that an > 0 for all n > N; that is, {an} is
posiƟve for all but a finite number of values of n.)

In this secƟon we explore series whose summaƟon includes negaƟve terms.
We start with a very specific form of series, where the terms of the summaƟon
alternate between being posiƟve and negaƟve.

..
DefiniƟon 34 AlternaƟng Series

Let {an} be a posiƟve sequence. An alternaƟng series is a series of either
the form

∞∑
n=1

(−1)nan or
∞∑
n=1

(−1)n+1an.

Recall the termsofHarmonic Series come from theHarmonic Sequence {an} =
{1/n}. An important alternaƟng series is the AlternaƟng Harmonic Series:

∞∑
n=1

(−1)n+1 1
n
= 1− 1

2
+

1
3
− 1

4
+

1
5
− 1

6
+ · · ·

Geometric Series can also be alternaƟng series when r < 0. For instance, if
r = −1/2, the geometric series is

∞∑
n=0

(
−1
2

)n

= 1− 1
2
+

1
4
− 1

8
+

1
16

− 1
32

+ · · ·

Theorem 60 states that geometric series converge when |r| < 1 and gives

the sum:
∞∑
n=0

rn =
1

1− r
. When r = −1/2 as above, we find

∞∑
n=0

(
−1
2

)n

=
1

1− (−1/2)
=

1
3/2

=
2
3
.

Apowerful convergence theoremexists for other alternaƟng series thatmeet
a few condiƟons.

Notes:
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Figure 8.17: IllustraƟng convergence with
the AlternaƟng Series Test.

8.5 AlternaƟng Series and Absolute Convergence

..
Theorem 70 AlternaƟng Series Test

Let {an} be a posiƟve, decreasing sequence where lim
n→∞

an = 0. Then

∞∑
n=1

(−1)nan and
∞∑
n=1

(−1)n+1an

converge.

The basic idea behind Theorem 70 is illustrated in Figure 8.17. A posiƟve,
decreasing sequence {an} is shown along with the parƟal sums

Sn =
n∑

i=1

(−1)i+1ai = a1 − a2 + a3 − a4 + · · ·+ (−1)nan.

Because{an} is decreasing, the amount bywhich Sn bounces up/downdecreases.
Moreover, the odd terms of Sn form a decreasing, bounded sequence, while the
even terms of Sn form an increasing, bounded sequence. Since bounded, mono-
tonic sequences converge (see Theorem 59) and the terms of {an} approach 0,
one can show the odd and even terms of Sn converge to the same common limit
L, the sum of the series.

.. Example 251 ..Applying the AlternaƟng Series Test
Determine if the AlternaƟng Series Test applies to each of the following series.

1.
∞∑
n=1

(−1)n+1 1
n

2.
∞∑
n=1

(−1)n
ln n
n

3.
∞∑
n=1

(−1)n+1 | sin n|
n2

SÊ½çã®ÊÄ

1. This is the AlternaƟng Harmonic Series as seen previously. The underlying
sequence is {an} = {1/n}, which is posiƟve, decreasing, and approaches
0 as n → ∞. Therefore we can apply the AlternaƟng Series Test and
conclude this series converges.
While the test does not state what the series converges to, we will see

later that
∞∑
n=1

(−1)n+1 1
n
= ln 2.

2. The underlying sequence is {an} = {ln n/n}. This is posiƟve and ap-
proaches 0 as n → ∞ (use L’Hôpital’s Rule). However, the sequence is not
decreasing for all n. It is straighƞorward to compute a1 = 0, a2 ≈ 0.347,

Notes:
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Chapter 8 Sequences and Series

a3 ≈ 0.366, and a4 ≈ 0.347: the sequence is increasing for at least the
first 3 terms.

We do not immediately conclude that we cannot apply the AlternaƟng
Series Test. Rather, consider the long–term behavior of {an}. TreaƟng
an = a(n) as a conƟnuous funcƟon of n defined on (1,∞), we can take
its derivaƟve:

a′(n) =
1− ln n

n2
.

The derivaƟve is negaƟve for all n ≥ 3 (actually, for all n > e), mean-
ing a(n) = an is decreasing on (3,∞). We can apply the AlternaƟng
Series Test to the series when we start with n = 3 and conclude that
∞∑
n=3

(−1)n
ln n
n

converges; adding the terms with n = 1 and n = 2 do not

change the convergence (i.e., we apply Theorem 64).

The important lesson here is that as before, if a series fails to meet the
criteria of the AlternaƟng Series Test on only a finite number of terms, we
can sƟll apply the test.

3. The underlying sequence is {an} = | sin n|/n. This sequence is posiƟve
and approaches 0 as n → ∞. However, it is not a decreasing sequence;
the value of | sin n| oscillates between 0 and 1 as n → ∞. We cannot
remove a finite number of terms to make {an} decreasing, therefore we
cannot apply the AlternaƟng Series Test.

Keep in mind that this does not mean we conclude the series diverges;
in fact, it does converge. We are just unable to conclude this based on
Theorem 70....

Key Idea 31 gives the sum of some important series. Two of these are

∞∑
n=1

1
n2

=
π2

6
≈ 1.64493 and

∞∑
n=1

(−1)n+1

n2
=

π2

12
≈ 0.82247.

These two series converge to their sums at different rates. To be accurate to
two places aŌer the decimal, we need 202 terms of the first series though only
13 of the second. To get 3 places of accuracy, we need 1069 terms of the first
series though only 33 of the second. Why is it that the second series converges
so much faster than the first?

While there are many factors involved when studying rates of convergence,
the alternaƟng structure of an alternaƟng series gives us a powerful tool when
approximaƟng the sum of a convergent series.

Notes:
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8.5 AlternaƟng Series and Absolute Convergence

..
Theorem 71 The AlternaƟng Series ApproximaƟon Theorem

Let {an} be a sequence that saƟsfies the hypotheses of the AlternaƟng
Series Test, and let Sn and L be the nth parƟal sums and sum, respecƟvely,

of either
∞∑
n=1

(−1)nan or
∞∑
n=1

(−1)n+1an. Then

1. |Sn − L| < an+1, and

2. L is between Sn and Sn+1.

Part 1 of Theorem 71 states that the nth parƟal sum of a convergent alternat-
ing series will be within an+1 of its total sum. Consider the alternaƟng series

we looked at before the statement of the theorem,
∞∑
n=1

(−1)n+1

n2
. Since a14 =

1/142 ≈ 0.0051, we know that S13 is within 0.0051 of the total sum. That is, we
know S13 is accurate to at least 1 place aŌer the decimal. (The “5” in the third
place aŌer the decimal could cause a carry meaning S13 isn’t accurate to two
places aŌer the decimal; in this parƟcular case, that doesn’t happen.)

Moreover, Part 2 of the theorem states that since S13 ≈ 0.8252 and S14 ≈
0.8201, we know the sum L lies between 0.8201 and 0.8252, assuring us that
S13 is indeed accurate to two decimal places.

Some alternaƟng series converge slowly. In Example 251 we determined the

series
∞∑
n=1

(−1)n+1 ln n
n

converged. With n = 1001, we find ln n/n ≈ 0.0069,

meaning that S1000 ≈ 0.1633 is accurate to one, maybe two, places aŌer the
decimal. Since S1001 ≈ 0.1564, we know the sum L is 0.1564 ≤ L ≤ 0.1633.

.. Example 252 ..ApproximaƟng the sum of convergent alternaƟng series
Approximate the sum of the following series, accurate to two places aŌer the
decimal.

1.
∞∑
n=1

(−1)n+1 1
n3

2.
∞∑
n=1

(−1)n+1 ln n
n

.

SÊ½çã®ÊÄ

1. To be ensure accuracy to two places aŌer the decimal, we need an <

Notes:
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0.0001:

1
n3

< 0.0001

n3 > 10, 000

n >
3
√
10000 ≈ 21.5.

With n = 22, we are assured accuracy to two places aŌer the decimal.
With S21 ≈ 0.9015, we are confident that the sum L of the series is about
0.90.

We can arrive at this approximaƟon another way. Part 2 of Theorem 71
states that the sum L lies between successive parƟal sums. It is straight-
forward to compute S6 ≈ 0.899782, S7 ≈ 0.9027 and S8 ≈ 0.9007. We
know the sum must lie between these last two parƟal sums; since they
agree to two places aŌer the decimal, we know L ≈ 0.90.

2. We again solve for n such that an < 0.0001; that is, we want n such that
ln(n)/n < 0.0001. This cannot be solved algebraically, so we approximate
the soluƟon using Newton’s Method.

Let f(x) = ln(x)/x − 0.0001. We want to find where f(x) = 0. Assum-
ing that x must be large, we let x1 = 1000. Recall that xn+1 = xn −
f(xn)/f ′(xn); we compute f ′(x) =

(
1− ln(x)

)
/x2. Thus:

x2 = 1000− ln(1000)/1000− 0.0001(
1− ln(1000)

)
/10002

= 2152.34.

Using a computer, we find that aŌer 12 iteraƟons we find x ≈ 116, 671.
With S116,671 ≈ 0.1598 and S116,672 ≈ 0.1599, we know that the sum L is
between these two values. Simply staƟng that L ≈ 0.15 is misleading, as
L is very, very close to 0.16.

...

One of the famous results of mathemaƟcs is that the Harmonic Series,
∞∑
n=1

1
n

diverges, yet the AlternaƟng Harmonic Series,
∞∑
n=1

(−1)n+1 1
n
, converges. The

noƟon that alternaƟng the signs of the terms in a series can make a series con-
verge leads us to the following definiƟons.
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Note: In DefiniƟon 35,
∞∑
n=1

an is not nec-

essarily an alternaƟng series; it just may
have some negaƟve terms.

8.5 AlternaƟng Series and Absolute Convergence

..
DefiniƟon 35 Absolute and CondiƟonal Convergence

1. A series
∞∑
n=1

an converges absolutely if
∞∑
n=1

|an| converges.

2. A series
∞∑
n=1

an converges condiƟonally if
∞∑
n=1

an converges but

∞∑
n=1

|an| diverges.

Thus we say the AlternaƟng Harmonic Series converges condiƟonally.

.. Example 253 ..Determining absolute and condiƟonal convergence.
Determine if the following series converges absolutely, condiƟonally, or diverges.

1.
∞∑
n=1

(−1)n
n+ 3

n2 + 2n+ 5
2.

∞∑
n=1

(−1)n
n2 + 2n+ 5

2n
3.

∞∑
n=3

(−1)n
3n− 3
5n− 10

SÊ½çã®ÊÄ

1. We can show the series
∞∑
n=1

∣∣∣∣(−1)n
n+ 3

n2 + 2n+ 5

∣∣∣∣ = ∞∑
n=1

n+ 3
n2 + 2n+ 5

diverges using the Limit Comparison Test, comparing with 1/n.

The series
∞∑
n=1

(−1)n
n+ 3

n2 + 2n+ 5
converges using the AlternaƟng Series

Test; we conclude it converges condiƟonally.

2. We can show the series
∞∑
n=1

∣∣∣∣(−1)n
n2 + 2n+ 5

2n

∣∣∣∣ = ∞∑
n=1

n2 + 2n+ 5
2n

converges using the RaƟo Test.

Therefore we conclude
∞∑
n=1

(−1)n
n2 + 2n+ 5

2n
converges absolutely.

Notes:
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3. The series

∞∑
n=3

∣∣∣∣(−1)n
3n− 3
5n− 10

∣∣∣∣ = ∞∑
n=3

3n− 3
5n− 10

diverges using the nth Term Test, so it does not converge absolutely.

The series
∞∑
n=3

(−1)n
3n− 3
5n− 10

fails the condiƟons of the AlternaƟng Series

Test as (3n− 3)/(5n− 10) does not approach 0 as n → ∞. We can state
further that this series diverges; as n → ∞, the series effecƟvely adds and
subtracts 3/5 over and over. This causes the sequence of parƟal sums to
oscillate and not converge.

Therefore the series
∞∑
n=1

(−1)n
3n− 3
5n− 10

diverges.
...

Knowing that a series converges absolutely allows us to make two impor-
tant statements, given in the following theorem. The first is that absolute con-

vergence is “stronger” than regular convergence. That is, just because
∞∑
n=1

an

converges, we cannot conclude that
∞∑
n=1

|an|will converge, but knowing a series

converges absolutely tells us that
∞∑
n=1

an will converge.

One reason this is important is that our convergence tests all require that the
underlying sequence of terms be posiƟve. By taking the absolute value of the
terms of a series where not all terms are posiƟve, we are oŌen able to apply an
appropriate test and determine absolute convergence. This, in turn, determines
that the series we are given also converges.

The second statement relates to rearrangements of series. When dealing
with a finite set of numbers, the sum of the numbers does not depend on the
order which they are added. (So 1+2+3 = 3+1+2.) Onemay be surprised to
find out that when dealing with an infinite set of numbers, the same statement
does not always hold true: some infinite lists of numbers may be rearranged in
different orders to achieve different sums. The theorem states that the terms of
an absolutely convergent series can be rearranged in any way without affecƟng
the sum.

Notes:
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..
Theorem 72 Absolute Convergence Theorem

Let
∞∑
n=1

an be a series that converges absolutely.

1.
∞∑
n=1

an converges.

2. Let {bn} be any rearrangement of the sequence {an}. Then

∞∑
n=1

bn =
∞∑
n=1

an.

In Example 253, we determined the series in part 2 converges absolutely.
Theorem 72 tells us the series converges (which we could also determine using
the AlternaƟng Series Test).

The theorem states that rearranging the terms of an absolutely convergent
series does not affect its sum. This implies that perhaps the sum of a condiƟon-
ally convergent series can change based on the arrangement of terms. Indeed,
it can. The Riemann Rearrangement Theorem (named aŌer Bernhard Riemann)
states that any condiƟonally convergent series can have its terms rearranged so
that the sum is any desired value, including∞!

As an example, consider the AlternaƟng Harmonic Series once more. We
have stated that

∞∑
n=1

(−1)n+1 1
n
= 1− 1

2
+

1
3
− 1

4
+

1
5
− 1

6
+

1
7
· · · = ln 2,

(see Key Idea 31 or Example 251).
Consider the rearrangement where every posiƟve term is followed by two

negaƟve terms:

1− 1
2
− 1

4
+

1
3
− 1

6
− 1

8
+

1
5
− 1

10
− 1

12
· · ·

(Convince yourself that these are exactly the same numbers as appear in the
AlternaƟng Harmonic Series, just in a different order.) Now group some terms

Notes:
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and simplify:(
1− 1

2

)
− 1

4
+

(
1
3
− 1

6

)
− 1

8
+

(
1
5
− 1

10

)
− 1

12
+ · · · =

1
2
− 1

4
+

1
6
− 1

8
+

1
10

− 1
12

+ · · · =

1
2

(
1− 1

2
+

1
3
− 1

4
+

1
5
− 1

6
+ · · ·

)
=

1
2
ln 2.

By rearranging the terms of the series, we have arrived at a different sum!
(One could try to argue that the AlternaƟng Harmonic Series does not actually
converge to ln 2, because rearranging the terms of the series shouldn’t change
the sum. However, the AlternaƟng Series Test proves this series converges to
L, for some number L, and if the rearrangement does not change the sum, then
L = L/2, implying L = 0. But the AlternaƟng Series ApproximaƟon Theorem
quickly shows that L > 0. The only conclusion is that the rearrangement did
change the sum.) This is an incredible result.

We end here our study of tests to determine convergence. The back cover
of this text contains a table summarizing the tests that one may find useful.

While series are worthy of study in and of themselves, our ulƟmate goal
within calculus is the study of Power Series, which we will consider in the next
secƟon. We will use power series to create funcƟons where the output is the
result of an infinite summaƟon.
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Exercises 8.5
Terms and Concepts

1. Why is
∞∑
n=1

sin n not an alternaƟng series?

2. A series
∞∑
n=1

(−1)nan converges when {an} is ,

and lim
n→∞

an = .

3. Give an example of a series where
∞∑
n=0

an converges but

∞∑
n=0

|an| does not.

4. The sum of a convergent series can be changed by
rearranging the order of its terms.

Problems

In Exercises 5 – 20, an alternaƟng series
∞∑
n=i

an is given.

(a) Determine if the series converges or diverges.

(b) Determine if
∞∑
n=0

|an| converges or diverges.

(c) If
∞∑
n=0

an converges, determine if the convergence is

condiƟonal or absolute.

5.
∞∑
n=1

(−1)n+1

n2

6.
∞∑
n=1

(−1)n+1
√
n!

7.
∞∑
n=0

(−1)n
n+ 5
3n− 5

8.
∞∑
n=1

(−1)n
2n

n2

9.
∞∑
n=0

(−1)n+1 3n+ 5
n2 − 3n+ 1

10.
∞∑
n=1

(−1)n

ln n+ 1

11.
∞∑
n=2

(−1)n
n
ln n

12.
∞∑
n=1

(−1)n+1

1+ 3+ 5+ · · ·+ (2n− 1)

13.
∞∑
n=1

cos
(
πn
)

14.
∞∑
n=1

sin
(
(n+ 1/2)π

)
n ln n

15.
∞∑
n=0

(
−2
3

)n

16.
∞∑
n=0

(−e)−n

17.
∞∑
n=0

(−1)nn2

n!

18.
∞∑
n=0

(−1)n2−n2

19.
∞∑
n=1

(−1)n√
n

20.
∞∑
n=1

(−1000)n

n!

Let Sn be the nth parƟal sum of a series. In Exercises 21 – 24, a
convergent alternaƟng series is given and a value of n. Com-
pute Sn and Sn+1 and use these values to find bounds on the
sum of the series.

21.
∞∑
n=1

(−1)n

ln(n+ 1)
, n = 5

22.
∞∑
n=1

(−1)n+1

n4
, n = 4

23.
∞∑
n=0

(−1)n

n!
, n = 6

24.
∞∑
n=0

(
−1
2

)n

, n = 9

In Exercises 25 – 28, a convergent alternaƟng series is given
along with its sum and a value of ε. Use Theorem 71 to find
n such that the nth parƟal sum of the series is within ε of the
sum of the series.

25.
∞∑
n=1

(−1)n+1

n4
=

7π4

720
, ε = 0.001

26.
∞∑
n=0

(−1)n

n!
=

1
e
, ε = 0.0001

27.
∞∑
n=0

(−1)n

2n+ 1
=

π

4
, ε = 0.001

28.
∞∑
n=0

(−1)n

(2n)!
= cos 1, ε = 10−8
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8.6 Power Series

So far, our study of series has examined the quesƟon of “Is the sum of these
infinite terms finite?,” i.e., “Does the series converge?” We now approach series
from a different perspecƟve: as a funcƟon. Given a value of x, we evaluate f(x)
by finding the sum of a parƟcular series that depends on x (assuming the series
converges). We start this new approach to series with a definiƟon.

..
DefiniƟon 36 Power Series

Let {an} be a sequence, let x be a variable, and let c be a real number.

1. The power series in x is the series

∞∑
n=0

anxn = a0 + a1x+ a2x2 + a3x3 + . . .

2. The power series in x centered at c is the series

∞∑
n=0

an(x− c)n = a0 + a1(x− c) + a2(x− c)2 + a3(x− c)3 + . . .

.. Example 254 ..Examples of power series
Write out the first five terms of the following power series:

1.
∞∑
n=0

xn 2.
∞∑
n=1

(−1)n+1 (x+ 1)n

n
3.

∞∑
n=0

(−1)n+1 (x− π)2n

(2n)!
.

SÊ½çã®ÊÄ

1. One of the convenƟons we adopt is that x0 = 1 regardless of the value of
x. Therefore

∞∑
n=0

xn = 1+ x+ x2 + x3 + x4 + . . .

This is a geometric series in x.

2. This series is centered at c = −1. Note how this series starts with n = 1.
We could rewrite this series starƟng at n = 0 with the understanding that

Notes:
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a0 = 0, and hence the first term is 0.

∞∑
n=1

(−1)n+1 (x+ 1)n

n
= (x+1)− (x+ 1)2

2
+
(x+ 1)3

3
− (x+ 1)4

4
+
(x+ 1)5

5
. . .

3. This series is centered at c = π. Recall that 0! = 1.

∞∑
n=0

(−1)n+1 (x− π)2n

(2n)!
= −1+

(x− π)2

2
− (x− π)4

24
+
(x− π)6

6!
− (x− π)8

8!
. . .

...

We introduced power series as a type of funcƟon, where a value of x is given
and the sum of a series is returned. Of course, not every series converges. For

instance, in part 1 of Example 254, we recognized the series
∞∑
n=0

xn as a geometric

series in x. Theorem 60 states that this series converges only when |x| < 1.

This raises the quesƟon: “For what values of xwill a given power series con-
verge?,” which leads us to a theorem and definiƟon.

..
Theorem 73 Convergence of Power Series

Let a power series
∞∑
n=0

an(x− c)n be given. Then one of the following is

true:

1. The series converges only at x = c.

2. There is an R > 0 such that the series converges for all x in
(c− R, c+ R) and diverges for all x < c− R and x > c+ R.

3. The series converges for all x.

The value of R is important when understanding a power series, hence it is
given a name in the following definiƟon. Also, note that part 2 of Theorem 73
makes a statement about the interval (c− R, c+ R), but the not the endpoints
of that interval. A series may/may not converge at these endpoints.
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..
DefiniƟon 37 Radius and Interval of Convergence

1. The number R given in Theorem 73 is the radius of convergence of
a given series. When a series converges for only x = c, we say the
radius of convergence is 0, i.e., R = 0. When a series converges
for all x, we say the series has an infinite radius of convergence,
i.e., R = ∞.

2. The interval of convergence is the set of all values of x for which
the series converges.

To find the values of x for which a given series converges, wewill use the con-
vergence tests we studied previously (especially the RaƟo Test). However, the
tests all required that the terms of a series be posiƟve. The following theorem
gives us a work–around to this problem.

..
Theorem 74 The Radius of Convergence of a Series and Absolute
Convergence

The series
∞∑
n=0

an(x − c)n and
∞∑
n=0

∣∣an(x − c)n
∣∣ have the same radius of

convergence R.

Theorem 74 allows us to find the radius of convergence R of a series by ap-
plying the RaƟo Test (or any applicable test) to the absolute value of the terms
of the series. We pracƟce this in the following example.

.. Example 255 ..Determining the radius and interval of convergence.
Find the radius and interval of convergence for each of the following series:

1.
∞∑
n=0

xn

n!
2.

∞∑
n=1

(−1)n+1 xn

n
3.

∞∑
n=0

2n(x− 3)n 4.
∞∑
n=0

n!xn

SÊ½çã®ÊÄ
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1. We apply the RaƟo Test to the series
∞∑
n=0

∣∣∣∣xnn!
∣∣∣∣:

lim
n→∞

∣∣xn+1/(n+ 1)!
∣∣∣∣xn/n!∣∣ = lim

n→∞

∣∣∣∣xn+1

xn
· n!
(n+ 1)!

∣∣∣∣
= lim

n→∞

∣∣∣∣ x
n+ 1

∣∣∣∣
= 0 for all x.

The RaƟo Test shows us that regardless of the choice of x, the series con-
verges. Therefore the radius of convergence is R = ∞, and the interval of
convergence is (−∞,∞).

2. We apply the RaƟo Test to the series
∞∑
n=1

∣∣∣∣(−1)n+1 xn

n

∣∣∣∣ = ∞∑
n=1

∣∣∣∣xnn
∣∣∣∣:

lim
n→∞

∣∣xn+1/(n+ 1)
∣∣∣∣xn/n∣∣ = lim

n→∞

∣∣∣∣xn+1

xn
· n
n+ 1

∣∣∣∣
= lim

n→∞
|x| n

n+ 1
= |x|.

The RaƟo Test states a series converges if the limit of |an+1/an| = L < 1.
We found the limit above to be |x|; therefore, the power series converges
when |x| < 1, or when x is in (−1, 1). Thus the radius of convergence is
R = 1. ..

To determine the interval of convergence, we need to check the endpoints
of (−1, 1). When x = −1, we have the series

∞∑
n=1

(−1)n+1 (−1)n

n
=

∞∑
n=1

−1
n

= −∞.

The series diverges when x = −1.

When x = 1, we have the series
∞∑
n=1

(−1)n+1 (1)n

n
, which is the AlternaƟng

Harmonic Series, which converges. Therefore the interval of convergence
is (−1, 1].
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3. We apply the RaƟo Test to the series
∞∑
n=0

∣∣2n(x− 3)n
∣∣:

lim
n→∞

∣∣2n+1(x− 3)n+1
∣∣∣∣2n(x− 3)n

∣∣ = lim
n→∞

∣∣∣∣2n+1

2n
· (x− 3)n+1

(x− 3)n

∣∣∣∣
= lim

n→∞

∣∣2(x− 3)
∣∣.

According to the RaƟo Test, the series convergeswhen
∣∣2(x−3)

∣∣ < 1 =⇒∣∣x− 3
∣∣ < 1/2. The series is centered at 3, and xmust be within 1/2 of 3

in order for the series to converge. Therefore the radius of convergence
is R = 1/2, and we know that the series converges absolutely for all x in
(3− 1/2, 3+ 1/2) = (2.5, 3.5).
We check for convergence at the endpoints to find the interval of conver-
gence. When x = 2.5, we have:

∞∑
n=0

2n(2.5− 3)n =
∞∑
n=0

2n(−1/2)n

=
∞∑
n=0

(−1)n,

which diverges. A similar process shows that the series also diverges at
x = 3.5. Therefore the interval of convergence is (2.5, 3.5).

4. We apply the RaƟo Test to
∞∑
n=0

∣∣n!xn∣∣:
lim

n→∞

∣∣(n+ 1)!xn+1
∣∣∣∣n!xn∣∣ = lim

n→∞

∣∣(n+ 1)x
∣∣

= ∞ for all x, except x = 0.

The RaƟo Test shows that the series diverges for all x except x = 0. There-
fore the radius of convergence is R = 0....

We can use a power series to define a funcƟon:

f(x) =
∞∑
n=0

anxn

where the domain of f is a subset of the interval of convergence of the power
series. One can apply calculus techniques to such funcƟons; in parƟcular, we
can find derivaƟves and anƟderivaƟves.
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..
Theorem 75 DerivaƟves and Indefinite Integrals of Power Series
FuncƟons

Let f(x) =
∞∑
n=0

an(x − c)n be a funcƟon defined by a power series, with

radius of convergence R.

1. f(x) is conƟnuous and differenƟable on (c− R, c+ R).

2. f ′(x) =
∞∑
n=1

an · n · (x− c)n−1, with radius of convergence R.

3.
∫

f(x) dx = C+
∞∑
n=0

an
(x− c)n+1

n+ 1
, with radius of convergence R.

A few notes about Theorem 75:

1. The theorem states that differenƟaƟon and integraƟon do not change the
radius of convergence. It does not state anything about the interval of
convergence. They are not always the same.

2. NoƟce how the summaƟon for f ′(x) starts with n = 1. This is because the
constant term a0 of f(x) goes to 0.

3. DifferenƟaƟon and integraƟon are simply calculated term–by–term using
the Power Rules.

.. Example 256 ..DerivaƟves and indefinite integrals of power series

Let f(x) =
∞∑
n=0

xn. Find f ′(x) and F(x) =
∫

f(x) dx, along with their respecƟve

intervals of convergence.

SÊ½çã®ÊÄ We find the derivaƟve and indefinite integral of f(x), follow-
ing Theorem 75.

1. f ′(x) =
∞∑
n=1

nxn−1 = 1+ 2x+ 3x2 + 4x3 + · · · .

In Example 254, we recognized that
∞∑
n=0

xn is a geometric series in x. We

know that such a geometric series converges when |x| < 1; that is, the
interval of convergence is (−1, 1).

Notes:
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To determine the interval of convergence of f ′(x), we consider the end-
points of (−1, 1):

f ′(−1) = 1− 2+ 3− 4+ · · · , which diverges.

f ′(1) = 1+ 2+ 3+ 4+ · · · , which diverges.

Therefore, the interval of convergence of f ′(x) is (−1, 1).

2. F(x) =
∫

f(x) dx = C+
∞∑
n=0

xn+1

n+ 1
= C+ x+

x2

2
+

x3

3
+ · · ·

To find the interval of convergence of F(x), we again consider the end-
points of (−1, 1):

F(−1) = C− 1+ 1/2− 1/3+ 1/4+ · · ·

The value of C is irrelevant; noƟce that the rest of the series is an Alter-
naƟng Series that whose terms converge to 0. By the AlternaƟng Series
Test, this series converges. (In fact, we can recognize that the terms of the
series aŌer C are the opposite of the AlternaƟng Harmonic Series. We can
thus say that F(−1) = C− ln 2.)

F(1) = C+ 1+ 1/2+ 1/3+ 1/4+ · · ·

NoƟce that this summaƟon is C + the Harmonic Series, which diverges.
Since F converges for x = −1 and diverges for x = 1, the interval of
convergence of F(x) is [−1, 1)....

The previous example showed how to take the derivaƟve and indefinite in-
tegral of a power series without moƟvaƟon for why we care about such opera-
Ɵons. Wemay care for the sheer mathemaƟcal enjoyment “that we can”, which
is moƟvaƟon enough for many. However, we would be remiss to not recognize
that we can learn a great deal from taking derivaƟves and indefinite integrals.

Recall that f(x) =
∞∑
n=0

xn in Example 256 is a geometric series. According to

Theorem 60, this series converges to 1/(1− x) when |x| < 1. Thus we can say

f(x) =
∞∑
n=0

xn =
1

1− x
, on (−1, 1).

IntegraƟng the power series, (as done in Example 256,) we find

F(x) = C1 +
∞∑
n=0

xn+1

n+ 1
, (8.4)

Notes:
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8.6 Power Series

while integraƟng the funcƟon f(x) = 1/(1− x) gives

F(x) = − ln |1− x|+ C2. (8.5)

EquaƟng EquaƟons (8.4) and (8.5), we have

F(x) = C1 +
∞∑
n=0

xn+1

n+ 1
= − ln |1− x|+ C2.

Leƫng x = 0, we have F(0) = C1 = C2. This implies that we can drop the
constants and conclude

∞∑
n=0

xn+1

n+ 1
= − ln |1− x|.

We established in Example 256 that the series on the leŌ converges at x = −1;
subsƟtuƟng x = −1 on both sides of the above equality gives

−1+
1
2
− 1

3
+

1
4
− 1

5
+ · · · = − ln 2.

On the leŌ we have the opposite of the AlternaƟng Harmonic Series; on the
right, we have− ln 2. We conclude that

1− 1
2
+

1
3
− 1

4
+ · · · = ln 2.

Important: We stated in Key Idea 31 (in SecƟon 8.2) that the AlternaƟng Har-
monic Series converges to ln 2, and referred to this fact again in Example 251 of
SecƟon 8.5. However, we never gave an argument for why this was the case.
The work above finally shows how we conclude that the AlternaƟng Harmonic
Series converges to ln 2.

We use this type of analysis in the next example.

.. Example 257 ..Analyzing power series funcƟons

Let f(x) =
∞∑
n=0

xn

n!
. Find f ′(x) and

∫
f(x) dx, and use these to analyze the behav-

ior of f(x).

SÊ½çã®ÊÄ We start by making two notes: first, in Example 255, we
found the interval of convergence of this power series is (−∞,∞). Second,
we will find it useful later to have a few terms of the series wriƩen out:

∞∑
n=0

xn

n!
= 1+ x+

x2

2
+

x3

6
+

x4

24
+ · · · (8.6)

Notes:
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We now find the derivaƟve:

f ′(x) =
∞∑
n=1

n
xn−1

n!

=

∞∑
n=1

xn−1

(n− 1)!
= 1+ x+

x2

2!
+ · · · .

Since the series starts at n = 1 and each term refers to (n− 1), we can re-index
the series starƟng with n = 0:

=

∞∑
n=0

xn

n!

= f(x).

We found the derivaƟve of f(x) is f(x). The only funcƟons for which this is true
are of the form y = cex for some constant c. As f(0) = 1 (see EquaƟon (8.6)), c
must be 1. Therefore we conclude that

f(x) =
∞∑
n=0

xn

n!
= ex

for all x.
We can also find

∫
f(x) dx:

∫
f(x) dx = C+

∞∑
n=0

xn+1

n!(n+ 1)

= C+
∞∑
n=0

xn+1

(n+ 1)!

We write out a few terms of this last series:

C+
∞∑
n=0

xn+1

(n+ 1)!
= C+ x+

x2

2
+

x3

6
+

x4

24
+ · · ·

The integral of f(x) differs from f(x) only by a constant, again indicaƟng that
f(x) = ex. ...

Example 257 and the work following Example 256 established relaƟonships
between a power series funcƟon and “regular” funcƟons that we have dealt
with in the past. In general, given a power series funcƟon, it is difficult (if not

Notes:
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8.6 Power Series

impossible) to express the funcƟon in terms of elementary funcƟons. We chose
examples where things worked out nicely.

In this secƟon’s last example, we show how to solve a simple differenƟal
equaƟon with a power series.

.. Example 258 ..Solving a differenƟal equaƟon with a power series.
Give the first 4 terms of the power series soluƟon to y′ = 2y, where y(0) = 1.

SÊ½çã®ÊÄ The differenƟal equaƟon y′ = 2y describes a funcƟon y =
f(x) where the derivaƟve of y is twice y and y(0) = 1. This is a rather simple
differenƟal equaƟon; with a bit of thought one should realize that if y = Ce2x,
then y′ = 2Ce2x, and hence y′ = 2y. By leƫng C = 1 we saƟsfy the iniƟal
condiƟon of y(0) = 1.

Let’s ignore the fact that we already know the soluƟon and find a power
series funcƟon that saƟsfies the equaƟon. The soluƟon we seek will have the
form

f(x) =
∞∑
n=0

anxn = a0 + a1x+ a2x2 + a3x3 + · · ·

for unknown coefficients an. We can find f ′(x) using Theorem 75:

f ′(x) =
∞∑
n=1

an · n · xn−1 = a1 + 2a2x+ 3a3x2 + 4a4x3 · · · .

Since f ′(x) = 2f(x), we have

a1 + 2a2x+ 3a3x2 + 4a4x3 · · · = 2
(
a0 + a1x+ a2x2 + a3x3 + · · ·

)
= 2a0 + 2a1x+ 2a2x2 + 2a3x3 + · · ·

The coefficients of like powers of xmust be equal, so we find that

a1 = 2a0, 2a2 = 2a1, 3a3 = 2a2, 4a4 = 2a3, etc.

The iniƟal condiƟon y(0) = f(0) = 1 indicates that a0 = 1; with this, we can
find the values of the other coefficients:

a0 = 1 and a1 = 2a0 ⇒ a1 = 2;
a1 = 2 and 2a2 = 2a1 ⇒ a2 = 4/2 = 2;
a2 = 2 and 3a3 = 2a2 ⇒ a3 = 8/(2 · 3) = 4/3;

a3 = 4/3 and 4a4 = 2a3 ⇒ a4 = 16/(2 · 3 · 4) = 2/3.

Thus the first 5 terms of the power series soluƟon to the differenƟal equaƟon
y′ = 2y is

f(x) = 1+ 2x+ 2x2 +
4
3
x3 +

2
3
x4 + · · ·

Notes:
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Chapter 8 Sequences and Series

In SecƟon 8.8, as we study Taylor Series, we will learn how to recognize this se-
ries as describing y = e2x. ...

Our last example illustrates that it can be difficult to recognize an elementary
funcƟon by its power series expansion. It is far easier to start with a known func-
Ɵon, expressed in terms of elementary funcƟons, and represent it as a power
series funcƟon. One may wonder why we would bother doing so, as the laƩer
funcƟon probably seems more complicated. In the next two secƟons, we show
both how to do this and why such a process can be beneficial.

Notes:
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Exercises 8.6
Terms and Concepts
1. We adopt the convencƟon that x0 = , regardless of

the value of x.
2. What is the difference between the radius of convergence

and the interval of convergence?

3. If the radius of convergence of
∞∑
n=0

anxn is 5, what is the ra-

dius of convergence of
∞∑
n=1

n · anxn−1?

4. If the radius of convergence of
∞∑
n=0

anxn is 5, what is the ra-

dius of convergence of
∞∑
n=0

(−1)nanxn?

Problems
In Exercises 5 – 8, write out the sum of the first 5 terms of the
given power series.

5.
∞∑
n=0

2nxn

6.
∞∑
n=1

1
n2

xn

7.
∞∑
n=0

1
n!
xn

8.
∞∑
n=0

(−1)n

(2n)!
x2n

In Exercises 9 – 24, a power series is given.
(a) Find the radius of convergence.
(b) Find the interval of convergence.

9.
∞∑
n=0

(−1)n+1

n!
xn

10.
∞∑
n=0

nxn

11.
∞∑
n=1

(−1)n(x− 3)n

n

12.
∞∑
n=0

(x+ 4)n

n!

13.
∞∑
n=0

xn

2n

14.
∞∑
n=0

(−1)n(x− 5)n

10n

15.
∞∑
n=0

5n(x− 1)n

16.
∞∑
n=0

(−2)nxn

17.
∞∑
n=0

√
nxn

18.
∞∑
n=0

n
3n

xn

19.
∞∑
n=0

3n

n!
(x− 5)n

20.
∞∑
n=0

(−1)nn!(x− 10)n

21.
∞∑
n=1

xn

n2

22.
∞∑
n=1

(x+ 2)n

n3

23.
∞∑
n=0

n!
( x
10

)n

24.
∞∑
n=0

n2
(
x+ 4
4

)n

In Exercises 25 – 30, a funcƟon f(x) =
∞∑
n=0

anxn is given.

(a) Give a power series for f ′(x) and its interval of conver-
gence.

(b) Give a power series for
∫
f(x) dx and its interval of con-

vergence.

25.
∞∑
n=0

nxn

26.
∞∑
n=1

xn

n

27.
∞∑
n=0

( x
2

)n

28.
∞∑
n=0

(−3x)n

29.
∞∑
n=0

(−1)nx2n

(2n)!

30.
∞∑
n=0

(−1)nxn

n!

In Exercises 31 – 36, give the first 5 terms of the series that is
a soluƟon to the given differenƟal equaƟon.

31. y ′ = 3y, y(0) = 1

32. y ′ = 5y, y(0) = 5

33. y ′ = y2, y(0) = 1

34. y ′ = y+ 1, y(0) = 1

35. y ′′ = −y, y(0) = 0, y ′(0) = 1

36. y ′′ = 2y, y(0) = 1, y ′(0) = 1
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y = f(x)

.

y = p1(x)

.

−4

.

−2

.

2

.

4

. −5.

5

.

x

.

y

f(0) = 2 f ′′′(0) = −1
f ′(0) = 1 f (4)(0) = −12
f ′′(0) = 2 f (5)(0) = −19

Figure 8.18: Ploƫng y = f(x) and a table
of derivaƟves of f evaluated at 0.

...

..

y = p2(x)

.

y = p4(x)

.
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Figure 8.19: Ploƫng f, p2 and p4.
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y = p13(x)

.
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.
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.

x

.

y

Figure 8.20: Ploƫng f and p13.
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8.7 Taylor Polynomials
Consider a funcƟon y = f(x) and a point

(
c, f(c)

)
. The derivaƟve, f ′(c), gives

the instantaneous rate of change of f at x = c. Of all lines that pass through the
point

(
c, f(c)

)
, the line that best approximates f at this point is the tangent line;

that is, the line whose slope (rate of change) is f ′(c).
In Figure 8.18, we see a funcƟon y = f(x) graphed. The table below the

graph shows that f(0) = 2 and f ′(0) = 1; therefore, the tangent line to f at
x = 0 is p1(x) = 1(x−0)+2 = x+2. The tangent line is also given in the figure.
Note that “near” x = 0, p1(x) ≈ f(x); that is, the tangent line approximates f
well.

One shortcoming of this approximaƟon is that the tangent line only matches
the slope of f; it does not, for instance, match the concavity of f. We can find a
polynomial, p2(x), that doesmatch the concavitywithoutmuchdifficulty, though.
The table in Figure 8.18 gives the following informaƟon:

f(0) = 2 f ′(0) = 1 f ′′(0) = 2.

Therefore, we want our polynomial p2(x) to have these same properƟes. That
is, we need

p2(0) = 2 p′2(0) = 1 p′′2 (0) = 2.

This is simply an iniƟal–value problem. We can solve this using the tech-
niques first described in SecƟon 5.1. To keep p2(x) as simple as possible, we’ll
assume that not only p′′2 (0) = 2, but that p′′2 (x) = 2. That is, the second deriva-
Ɵve of p2 is constant.

If p′′2 (x) = 2, then p′2(x) = 2x + C for some constant C. Since we have
determined that p′2(0) = 1, we find that C = 1 and so p′2(x) = 2x + 1. Finally,
we can compute p2(x) = x2+x+C. Using our iniƟal values, we know p2(0) = 2
so C = 2.We conclude that p2(x) = x2 + x+ 2. This funcƟon is ploƩed with f in
Figure 8.19.

We can repeat this approximaƟon process by creaƟng polynomials of higher
degree that matchmore of the derivaƟves of f at x = 0. In general, a polynomial
of degree n can be created to match the first n derivaƟves of f. Figure 8.19 also
shows p4(x) = −x4/2−x3/6+x2+x+2, whose first four derivaƟves at 0match
those of f. (Using the table in Figure 8.18, start with p(4)4 (x) = −12 and solve
the related iniƟal–value problem.)

As we use more and more derivaƟves, our polynomial approximaƟon to f
gets beƩer and beƩer. In this example, the interval on which the approximaƟon
is “good” gets bigger and bigger. Figure 8.20 shows p13(x); we can visually affirm
that this polynomial approximates f very well on [−2, 3]. (The polynomial p13(x)
is not parƟcularly “nice”. It is

16901x13

6227020800
+

13x12

1209600
−

1321x11

39916800
−

779x10

1814400
−

359x9

362880
+

x8

240
+

139x7

5040
+

11x6

360
−

19x5

120
−

x4

2
−

x3

6
+x2+x+2.)

Notes:
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f(x) = ex ⇒ f(0) = 1
f ′(x) = ex ⇒ f ′(0) = 1
f ′′(x) = ex ⇒ f ′′(0) = 1
...

...
f (n)(x) = ex ⇒ f (n)(0) = 1

Figure 8.21: The derivaƟves of f(x) = ex

evaluated at x = 0.

8.7 Taylor Polynomials

Thepolynomialswehave created are examples of Taylor polynomials, named
aŌer the BriƟsh mathemaƟcian Brook Taylor who made important discoveries
about such funcƟons. While we created the above Taylor polynomials by solving
iniƟal–value problems, it can be shown that Taylor polynomials follow a general
paƩern that make their formaƟon much more direct. This is described in the
following definiƟon.

..
DefiniƟon 38 Taylor Polynomial, Maclaurin Polynomial

Let f be a funcƟon whose first n derivaƟves exist at x = c.

1. The Taylor polynomial of degree n of f at x = c is

pn(x) = f(c)+f ′(c)(x−c)+
f ′′(c)
2!

(x−c)2+
f ′′′(c)
3!

(x−c)3+· · ·+ f (n)(c)
n!

(x−c)n.

2. A special case of the Taylor polynomial is theMaclaurin polynomial, where c =
0. That is, theMaclaurin polynomial of degree n of f is

pn(x) = f(0) + f ′(0)x+
f ′′(0)
2!

x2 +
f ′′′(0)
3!

x3 + · · ·+ f (n)(0)
n!

xn.

We will pracƟce creaƟng Taylor and Maclaurin polynomials in the following
examples.

.. Example 259 ..Finding and using Maclaurin polynomials

1. Find the nth Maclaurin polynomial for f(x) = ex.

2. Use p5(x) to approximate the value of e.

SÊ½çã®ÊÄ

1. We start with creaƟng a table of the derivaƟves of ex evaluated at x = 0.
In this parƟcular case, this is relaƟvely simple, as shown in Figure 8.21. By

Notes:
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.....y = p5(x).
−2

.
2

.

5

.

10

.

x

.

y

Figure 8.22: A plot of f(x) = ex and its 5th

degree Maclaurin polynomial p5(x).

f(x) = ln x ⇒ f(1) = 0
f ′(x) = 1/x ⇒ f ′(1) = 1
f ′′(x) = −1/x2 ⇒ f ′′(1) = −1
f ′′′(x) = 2/x3 ⇒ f ′′′(1) = 2
f (4)(x) = −6/x4 ⇒ f (4)(1) = −6
...

...
f (n)(x) = ⇒ f (n)(1) =
(−1)n+1(n− 1)!

xn
(−1)n+1(n− 1)!

Figure 8.23: DerivaƟves of ln x evaluated
at x = 1.

Chapter 8 Sequences and Series

the definiƟon of the Maclaurin series, we have

pn(x) = f(0) + f ′(0)x+
f ′′(0)
2!

x2 +
f ′′′(0)
3!

x3 + · · ·+ f n(0)
n!

xn

= 1+ x+
1
2
x2 +

1
6
x3 +

1
24

x4 + · · ·+ 1
n!
xn.

2. Using our answer from part 1, we have

p5 = 1+ x+
1
2
x2 +

1
6
x3 +

1
24

x4 +
1

120
x5.

To approximate the value of e, note that e = e1 = f(1) ≈ p5(1). It is very
straighƞorward to evaluate p5(1):

p5(1) = 1+ 1+
1
2
+

1
6
+

1
24

+
1

120
=

163
60

≈ 2.71667.

A plot of f(x) = ex and p5(x) is given in Figure 8.22....

.. Example 260 ..Finding and using Taylor polynomials

1. Find the nth Taylor polynomial of y = ln x at x = 1.

2. Use p6(x) to approximate the value of ln 1.5.

3. Use p6(x) to approximate the value of ln 2.

SÊ½çã®ÊÄ

1. We begin by creaƟng a table of derivaƟves of ln x evaluated at x = 1.
While this is not as straighƞorward as it was in the previous example, a
paƩern does emerge, as shown in Figure 8.23.

Using DefiniƟon 38, we have

pn(x) = f(c) + f ′(c)(x− c) +
f ′′(c)
2!

(x− c)2 +
f ′′′(c)
3!

(x− c)3 + · · ·+ f n(c)
n!

(x− c)n

= 0+ (x− 1)− 1
2
(x− 1)2 +

1
3
(x− 1)3 − 1

4
(x− 1)4 + · · ·+ (−1)n+1

n
(x− 1)n.

Note how the coefficients of the (x− 1) terms turn out to be “nice.”

Notes:

448



.....

y = ln x

.

y = p6(x)

.

1
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Figure 8.24: A plot of y = ln x and its 6th

degree Taylor polynomial at x = 1.
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..

y = ln x

.

y = p20(x)

.
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Figure 8.25: A plot of y = ln x and its 20th

degree Taylor polynomial at x = 1.

8.7 Taylor Polynomials

2. We can compute p6(x) using our work above:

p6(x) = (x−1)− 1
2
(x−1)2+

1
3
(x−1)3− 1

4
(x−1)4+

1
5
(x−1)5− 1

6
(x−1)6.

Since p6(x) approximates ln x well near x = 1, we approximate ln 1.5 ≈
p6(1.5):

p6(1.5) = (1.5− 1)− 1
2
(1.5− 1)2 +

1
3
(1.5− 1)3 − 1

4
(1.5− 1)4 + · · ·

· · ·+ 1
5
(1.5− 1)5 − 1

6
(1.5− 1)6

=
259
640

≈ 0.404688.

This is a good approximaƟon as a calculator shows that ln 1.5 ≈ 0.4055.
Figure 8.24 plots y = ln x with y = p6(x). We can see that ln 1.5 ≈
p6(1.5).

3. We approximate ln 2 with p6(2):

p6(2) = (2− 1)− 1
2
(2− 1)2 +

1
3
(2− 1)3 − 1

4
(2− 1)4 + · · ·

· · ·+ 1
5
(2− 1)5 − 1

6
(2− 1)6

= 1− 1
2
+

1
3
− 1

4
+

1
5
− 1

6

=
37
60

≈ 0.616667.

This approximaƟon is not terribly impressive: a handheld calculator shows
that ln 2 ≈ 0.693147. The graph in Figure 8.24 shows that p6(x) provides
less accurate approximaƟons of ln x as x gets close to 0 or 2.

Surprisingly enough, even the 20th degree Taylor polynomial fails to ap-
proximate ln x for x > 2, as shown in Figure 8.25. We’ll soon discuss why
this is....

Taylor polynomials are used to approximate funcƟons f(x) in mainly two sit-
uaƟons:

Notes:
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Note: Even though Taylor polynomials
could be used in calculators and com-
puters to calculate values of trigonomet-
ric funcƟons, in pracƟce they generally
aren’t. Other more efficient and accurate
methods have been developed, such as
the CORDIC algorithm.

Chapter 8 Sequences and Series

1. When f(x) is known, but perhaps “hard” to compute directly. For instance,
we can define y = cos x as either the raƟo of sides of a right triangle
(“adjacent over hypotenuse”) or with the unit circle. However, neither of
these provides a convenient way of compuƟng cos 2. A Taylor polynomial
of sufficiently high degree can provide a reasonablemethod of compuƟng
such values using only operaƟons usually hard–wired into a computer (+,
−,× and÷).

2. When f(x) is not known, but informaƟon about its derivaƟves is known.
This occurs more oŌen than one might think, especially in the study of
differenƟal equaƟons.

In both situaƟons, a criƟcal piece of informaƟon to have is “How good is my
approximaƟon?” If we use a Taylor polynomial to compute cos 2, how do we
know how accurate the approximaƟon is?

We had the same problem when studying Numerical IntegraƟon. Theorem
43provided bounds on the errorwhen using, say, Simpson’s Rule to approximate
a definite integral. These bounds allowed us to determine that, for instance,
using 10 subintervals provided an approximaƟonwithin±.01 of the exact value.
The following theorem gives similar bounds for Taylor (and hence Maclaurin)
polynomials.

..
Theorem 76 Taylor’s Theorem

1. Let f be a funcƟon whose n+ 1th derivaƟve exists on an interval I and let c be in I.
Then, for each x in I, there exists zx between x and c such that

f(x) = f(c) + f ′(c)(x− c) +
f ′′(c)
2!

(x− c)2 + · · ·+ f (n)(c)
n!

(x− c)n + Rn(x),

where Rn(x) =
f (n+1)(zx)
(n+ 1)!

(x− c)(n+1).

2.
∣∣Rn(x)∣∣ ≤ max

∣∣ f (n+1)(z)
∣∣

(n+ 1)!
∣∣(x− c)(n+1)∣∣

The first part of Taylor’s Theorem states that f(x) = pn(x) + Rn(x), where
pn(x) is the nth order Taylor polynomial and Rn(x) is the remainder, or error, in
the Taylor approximaƟon. The second part gives bounds on how big that error
can be. If the (n+ 1)th derivaƟve is large, the error may be large; if x is far from
c, the error may also be large. However, the (n + 1)! term in the denominator

Notes:
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tends to ensure that the error gets smaller as n increases.
The following example computes error esƟmates for the approximaƟons of

ln 1.5 and ln 2 made in Example 260.

.. Example 261 ..Finding error bounds of a Taylor polynomial
Use Theorem 76 to find error bounds when approximaƟng ln 1.5 and ln 2 with
p6(x), the Taylor polynomial of degree 6 of f(x) = ln x at x = 1, as calculated in
Example 260.

SÊ½çã®ÊÄ

1. We start with the approximaƟon of ln 1.5 with p6(1.5). The theorem ref-
erences an open interval I that contains both x and c. The smaller the
interval we use the beƩer; it will give us a more accurate (and smaller!)
approximaƟon of the error. We let I = (0.9, 1.6), as this interval contains
both c = 1 and x = 1.5.
The theorem references max

∣∣f (n+1)(z)
∣∣. In our situaƟon, this is asking

“How big can the 7th derivaƟve of y = ln x be on the interval (0.9, 1.6)?”
The seventh derivaƟve is y = −6!/x7. The largest value it aƩains on I is
about 1506. Thus we can bound the error as:

∣∣R6(1.5)∣∣ ≤ max
∣∣f (7)(z)∣∣
7!

∣∣(1.5− 1)7
∣∣

≤ 1506
5040

· 1
27

≈ 0.0023.

We computed p6(1.5) = 0.404688; using a calculator, we find ln 1.5 ≈
0.405465, so the actual error is about 0.000778, which is less than our
bound of 0.0023. This affirms Taylor’s Theorem; the theorem states that
our approximaƟon would be within about 2 thousandths of the actual
value, whereas the approximaƟon was actually closer.

2. We again find an interval I that contains both c = 1 and x = 2; we choose
I = (0.9, 2.1). The maximum value of the seventh derivaƟve of f on this
interval is again about 1506 (as the largest values come near x = 0.9).
Thus ∣∣R6(2)∣∣ ≤ max

∣∣f (7)(z)∣∣
7!

∣∣(2− 1)7
∣∣

≤ 1506
5040

· 17

≈ 0.30.

Notes:
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f(x) = cos x ⇒ f(0) = 1
f ′(x) = − sin x ⇒ f ′(0) = 0
f ′′(x) = − cos x ⇒ f ′′(0) = −1
f ′′′(x) = sin x ⇒ f ′′′(0) = 0
f (4)(x) = cos x ⇒ f (4)(0) = 1
f (5)(x) = − sin x ⇒ f (5)(0) = 0
f (6)(x) = − cos x ⇒ f (6)(0) = −1
f (7)(x) = sin x ⇒ f (7)(0) = 0
f (8)(x) = cos x ⇒ f (8)(0) = 1
f (9)(x) = − sin x ⇒ f (9)(0) = 0

Figure 8.26: A table of the derivaƟves of
f(x) = cos x evaluated at x = 0.

Chapter 8 Sequences and Series

This bound is not as nearly as good as before. Using the degree 6 Taylor
polynomial at x = 1 will bring us within 0.3 of the correct answer. As
p6(2) ≈ 0.61667, our error esƟmate guarantees that the actual value of
ln 2 is somewhere between 0.31667 and 0.91667. These bounds are not
parƟcularly useful.

In reality, our approximaƟon was only off by about 0.07. However, we
are approximaƟng ostensibly because we do not know the real answer. In
order to be assured that we have a good approximaƟon, we would have
to resort to using a polynomial of higher degree.

...

We pracƟce again. This Ɵme, we use Taylor’s theorem to find n that guaran-
tees our approximaƟon is within a certain amount.

.. Example 262 ..Finding sufficiently accurate Taylor polynomials
Find n such that the nth Taylor polynomial of f(x) = cos x at x = 0 approximates
cos 2 to within 0.001 of the actual answer. What is pn(2)?

SÊ½çã®ÊÄ Following Taylor’s theorem, we need bounds on the size of
the derivaƟves of f(x) = cos x. In the case of this trigonometric funcƟon, this is
easy. All derivaƟves of cosine are± sin x or± cos x. In all cases, these funcƟons
are never greater than 1 in absolute value. We want the error to be less than
0.001. To find the appropriate n, consider the following inequaliƟes:

max
∣∣f (n+1)(z)

∣∣
(n+ 1)!

∣∣(2− 0)(n+1)∣∣ ≤ 0.001

1
(n+ 1)!

· 2(n+1) ≤ 0.001

We find an n that saƟsfies this last inequality with trial–and–error. When n = 8,

we have
28+1

(8+ 1)!
≈ 0.0014; when n = 9, we have

29+1

(9+ 1)!
≈ 0.000282 <

0.001. Thus we want to approximate cos 2 with p9(2).

We now set out to compute p9(x). We again need a table of the derivaƟves
of f(x) = cos x evaluated at x = 0. A table of these values is given in Figure 8.26.
NoƟce how the derivaƟves, evaluated at x = 0, follow a certain paƩern. All the
odd powers of x in the Taylor polynomial will disappear as their coefficient is 0.
While our error bounds state that we need p9(x), our work shows that this will
be the same as p8(x).

Since we are forming our polynomial at x = 0, we are creaƟng a Maclaurin

Notes:
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y = p8(x)

.
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.
.. f(x) = cos x

Figure 8.27: A graph of f(x) = cos x and
its degree 8 Maclaurin polynomial.

f(x) =
√
x ⇒ f(4) = 2

f ′(x) =
1

2
√
x

⇒ f ′(4) =
1
4

f ′′(x) =
−1
4x3/2

⇒ f ′′(4) =
−1
32

f ′′′(x) =
3

8x5/2
⇒ f ′′′(4) =

3
256

f (4)(x) =
−15
16x7/2

⇒ f (4)(4) =
−15
2048

Figure 8.28: A table of the derivaƟves of
f(x) =

√
x evaluated at x = 4.

.....

.. y =
√
x.

y = p4(x)

.
5

.
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1
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.
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y

Figure 8.29: A graph of f(x) =
√
x and its

degree 4 Taylor polynomial at x = 4.

8.7 Taylor Polynomials

polynomial, and :

p8(x) = f(0) + f ′(0)x+
f ′′(0)
2!

x2 +
f ′′′(0)
3!

x3 + · · ·+ f (8)

8!
x8

= 1− 1
2!
x2 +

1
4!
x4 − 1

6!
x6 +

1
8!
x8

We finally approximate cos 2:

cos 2 ≈ p8(2) = −131
315

≈ −0.41587.

Our error bound guarantee that this approximaƟon is within 0.001 of the correct
answer. Technology shows us that our approximaƟon is actually within about
0.0003 of the correct answer.

Figure 8.27 shows a graph of y = p8(x) and y = cos x. Note how well the
two funcƟons agree on about (−π, π). ...

.. Example 263 Finding and using Taylor polynomials

1. Find the degree 4 Taylor polynomial, p4(x), for f(x) =
√
x at x = 4.

2. Use p4(x) to approximate
√
3.

3. Find bounds on the error when approximaƟng
√
3 with p4(3).

SÊ½çã®ÊÄ

1. We begin by evaluaƟng the derivaƟves of f at x = 4. This is done in Figure
8.28. These values allow us to form the Taylor polynomial p4(x):

p4(x) = 2+
1
4
(x−4)+

−1/32
2!

(x−4)2+
3/256
3!

(x−4)3+
−15/2048

4!
(x−4)4.

2. As p4(x) ≈
√
x near x = 4, we approximate

√
3 with p4(3) = 1.73212.

3. To find a bound on the error, we need an open interval that contains x = 3
and x = 4. We set I = (2.9, 4.1). The largest value the fiŌh derivaƟve of
f(x) =

√
x takes on this interval is near x = 2.9, at about 0.0273. Thus∣∣R4(3)∣∣ ≤ 0.0273

5!
∣∣(3− 4)5

∣∣ ≈ 0.00023.

This shows our approximaƟon is accurate to at least the first 2 places aŌer
the decimal. (It turns out that our approximaƟon is actually accurate to
4 places aŌer the decimal.) A graph of f(x) =

√
x and p4(x) is given in

Figure 8.29. Note how the two funcƟons are nearly indisƟnguishable on
(2, 7)...

Notes:
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Chapter 8 Sequences and Series

Our final example gives a brief introducƟon to using Taylor polynomials to
solve differenƟal equaƟons.

.. Example 264 ..ApproximaƟng an unknown funcƟon
A funcƟon y = f(x) is unknown save for the following two facts.

1. y(0) = f(0) = 1, and

2. y′ = y2

(This second fact says that amazingly, the derivaƟve of the funcƟon is actually
the funcƟon squared!)

Find the degree 3 Maclaurin polynomial p3(x) of y = f(x).

SÊ½çã®ÊÄ Onemight iniƟally think that not enough informaƟon is given
to find p3(x). However, note how the second fact above actually lets us know
what y′(0) is:

y′ = y2 ⇒ y′(0) = y2(0).

Since y(0) = 1, we conclude that y′(0) = 1.
Now we find informaƟon about y′′. StarƟng with y′ = y2, take derivaƟves of

both sides, with respect to x. That means we must use implicit differenƟaƟon.

y′ = y2

d
dx
(
y′
)
=

d
dx
(
y2
)

y′′ = 2y · y′.

Now evaluate both sides at x = 0:

y′′(0) = 2y(0) · y′(0)
y′′(0) = 2

We repeat this once more to find y′′′(0). We again use implicit differenƟaƟon;
this Ɵme the Product Rule is also required.

d
dx
(
y′′
)
=

d
dx
(
2yy′

)
y′′′ = 2y′ · y′ + 2y · y′′.

Now evaluate both sides at x = 0:

y′′′(0) = 2y′(0)2 + 2y(0)y′′(0)
y′′′(0) = 2+ 4 = 6

Notes:
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Figure 8.30: A graph of y = −1/(x − 1)
and y = p3(x) from Example 264.

8.7 Taylor Polynomials

In summary, we have:

y(0) = 1 y′(0) = 1 y′′(0) = 2 y′′′(0) = 6.

We can now form p3(x):

p3(x) = 1+ x+
2
2!
x2 +

6
3!
x3

= 1+ x+ x2 + x3.

It turns out that the differenƟal equaƟonwe startedwith, y′ = y2, where y(0) =

1, can be solved without too much difficulty: y =
1

1− x
. Figure 8.30 shows this

funcƟon ploƩed with p3(x). Note how similar they are near x = 0. ...

It is beyond the scope of this text to pursue error analysis when using Tay-
lor polynomials to approximate soluƟons to differenƟal equaƟons. This topic is
oŌen broached in introductory DifferenƟal EquaƟons courses and usually cov-
ered in depth in Numerical Analysis courses. Such an analysis is very important;
one needs to know how good their approximaƟon is. We explored this example
simply to demonstrate the usefulness of Taylor polynomials.

Most of this chapter has been devoted to the study of infinite series. This
secƟon has taken a step back from this study, focusing instead on finite summa-
Ɵon of terms. In the next secƟon, we explore Taylor Series, where we represent
a funcƟon with an infinite series.

Notes:
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Exercises 8.7
Terms and Concepts
1. What is the difference between a Taylor polynomial and a

Maclaurin polynomial?

2. T/F: In general, pn(x) approximates f(x) beƩer and beƩer
as n gets larger.

3. For some funcƟon f(x), theMaclaurin polynomial of degree
4 is p4(x) = 6+ 3x− 4x2 + 5x3 − 7x4. What is p2(x)?

4. For some funcƟon f(x), theMaclaurin polynomial of degree
4 is p4(x) = 6+ 3x− 4x2 + 5x3 − 7x4. What is f ′′′(0)?

Problems
In Exercises 5 – 12, find the Maclaurin polynomial of degree
n for the given funcƟon.

5. f(x) = e−x, n = 3

6. f(x) = sin x, n = 8

7. f(x) = x · ex, n = 5

8. f(x) = tan x, n = 6

9. f(x) = e2x, n = 4

10. f(x) =
1

1− x
, n = 4

11. f(x) =
1

1+ x
, n = 4

12. f(x) =
1

1+ x
, n = 7

In Exercises 13 – 20, find the Taylor polynomial of degree n,
at x = c, for the given funcƟon.

13. f(x) =
√
x, n = 4, c = 1

14. f(x) = ln(x+ 1), n = 4, c = 1

15. f(x) = cos x, n = 6, c = π/4

16. f(x) = sin x, n = 5, c = π/6

17. f(x) =
1
x
, n = 5, c = 2

18. f(x) =
1
x2
, n = 8, c = 1

19. f(x) =
1

x2 + 1
, n = 3, c = −1

20. f(x) = x2 cos x, n = 2, c = π

In Exercises 21 – 24, approximate the funcƟon value with the
indicated Taylor polynomial and give approximate bounds on
the error.

21. Approximate sin 0.1 with the Maclaurin polynomial of de-
gree 3.

22. Approximate cos 1 with the Maclaurin polynomial of de-
gree 4.

23. Approximate
√
10 with the Taylor polynomial of degree 2

centered at x = 9.

24. Approximate ln 1.5 with the Taylor polynomial of degree 3
centered at x = 1.

Exercises 25 – 28 ask for an n to be found such that pn(x) ap-
proximates f(x) within a certain bound of accuracy.

25. Find n such that the Maclaurin polynomial of degree n of
f(x) = ex approximates ewithin 0.0001of the actual value.

26. Find n such that the Taylor polynomial of degree n of f(x) =√
x, centered at x = 4, approximates

√
3 within 0.0001 of

the actual value.

27. Find n such that the Maclaurin polynomial of degree n of
f(x) = cos x approximates cos π/3 within 0.0001 of the ac-
tual value.

28. Find n such that the Maclaurin polynomial of degree n of
f(x) = sin x approximates cos π within 0.0001 of the actual
value.

In Exercises 29 – 33, find the nth term of the indicated Taylor
polynomial.

29. Find a formula for the nth term of theMaclaurin polynomial
for f(x) = ex.

30. Find a formula for the nth term of theMaclaurin polynomial
for f(x) = cos x.

31. Find a formula for the nth term of theMaclaurin polynomial
for f(x) =

1
1− x

.

32. Find a formula for the nth term of theMaclaurin polynomial
for f(x) =

1
1+ x

.

33. Find a formula for the nth term of the Taylor polynomial for
f(x) = ln x.

In Exercises 34 – 36, approximate the soluƟon to the given
differenƟal equaƟon with a degree 4 Maclaurin polynomial.

34. y′ = y, y(0) = 1

35. y′ = 5y, y(0) = 3

36. y′ =
2
y
, y(0) = 1
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f(x) = cos x ⇒ f(0) = 1
f ′(x) = − sin x ⇒ f ′(0) = 0
f ′′(x) = − cos x ⇒ f ′′(0) = −1
f ′′′(x) = sin x ⇒ f ′′′(0) = 0
f (4)(x) = cos x ⇒ f (4)(0) = 1
f (5)(x) = − sin x ⇒ f (5)(0) = 0
f (6)(x) = − cos x ⇒ f (6)(0) = −1
f (7)(x) = sin x ⇒ f (7)(0) = 0
f (8)(x) = cos x ⇒ f (8)(0) = 1
f (9)(x) = − sin x ⇒ f (9)(0) = 0

Figure 8.31: A table of the derivaƟves of
f(x) = cos x evaluated at x = 0.

8.8 Taylor Series

8.8 Taylor Series
In SecƟon 8.6, we showed how certain funcƟons can be represented by a power
series funcƟon. In 8.7, we showed howwe can approximate funcƟons with poly-
nomials, given that enough derivaƟve informaƟon is available. In this secƟonwe
combine these concepts: if a funcƟon f(x) is infinitely differenƟable, we show
how to represent it with a power series funcƟon.

..
DefiniƟon 39 Taylor and Maclaurin Series

Let f(x) have derivaƟves of all orders at x = c.

1. The Taylor Series of f(x), centered at c is

∞∑
n=0

f (n)(c)
n!

(x− c)n.

2. Seƫng c = 0 gives theMaclaurin Series of f(x):

∞∑
n=0

f (n)(0)
n!

xn.

The difference between a Taylor polynomial and a Taylor series is the former
is a polynomial, containing only a finite number of terms, whereas the laƩer is
a series, a summaƟon of an infinite set of terms. When creaƟng the Taylor poly-
nomial of degree n for a funcƟon f(x) at x = c, we needed to evaluate f, and the
first n derivaƟves of f, at x = c. When creaƟng the Taylor series of f, it helps to
find a paƩern that describes the nth derivaƟve of f at x = c. We demonstrate
this in the next two examples.

.. Example 265 ..The Maclaurin series of f(x) = cos x
Find the Maclaurin series of f(x) = cos x.

SÊ½çã®ÊÄ In Example 262 we found the 8th degree Maclaurin polyno-
mial of cos x. In doing so, we created the table shown in Figure 8.31. NoƟce how
f (n)(0) = 0when n is odd, f (n)(0) = 1when n is divisible by 4, and f (n)(0) = −1
when n is even but not divisible by 4. Thus the Maclaurin series of cos x is

1− x2

2
+

x4

4!
− x6

6!
+

x8

8!
− · · ·

Notes:
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f(x) = ln x ⇒ f(1) = 0
f ′(x) = 1/x ⇒ f ′(1) = 1
f ′′(x) = −1/x2 ⇒ f ′′(1) = −1
f ′′′(x) = 2/x3 ⇒ f ′′′(1) = 2
f (4)(x) = −6/x4 ⇒ f (4)(1) = −6
f (5)(x) = 24/x5 ⇒ f (5)(1) = 24
...

...
f (n)(x) = ⇒ f (n)(1) =
(−1)n+1(n− 1)!

xn
(−1)n+1(n− 1)!

Figure 8.32: DerivaƟves of ln x evaluated
at x = 1.

Chapter 8 Sequences and Series

We can go further and write this as a summaƟon. Since we only need the terms
where the power of x is even, we write the power series in terms of x2n:

∞∑
n=0

(−1)n
x2n

(2n)!
.

...

.. Example 266 The Taylor series of f(x) = ln x at x = 1
Find the Taylor series of f(x) = ln x centered at x = 1.

SÊ½çã®ÊÄ Figure 8.32 shows the nth derivaƟve of ln x evaluated at x =
1 for n = 0, . . . , 5, along with an expression for the nth term:

f (n)(1) = (−1)n+1(n− 1)! for n ≥ 1.

Remember that this is what disƟnguishes Taylor series from Taylor polynomials;
we are very interested in finding a paƩern for the nth term, not just finding a
finite set of coefficients for a polynomial. Since f(1) = ln 1 = 0, we skip the
first term and start the summaƟon with n = 1, giving the Taylor series for ln x,
centered at x = 1, as

∞∑
n=1

(−1)n+1(n− 1)!
1
n!
(x− 1)n =

∞∑
n=1

(−1)n+1 (x− 1)n

n
.

..

It is important to note that DefiniƟon 39 defines a Taylor series given a func-
Ɵon f(x); however, we cannot yet state that f(x) is equal to its Taylor series. We
will find that “most of the Ɵme” they are equal, but we need to consider the
condiƟons that allow us to conclude this.

Theorem 76 states that the error between a funcƟon f(x) and its nth–degree
Taylor polynomial pn(x) is Rn(x), where

∣∣Rn(x)∣∣ ≤ max
∣∣ f (n+1)(z)

∣∣
(n+ 1)!

∣∣(x− c)(n+1)∣∣.
If Rn(x) goes to 0 for each x in an interval I as n approaches infinity, we con-

clude that the funcƟon is equal to its Taylor series expansion.

Notes:
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..
Theorem 77 FuncƟon and Taylor Series Equality

Let f(x) have derivaƟves of all orders at x = c, let Rn(x) be as stated in
Theorem 76, and let I be an interval on which the Taylor series of f(x)
converges. If lim

n→∞
Rn(x) = 0 for all x in I containing c, then

f(x) =
∞∑
n=0

f (n)(c)
n!

(x− c)n on I.

We demonstrate the use of this theorem in an example.

.. Example 267 Establishing equality of a funcƟon and its Taylor series
Show that f(x) = cos x is equal to its Maclaurin series, as found in Example 265,
for all x.

SÊ½çã®ÊÄ Given a value x, the magnitude of the error term Rn(x) is
bounded by ∣∣Rn(x)∣∣ ≤ max

∣∣ f (n+1)(z)
∣∣

(n+ 1)!
∣∣x(n+1)∣∣.

Since all derivaƟves of cos x are± sin xor± cos x, whosemagnitudes are bounded
by 1, we can state ∣∣Rn(x)∣∣ ≤ 1

(n+ 1)!
∣∣x(n+1)∣∣.

For any x, lim
n→∞

xn+1

(n+ 1)!
= 0. Thus by the Squeeze Theorem, we conclude that

lim
n→∞

Rn(x) = 0 for all x, and hence

cos x =
∞∑
n=0

(−1)n
x2n

(2n)!
for all x...

It is natural to assume that a funcƟon is equal to its Taylor series on the
series’ interval of convergence, but this is not the case. In order to properly
establish equality, one must use Theorem 77. This is a bit disappoinƟng, as we
developed beauƟful techniques for determining the interval of convergence of
a power series, and proving that Rn(x) → 0 can be cumbersome as it deals with
high order derivaƟves of the funcƟon.

There is good news. A funcƟon f(x) that is equal to its Taylor series, centered
at any point the domain of f(x), is said to be an analyƟc funcƟon, and most, if
not all, funcƟons that we encounter within this course are analyƟc funcƟons.

Notes:
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Generally speaking, any funcƟon that one creates with elementary funcƟons
(polynomials, exponenƟals, trigonometric funcƟons, etc.) that is not piecewise
defined is probably analyƟc. Formost funcƟons, we assume the funcƟon is equal
to its Taylor series on the series’ interval of convergence and only use Theorem
77 when we suspect something may not work as expected.

We develop the Taylor series for one more important funcƟon, then give a
table of the Taylor series for a number of common funcƟons.

.. Example 268 ..The Binomial Series
Find the Maclaurin series of f(x) = (1+ x)k, k ̸= 0.

SÊ½çã®ÊÄ When k is a posiƟve integer, the Maclaurin series is finite.
For instance, when k = 4, we have

f(x) = (1+ x)4 = 1+ 4x+ 6x2 + 4x3 + x4.

The coefficients of x when k is a posiƟve integer are known as the binomial co-
efficients, giving the series we are developing its name.

When k = 1/2, we have f(x) =
√
1+ x. Knowing a series representaƟon of

this funcƟon would give a useful way of approximaƟng
√
1.3, for instance.

To develop the Maclaurin series for f(x) = (1 + x)k for any value of k ̸= 0,
we consider the derivaƟves of f evaluated at x = 0:

f(x) = (1+ x)k f(0) = 1

f ′(x) = k(1+ x)k−1 f ′(0) = k

f ′′(x) = k(k− 1)(1+ x)k−2 f ′′(0) = k(k− 1)

f ′′′(x) = k(k− 1)(k− 2)(1+ x)k−3 f ′′′(0) = k(k− 1)(k− 2)
...

...

f (n)(x) = k(k− 1) · · ·
(
k− (n− 1)

)
(1+ x)k−n f (n)(0) = k(k− 1) · · ·

(
k− (n− 1)

)
Thus the Maclaurin series for f(x) = (1+ x)k is

1+ k+
k(k− 1)

2!
+

k(k− 1)(k− 2)
3!

+ . . .+
k(k− 1) · · ·

(
k− (n− 1)

)
n!

+ . . .

It is important to determine the interval of convergence of this series. With

an =
k(k− 1) · · ·

(
k− (n− 1)

)
n!

xn,
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we apply the RaƟo Test:

lim
n→∞

|an+1|
|an|

= lim
n→∞

∣∣∣∣k(k− 1) · · · (k− n)
(n+ 1)!

xn+1
∣∣∣∣
/∣∣∣∣∣k(k− 1) · · ·

(
k− (n− 1)

)
n!

xn
∣∣∣∣∣

= lim
n→∞

∣∣∣∣k− n
n

x
∣∣∣∣

= |x|.

The series converges absolutely when the limit of the RaƟo Test is less than
1; therefore, we have absolute convergence when |x| < 1.

While outside the scope of this text, the interval of convergence depends
on the value of k. When k > 0, the interval of convergence is [−1, 1]. When
−1 < k < 0, the interval of convergence is [−1, 1). If k ≤ −1, the interval of
convergence is (−1, 1). ...

We learned that Taylor polynomials offer a way of approximaƟng a “difficult
to compute” funcƟon with a polynomial. Taylor series offer a way of exactly
represenƟng a funcƟon with a series. One probably can see the use of a good
approximaƟon; is there any use of represenƟng a funcƟon exactly as a series?

Whilewe should not overlook themathemaƟcal beauty of Taylor series (which
is reason enough to study them), there are pracƟcal uses as well. They provide
a valuable tool for solving a variety of problems, including problems relaƟng to
integraƟon and differenƟal equaƟons.

In Key Idea 32 (on the following page) we give a table of the Taylor series
of a number of common funcƟons. We then give a theorem about the “algebra
of power series,” that is, how we can combine power series to create power
series of new funcƟons. This allows us to find the Taylor series of funcƟons like
f(x) = ex cos x by knowing the Taylor series of ex and cos x.

Before we invesƟgate combining funcƟons, consider the Taylor series for the
arctangent funcƟon (see Key Idea 32). Knowing that tan−1(1) = π/4, we can
use this series to approximate the value of π:

π

4
= tan−1(1) = 1− 1

3
+

1
5
− 1

7
+

1
9
− · · ·

π = 4
(
1− 1

3
+

1
5
− 1

7
+

1
9
− · · ·

)
Unfortunately, this parƟcular expansion of π converges very slowly. The first

100 terms approximate π as 3.13159, which is not parƟcularly good.

Notes:
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..
Key Idea 32 Important Taylor Series Expansions

FuncƟon and Series First Few Terms Interval of
Convergence

ex =
∞∑
n=0

xn

n!
1+ x+

x2

2!
+

x3

3!
+ · · · (−∞,∞)

sin x =
∞∑
n=0

(−1)n
x2n+1

(2n+ 1)!
x− x3

3!
+

x5

5!
− x7

7!
+ · · · (−∞,∞)

cos x =
∞∑
n=0

(−1)n
x2n

(2n)!
1− x2

2!
+

x4

4!
− x6

6!
+ · · · (−∞,∞)

ln x =
∞∑
n=1

(−1)n+1 (x− 1)n

n
(x− 1)− (x− 1)2

2
+

(x− 1)3

3
− · · · (0, 2]

1
1− x

=
∞∑
n=0

xn 1+ x+ x2 + x3 + · · · (−1, 1)

(1+ x)k =
∞∑
n=0

k(k− 1) · · ·
(
k− (n− 1)

)
n!

xn 1+ kx+
k(k− 1)

2!
x2 + · · · (−1, 1)a

tan−1 x =
∞∑
n=0

(−1)n
x2n+1

2n+ 1
x− x3

3
+

x5

5
− x7

7
+ · · · [−1, 1]

aConvergence at x = ±1 depends on the value of k.

..
Theorem 78 Algebra of Power Series

Let f(x) =
∞∑
n=0

anxn and g(x) =
∞∑
n=0

bnxn converge absolutely for |x| < R, and let h(x) be conƟnuous.

1. f(x)± g(x) =
∞∑
n=0

(an ± bn)xn for |x| < R.

2. f(x)g(x) =

( ∞∑
n=0

anxn
)( ∞∑

n=0

bnxn
)

=
∞∑
n=0

(
a0bn + a1bn−1 + . . . anb0

)
xn for |x| < R.

3. f
(
h(x)

)
=

∞∑
n=0

an
(
h(x)

)n for |h(x)| < R.

Notes:
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.. Example 269 Combining Taylor series
Write out the first 3 terms of the Taylor Series for f(x) = ex cos x using Key Idea
32 and Theorem 78.

SÊ½çã®ÊÄ Key Idea 32 informs us that

ex = 1+ x+
x2

2!
+

x3

3!
+ · · · and cos x = 1− x2

2!
+

x4

4!
+ · · · .

Applying Theorem 78, we find that

ex cos x =
(
1+ x+

x2

2!
+

x3

3!
+ · · ·

)(
1− x2

2!
+

x4

4!
+ · · ·

)
.

Distribute the right hand expression across the leŌ:

= 1
(
1− x2

2!
+

x4

4!
+ · · ·

)
+ x

(
1− x2

2!
+

x4

4!
+ · · ·

)
+

x2

2!

(
1− x2

2!
+

x4

4!
+ · · ·

)
+

x3

3!

(
1− x2

2!
+

x4

4!
+ · · ·

)
+

x4

4!

(
1− x2

2!
+

x4

4!
+ · · ·

)
+ · · ·

Distribute again and collect like terms.

= 1+ x− x3

3
− x4

6
− x5

30
+

x7

630
+ · · ·

While this process is a bit tedious, it is much faster than evaluaƟng all the nec-
essary derivaƟves of ex cos x and compuƟng the Taylor series directly.

Because the series for ex and cos x both converge on (−∞,∞), so does the
series expansion for ex cos x. ..

.. Example 270 ..CreaƟng new Taylor series
Use Theorem 78 to create series for y = sin(x2) and y = ln(

√
x).

SÊ½çã®ÊÄ Given that

sin x =
∞∑
n=0

(−1)n
x2n+1

(2n+ 1)!
= x− x3

3!
+

x5

5!
− x7

7!
+ · · · ,

we simply subsƟtute x2 for x in the series, giving

sin(x2) =
∞∑
n=0

(−1)n
(x2)2n+1

(2n+ 1)!
= x2 − x6

3!
+

x10

5!
− x14

7!
· · · .

Notes:
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Since the Taylor series for sin x has an infinite radius of convergence, so does the
Taylor series for sin(x2).

The Taylor expansion for ln x given in Key Idea 32 is centered at x = 1, so we
will center the series for ln(

√
x) at x = 1 as well. With

ln x =
∞∑
n=1

(−1)n+1 (x− 1)n

n
= (x− 1)− (x− 1)2

2
+

(x− 1)3

3
− · · · ,

we subsƟtute
√
x for x to obtain

ln(
√
x) =

∞∑
n=1

(−1)n+1 (
√
x− 1)n

n
= (

√
x−1)− (

√
x− 1)2

2
+

(
√
x− 1)3

3
−· · · .

While this is not strictly a power series, it is a series that allows us to study the
funcƟon ln(

√
x). Since the interval of convergence of ln x is (0, 2], and the range

of
√
x on (0, 4] is (0, 2], the interval of convergence of this series expansion of

ln(
√
x) is (0, 4]. ...

.. Example 271 ..Using Taylor series to evaluate definite integrals

Use the Taylor series of e−x2 to evaluate
∫ 1

0
e−x2 dx.

SÊ½çã®ÊÄ We learned, when studying Numerical IntegraƟon, that e−x2

does not have an anƟderivaƟve expressible in terms of elementary funcƟons.
This means any definite integral of this funcƟon must have its value approxi-
mated, and not computed exactly.

We can quickly write out the Taylor series for e−x2 using the Taylor series of
ex:

ex =
∞∑
n=0

xn

n!
= 1+ x+

x2

2!
+

x3

3!
+ · · ·

and so

e−x2 =
∞∑
n=0

(−x2)n

n!

=
∞∑
n=0

(−1)n
x2n

n!

= 1− x2 +
x4

2!
− x6

3!
+ · · ·
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We use Theorem 75 to integrate:∫
e−x2 dx = C+ x− x3

3
+

x5

5 · 2!
− x7

7 · 3!
+ · · ·+ (−1)n

x2n+1

(2n+ 1)n!
+ · · ·

This is the anƟderivaƟve of e−x2 ; while we can write it out as a series, we can-
not write it out in terms of elementary funcƟons. We can evaluate the definite

integral
∫ 1

0
e−x2 dx using this anƟderivaƟve; subsƟtuƟng 1 and 0 for x and sub-

tracƟng gives ∫ 1

0
e−x2 dx = 1− 1

3
+

1
5 · 2!

− 1
7 · 3!

+
1

9 · 4!
· · · .

Summing the 5 terms shown above give the approximaƟon of 0.74749. Since
this is an alternaƟng series, we can use the AlternaƟng Series ApproximaƟon
Theorem, (Theorem 71), to determine how accurate this approximaƟon is. The
next term of the series is 1/(11 · 5!) ≈ 0.00075758. Thus we know our approxi-
maƟon is within 0.00075758 of the actual value of the integral. This is arguably
much less work than using Simpson’s Rule to approximate the value of the inte-
gral. ...

.. Example 272 Using Taylor series to solve differenƟal equaƟons
Solve the differenƟal equaƟon y′ = 2y in terms of a power series, and use the
theory of Taylor series to recognize the soluƟon in terms of an elementary func-
Ɵon.

SÊ½çã®ÊÄ We found the first 5 terms of the power series soluƟon to
this differenƟal equaƟon in Example 258 in SecƟon 8.6. These are:

a0 = 1, a1 = 2, a2 =
4
2
= 2, a3 =

8
2 · 3

=
4
3
, a4 =

16
2 · 3 · 4

=
2
3
.

We include the “unsimplified” expressions for the coefficients found in Example
258 as we are looking for a paƩern. It can be shown that an = 2n/n!. Thus the
soluƟon, wriƩen as a power series, is

y =
∞∑
n=0

2n

n!
xn =

∞∑
n=0

(2x)n

n!
.

Using Key Idea 32 and Theorem 78, we recognize f(x) = e2x:

ex =
∞∑
n=0

xn

n!
⇒ e2x =

∞∑
n=0

(2x)n

n!
.

..
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Finding a paƩern in the coefficients that match the series expansion of a
known funcƟon, such as those shown in Key Idea 32, can be difficult. What if
the coefficients in the previous example were given in their reduced form; how
could we sƟll recover the funcƟon y = e2x?

Suppose that all we know is that

a0 = 1, a1 = 2, a2 = 2, a3 =
4
3
, a4 =

2
3
.

DefiniƟon 39 states that each term of the Taylor expansion of a funcƟon includes
an n!. This allows us to say that

a2 = 2 =
b2
2!
, a3 =

4
3
=

b3
3!
, and a4 =

2
3
=

b4
4!

for some values b2, b3 and b4. Solving for these values, we see that b2 = 4,
b3 = 8 and b4 = 16. That is, we are recovering the paƩern we had previously
seen, allowing us to write

f(x) =
∞∑
n=0

anxn =
∞∑
n=0

bn
n!

xn

= 1+ 2x+
4
2!
x2 +

8
3!
x3 +

16
4!

x4 + · · ·

From here it is easier to recognize that the series is describing an exponenƟal
funcƟon.

There are simpler, more direct ways of solving the differenƟal equaƟon y′ =
2y. We applied power series techniques to this equaƟon to demonstrate its uƟl-
ity, and went on to show how someƟmes we are able to recover the soluƟon in
terms of elementary funcƟons using the theory of Taylor series. Most differen-
Ɵal equaƟons faced in real scienƟfic and engineering situaƟons are much more
complicated than this one, but power series can offer a valuable tool in finding,
or at least approximaƟng, the soluƟon.
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Exercises 8.8
Terms and Concepts
1. What is the difference between a Taylor polynomial and a

Taylor series?

2. What theoremmustwe use to show that a funcƟon is equal
to its Taylor series?

Problems
Key Idea 32 gives the nth term of the Taylor series of common
funcƟons. In Exercises 3 – 6, verify the formula given in the
Key Idea by finding the first few terms of the Taylor series of
the given funcƟon and idenƟfying a paƩern.

3. f(x) = ex; c = 0

4. f(x) = sin x; c = 0

5. f(x) = 1/(1− x); c = 0

6. f(x) = tan−1 x; c = 0

In Exercises 7 – 12, find a formula for the nth termof the Taylor
series of f(x), centered at c, by finding the coefficients of the
first few powers of x and looking for a paƩern. (The formu-
las for several of these are found in Key Idea 32; show work
verifying these formula.)

7. f(x) = cos x; c = π/2

8. f(x) = 1/x; c = 1

9. f(x) = e−x; c = 0

10. f(x) = ln(1+ x); c = 0

11. f(x) = x/(x+ 1); c = 1

12. f(x) = sin x; c = π/4

In Exercises 13 – 16, show that the Taylor series for f(x), as
given in Key Idea 32, is equal to f(x) by applying Theorem 77;
that is, show lim

n→∞
Rn(x) = 0.

13. f(x) = ex

14. f(x) = sin x

15. f(x) = ln x

16. f(x) = 1/(1− x) (show equality only on (−1, 0))

In Exercises 17 – 20, use the Taylor series given in Key Idea 32
to verify the given idenƟty.

17. cos(−x) = cos x

18. sin(−x) = − sin x

19. d
dx

(
sin x

)
= cos x

20. d
dx

(
cos x

)
= − sin x

In Exercises 21 – 24, write out the first 5 terms of the Binomial
series with the given k-value.

21. k = 1/2

22. k = −1/2

23. k = 1/3

24. k = 4

In Exercises 25 – 30, use the Taylor series given in Key Idea 32
to create the Taylor series of the given funcƟons.

25. f(x) = cos
(
x2
)

26. f(x) = e−x

27. f(x) = sin
(
2x+ 3

)
28. f(x) = tan−1 (x/2)
29. f(x) = ex sin x (only find the first 4 terms)

30. f(x) = (1+ x)1/2 cos x (only find the first 4 terms)

In Exercises 31 – 32, approximate the value of the given def-
inite integral by using the first 4 nonzero terms of the inte-
grand’s Taylor series.

31.
∫ √

π

0
sin
(
x2
)
dx

32.
∫ π2/4

0
cos
(√

x
)
dx
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9.1 Conic SecƟons

The ancient Greeks recognized that interesƟng shapes can be formed by inter-
secƟng a plane with a double napped cone (i.e., two idenƟcal cones placed Ɵp–
to–Ɵp as shown in the following figures). As these shapes are formed as secƟons
of conics, they have earned the official name “conic secƟons.”

The three “most interesƟng” conic secƟons are given in the top row of Figure
9.1. They are the parabola, the ellipse (which includes circles) and the hyper-
bola. In each of these cases, the plane does not intersect the Ɵps of the cones
(usually taken to be the origin).

Parabola Ellipse Circle Hyperbola

Point Line Crossed Lines

Figure 9.1: Nondegenerate Conic SecƟons

When the plane does contain the origin, three degenerate cones can be
formed as shown the boƩom row of Figure 9.1: a point, a line, and crossed
lines. We focus here on the nondegenerate cases.

While the above geometric constructs define the conics in an intuiƟve, visual
way, these constructs are not very helpful when trying to analyze the shapes
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algebraically or consider them as the graph of a funcƟon. It can be shown that
all conics can be defined by the general second–degree equaƟon

Ax2 + Bxy+ Cy2 + Dx+ Ey+ F = 0.

While this algebraic definiƟon has its uses, most find another geometric per-
specƟve of the conics more beneficial.

Each nondegenerate conic can be defined as the locus, or set, of points that
saƟsfy a certain distance property. These distance properƟes can be used to
generate an algebraic formula, allowing us to study each conic as the graph of a
funcƟon.

Parabolas

..
DefiniƟon 40 Parabola

A parabola is the locus of all points equidistant from a point (called a
focus) and a line (called the directrix) that does not contain the focus.

Figure 9.2 illustrates this definiƟon. The point halfway between the focus
and the directrix is the vertex. The line through the focus, perpendicular to the
directrix, is the axis of symmetry, as the porƟon of the parabola on one side of
this line is the mirror–image of the porƟon on the opposite side.

The definiƟon leads us to an algebraic formula for the parabola. Let P =
(x, y) be a point on a parabola whose focus is at F = (0, p) and whose directrix
is at y = −p. (We’ll assume for now that the focus lies on the y-axis; by placing
the focus p units above the x-axis and the directrix p units below this axis, the
vertex will be at (0, 0).)

We use the Distance Formula to find the distance d1 between F and P:

d1 =
√

(x− 0)2 + (y− p)2.

The distance d2 from P to the directrix is more straighƞorward:

d2 = y− (−p) = y+ p.

These two distances are equal. Seƫng d1 = d2, we can solve for y in terms of x:

d1 = d2√
x2 + (y− p)2 = y+ p

Notes:
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Now square both sides.

x2 + (y− p)2 = (y+ p)2

x2 + y2 − 2yp+ p2 = y2 + 2yp+ p2

x2 = 4yp

y =
1
4p

x2.

The geometric definiƟon of the parabola has led us to the familiar quadraƟc
funcƟonwhose graph is a parabola with vertex at the origin. Whenwe allow the
vertex to not be at (0, 0), we get the following standard form of the parabola.

..
Key Idea 33 General EquaƟon of a Parabola

1. VerƟcal Axis of Symmetry: The equaƟon of the parabola with ver-
tex at (h, k) and directrix y = k− p in standard form is

y =
1
4p

(x− h)2 + k.

The focus is at (h, k+ p).

2. Horizontal Axis of Symmetry: The equaƟon of the parabola with
vertex at (h, k) and directrix x = h− p in standard form is

x =
1
4p

(y− k)2 + h.

The focus is at (h+ p, k).

Note: p is not necessarily a posiƟve number.

.. Example 273 Finding the equaƟon of a parabola
Give the equaƟon of the parabola with focus at (1, 2) and directrix at y = 3.

SÊ½çã®ÊÄ The vertex is located halfway between the focus and direc-
trix, so (h, k) = (1, 2.5). This gives p = −0.5. Using Key Idea 33 we have the
equaƟon of the parabola as

y =
1

4(−0.5)
(x− 1)2 + 2.5 = −1

2
(x− 1)2 + 2.5.

The parabola is sketched in Figure 9.3. ..

Notes:
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.. Example 274 Finding the focus and directrix of a parabola
Find the focus and directrix of the parabola x = 1

8y
2 − y + 1. The point (7, 12)

lies on the graph of this parabola; verify that it is equidistant from the focus and
directrix.

SÊ½çã®ÊÄ We need to put the equaƟon of the parabola in its general
form. This requires us to complete the square:

x =
1
8
y2 − y+ 1

=
1
8
(
y2 − 8y+ 8

)
=

1
8
(
y2 − 8y+ 16− 16+ 8

)
=

1
8
(
(y− 4)2 − 8

)
=

1
8
(y− 4)2 − 1.

Hence the vertex is located at (−1, 4). We have 1
8 = 1

4p , so p = 2. We conclude
that the focus is located at (1, 4) and the directrix is x = −3. The parabola is
graphed in Figure 9.4, along with its focus and directrix.

The point (7, 12) lies on the graph and is 7 − (−3) = 10 units from the
directrix. The distance from (7, 12) to the focus is:

√
(7− 1)2 + (12− 4)2 =

√
100 = 10.

Indeed, the point on the parabola is equidistant from the focus and directrix. ..

ReflecƟve Property

One of the fascinaƟng things about the nondegenerate conic secƟons is their
reflecƟve properƟes. Parabolas have the following reflecƟve property:

Any ray emanaƟng from the focus that intersects the parabola
reflects off along a line perpendicular to the directrix.

This is illustrated in Figure 9.5. The following theorem states this more rig-
orously.

Notes:
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..
Theorem 79 ReflecƟve Property of the Parabola

Let P be a point on a parabola. The tangent line to the parabola at P
makes equal angles with the following two lines:

1. The line containing P and the focus F, and

2. The line perpendicular to the directrix through P.

Because of this reflecƟve property, paraboloids (the 3D analogue of parabo-
las)make for useful flashlight reflectors as the light from the bulb, ideally located
at the focus, is reflected along parallel rays. Satellite dishes also have paraboloid
shapes. Signals coming from satellites effecƟvely approach the dish along par-
allel rays. The dish then focuses these rays at the focus, where the sensor is
located.

Ellipses

..
DefiniƟon 41 Ellipse

An ellipse is the locus of all points whose sumof distances from two fixed
points, each a focus of the ellipse, is constant.

An easy way to visualize this construcƟon of an ellipse is to pin both ends of
a string to a board. The pins become the foci. Holding a pencil Ɵght against the
string places the pencil on the ellipse; the sum of distances from the pencil to
the pins is constant: the length of the string. See Figure 9.6.

We can again find an algebraic equaƟon for an ellipse using this geometric
definiƟon. Let the foci be located along the x-axis, c units from the origin. Let
these foci be labeled as F1 = (−c, 0) and F2 = (c, 0). Let P = (x, y) be a point
on the ellipse. The sum of distances from F1 to P (d1) and from F2 to P (d2) is a
constant d. That is, d1 + d2 = d. Using the Distance Formula, we have√

(x+ c)2 + y2 +
√

(x− c)2 + y2 = d.

Using a fair amount of algebra can produce the following equaƟon of an ellipse
(note that the equaƟon is an implicitly defined funcƟon; it has to be, as an ellipse
fails the VerƟcal Line Test):

x2( d
2

)2 +
y2( d

2

)2 − c2
= 1.

Notes:
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275.
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This is not parƟcularly illuminaƟng, but by making the subsƟtuƟon a = d/2 and
b =

√
a2 − c2, we can rewrite the above equaƟon as

x2

a2
+

y2

b2
= 1.

This choice of a and b is not without reason; as shown in Figure 9.7, the values
of a and b have geometric meaning in the graph of the ellipse.

In general, the two foci of an ellipse lie on themajor axis of the ellipse, and
the midpoint of the segment joining the two foci is the center. The major axis
intersects the ellipse at two points, each of which is a vertex. The line segment
through the center and perpendicular to the major axis is the minor axis. The
“constant sum of distances” that defines the ellipse is the length of the major
axis, i.e., 2a.

Allowing for the shiŌing of the ellipse gives the following standard equaƟons.

..
Key Idea 34 Standard EquaƟon of the Ellipse

The equaƟon of an ellipse centered at (h, k)with major axis of length 2a
and minor axis of length 2b in standard form is:

1. Horizontal major axis:
(x− h)2

a2
+

(y− k)2

b2
= 1.

2. VerƟcal major axis:
(x− h)2

b2
+

(y− k)2

a2
= 1.

The foci lie along the major axis, c units from the center, where c2 =
a2 − b2.

.. Example 275 Finding the equaƟon of an ellipse
Find the general equaƟon of the ellipse graphed in Figure 9.8.

SÊ½çã®ÊÄ The center is located at (−3, 1). The distance from the cen-
ter to a vertex is 5 units, hence a = 5. The minor axis seems to have length 4,
so b = 2. Thus the equaƟon of the ellipse is

(x+ 3)2

4
+

(y− 1)2

25
= 1.

..

.. Example 276 ..Graphing an ellipse
Graph the ellipse defined by 4x2 + 9y2 − 8x− 36y = −4.

Notes:
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Figure 9.9: Graphing the ellipse in Exam-
ple 276.
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Figure 9.10: Understanding the eccentric-
ity of an ellipse.

9.1 Conic SecƟons

SÊ½çã®ÊÄ It is simple to graph an ellipse once it is in standard form. In
order to put the given equaƟon in standard form, we must complete the square
with both the x and y terms. We first rewrite the equaƟon by regrouping:

4x2 + 9y2 − 8x− 36y = −4 ⇒ (4x2 − 8x) + (9y2 − 36y) = −4.

Now we complete the squares.

(4x2 − 8x) + (9y2 − 36y) = −4

4(x2 − 2x) + 9(y2 − 4y) = −4

4(x2 − 2x+ 1− 1) + 9(y2 − 4y+ 4− 4) = −4

4
(
(x− 1)2 − 1

)
+ 9
(
(y− 2)2 − 4

)
= −4

4(x− 1)2 − 4+ 9(y− 2)2 − 36 = −4

4(x− 1)2 + 9(y− 2)2 = 36
(x− 1)2

9
+

(y− 2)2

4
= 1.

We see the center of the ellipse is at (1, 2). We have a = 3 and b = 2; the ma-
jor axis is horizontal, so the verƟces are located at (−2, 2) and (4, 2). We find
c =

√
9− 4 =

√
5 ≈ 2.24. The foci are located along the major axis, approxi-

mately 2.24 units from the center, at (1± 2.24, 2). This is all graphed in Figure
9.9 . ...

Eccentricity

When a = b, we have a circle. The general equaƟon becomes

(x− h)2

a2
+

(y− k)2

a2
= 1 ⇒ (x− h)2 + (y− k)2 = a2,

the familiar equaƟon of the circle centered at (h, k)with radius a. The circle has
“two” foci, but they lie on the same point, the center of the circle.

Consider Figure 9.10, where several ellipses are graphed with a = 1. In (a),
we have c = 0 and the ellipse is a circle. As c grows, the resulƟng ellipses look
less and less circular. A measure of this “noncircularness” is eccentricity.

..
DefiniƟon 42 Eccentricity of an Ellipse

The eccentricity e of an ellipse is e =
c
a
.

Notes:
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Figure 9.11: IllustraƟng the reflecƟve
property of an ellipse.

Chapter 9 Curves in the Plane

The eccentricity of a circle is 0; that is, a circle has no “noncircularness.” As
c approaches a, e approaches 1, giving rise to a very noncircular ellipse, as seen
in Figure 9.10 (d).

It was long assumed that planets had circular orbits. This is known to be
incorrect; the orbits are ellipƟcal. Earth has an eccentricity of 0.0167 – it has
a nearly circular orbit. Mercury’s orbit is the most eccentric, with e = 0.2056.
(Pluto’s eccentricity is greater, at e = 0.248, the greatest of all the currently
known dwarf planets.) The planet with the most circular orbit is Venus, with
e = 0.0068. The Earth’s moon has an eccentricity of e = 0.0549, also very cir-
cular.

ReflecƟve Property

The ellipse also possesses an interesƟng reflecƟve property. Any ray ema-
naƟng from one focus of an ellipse reflects off the ellipse along a line through
the other focus, as illustrated in Figure 9.11. This property is given formally in
the following theorem.

..
Theorem 80 ReflecƟve Property of an Ellipse

Let P be a point on a ellipse with foci F1 and F2. The tangent line to the
ellipse at Pmakes equal angles with the following two lines:

1. The line through F1 and P, and

2. The line through F2 and P.

This reflecƟve property is useful in opƟcs and is the basis of the phenomena
experienced in whispering halls.

Hyperbolas

The definiƟon of a hyperbola is very similar to the definiƟon of an ellipse; we
essenƟally just change the word “sum” to “difference.”

..
DefiniƟon 43 Hyperbola

A hyperbola is the locus of all points where the absolute value of differ-
ence of distances from two fixed points, each a focus of the hyperbola,
is constant.

Notes:
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9 −
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Figure 9.14: Using the asymptotes of a hy-
perbola as a graphing aid.

9.1 Conic SecƟons

We do not have a convenient way of visualizing the construcƟon of a hyper-
bola as we did for the ellipse. The geometric definiƟon does allow us to find an
algebraic expression that describes it. It will be useful to define some terms first.

The two foci lie on the transverse axis of the hyperbola; the midpoint of
the line segment joining the foci is the center of the hyperbola. The transverse
axis intersects the hyperbola at two points, each a vertex of the hyperbola. The
line through the center and perpendicular to the transverse axis is the conju-
gate axis. This is illustrated in Figure 9.12. It is easy to show that the constant
difference of distances used in the definiƟon of the hyperbola is the distance
between the verƟces, i.e., 2a.

..
Key Idea 35 Standard EquaƟon of a Hyperbola

The equaƟon of a hyperbola centered at (h, k) in standard form is:

1. Horizontal Transverse Axis:
(x− h)2

a2
− (y− k)2

b2
= 1.

2. VerƟcal Transverse Axis:
(y− k)2

a2
− (x− h)2

b2
= 1.

The verƟces are located a units from the center and the foci are located
c units from the center, where c2 = a2 + b2.

Graphing Hyperbolas

Consider the hyperbola x2
9 −

y2
1 = 1. Solving for y, we find y = ±

√
x2/9− 1.

As x grows large, the “−1” part of the equaƟon for y becomes less significant and
y ≈ ±

√
x2/9 = ±x/3. That is, as x gets large, the graph of the hyperbola looks

verymuch like the lines y = ±x/3. These lines are asymptotes of the hyperbola,
as shown in Figure 9.13.

This is a valuable tool in sketching. Given the equaƟon of a hyperbola in
general form, draw a rectangle centered at (h, k)with sides of length 2a parallel
to the transverse axis and sides of length 2b parallel to the conjugate axis. (See
Figure 9.14 for an example with a horizontal transverse axis.) The diagonals of
the rectangle lie on the asymptotes.

These lines pass through (h, k). When the transverse axis is horizontal, the
slopes are±b/a; when the transverse axis is verƟcal, their slopes are±a/b. This
gives equaƟons:

Notes:

477



...

..

−5

.

5

.

−5

.

5

.

10

.

x

.

y

Figure 9.15: Graphing the hyperbola in
Example 277.

.....

−4

.

−2

.

2

.

4

. −10.

10

.

x

.

y

Figure 9.16: Graphing the hyperbola in
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Horizontal
Transverse Axis

VerƟcal
Transverse Axis

y = ±b
a
(x− h) + k y = ±a

b
(x− h) + k.

.. Example 277 Graphing a hyperbola

Sketch the hyperbola given by
(y− 2)2

25
− (x− 1)2

4
= 1.

SÊ½çã®ÊÄ The hyperbola is centered at (1, 2); a = 5 and b = 2. In
Figure 9.15 we draw the prescribed rectangle centered at (1, 2) along with the
asymptotes defined by its diagonals. The hyperbola has a verƟcal transverse
axis, so the verƟces are located at (1, 7) and (1,−3). This is enough to make a
good sketch.

We also find the locaƟon of the foci: as c2 = a2 + b2, we have c =
√
29 ≈

5.4. Thus the foci are located at (1, 2± 5.4) as shown in the figure. ..

.. Example 278 Graphing a hyperbola
Sketch the hyperbola given by 9x2 − y2 + 2y = 10.

SÊ½çã®ÊÄ Wemust complete the square to put the equaƟon in general
form. (We recognize this as a hyperbola since it is a general quadraƟc equaƟon
and the x2 and y2 terms have opposite signs.)

9x2 − y2 + 2y = 10

9x2 − (y2 − 2y) = 10

9x2 − (y2 − 2y+ 1− 1) = 10

9x2 −
(
(y− 1)2 − 1

)
= 10

9x2 − (y− 1)2 = 9

x2 − (y− 1)2

9
= 1

We see the hyperbola is centered at (0, 1), with a horizontal transverse axis,
where a = 1 and b = 3. The appropriate rectangle is sketched in Figure 9.16
along with the asymptotes of the hyperbola. The verƟces are located at (±1, 1).
We have c =

√
10 ≈ 3.2, so the foci are located at (±3.2, 1) as shown in the

figure. ..

Notes:
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Figure 9.17: Understanding the eccentric-
ity of a hyperbola.

9.1 Conic SecƟons

Eccentricity

..
DefiniƟon 44 Eccentricity of a Hyperbola

The eccentricity of a hyperbola is e =
c
a
.

Note that this is the definiƟon of eccentricity as used for the ellipse. When
c is close in value to a (i.e., e ≈ 1), the hyperbola is very narrow (looking al-
most like crossed lines). Figure 9.17 shows hyperbolas centered at the origin
with a = 1. The graph in (a) has c = 1.05, giving an eccentricity of e = 1.05,
which is close to 1. As c grows larger, the hyperbola widens and begins to look
like parallel lines, as shown in part (d) of the figure.

ReflecƟve Property

Hyperbolas share a similar reflecƟve property with ellipses. However, in the
case of a hyperbola, a ray emanaƟng from a focus that intersects the hyperbola
reflects along a line containing the other focus, but moving away from that fo-
cus. This is illustrated in Figure 9.19 (on the next page). Hyperbolic mirrors are
commonly used in telescopes because of this reflecƟve property. It is stated
formally in the following theorem.

..
Theorem 81 ReflecƟve Property of Hyperbolas

Let P be a point on a hyperbola with foci F1 and F2. The tangent line to
the hyperbola at Pmakes equal angles with the following two lines:

1. The line through F1 and P, and

2. The line through F2 and P.

LocaƟon DeterminaƟon

Determining the locaƟon of a known event has many pracƟcal uses (locaƟng
the epicenter of an earthquake, an airplane crash site, the posiƟon of the person
speaking in a large room, etc.).

To determine the locaƟon of an earthquake’s epicenter, seismologists use
trilateraƟon (not to be confused with triangulaƟon). A seismograph allows one

Notes:
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property of a hyperbola.

Chapter 9 Curves in the Plane

to determine how far away the epicenter was; using three separate readings,
the locaƟon of the epicenter can be approximated.

A key to this method is knowing distances. What if this informaƟon is not
available? Consider three microphones at posiƟons A, B and C which all record
a noise (a person’s voice, an explosion, etc.) created at unknown locaƟon D.
The microphone does not “know” when the sound was created, only when the
sound was detected. How can the locaƟon be determined in such a situaƟon?

If each locaƟon has a clock set to the same Ɵme, hyperbolas can be used
to determine the locaƟon. Suppose the microphone at posiƟon A records the
sound at exactly 12:00, locaƟon B records the Ɵme exactly 1 second later, and
locaƟon C records the noise exactly 2 seconds aŌer that. We are interested in
the difference of Ɵmes. Since the speed of sound is approximately 340 m/s, we
can conclude quickly that the sound was created 340meters closer to posiƟon A
than posiƟon B. If A and B are a known distance apart (as shown in Figure 9.18
(a)), then we can determine a hyperbola on which Dmust lie.

The “difference of distances” is 340; this is also the distance between verƟces
of the hyperbola. So we know 2a = 340. PosiƟons A and B lie on the foci, so
2c = 1000. From this we can find b ≈ 470 and can sketch the hyperbola, given
in part (b) of the figure. We only care about the side closest to A. (Why?)

We can also find the hyperbola defined by posiƟons B and C. In this case,
2a = 680 as the sound traveled an extra 2 seconds to get to C. We sƟll have
2c = 1000, centering this hyperbola at (−500, 500). We find b ≈ 367. This
hyperbola is sketched in part (c) of the figure. The intersecƟon point of the two
graphs is the locaƟon of the sound, at approximately (188,−222.5).
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Figure 9.18: Using hyperbolas in locaƟon detecƟon.
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Exercises 9.1
Terms and Concepts
1. What is the difference between degenerate and nondegen-

erate conics?

2. Use your own words to explain what the eccentricity of an
ellipse measures.

3. What has the largest eccentricity: an ellipse or a hyper-
bola?

4. Explainwhy the following is true: “If the coefficient of the x2

term in the equaƟonof an ellipse in standard form is smaller
than the coefficient of the y2 term, then the ellipse has a
horizontal major axis.”

5. Explain how one can quickly look at the equaƟon of a hy-
perbola in standard form and determinewhether the trans-
verse axis is horizontal or verƟcal.

Problems
In Exercises 6 – 13, find the equaƟon of the parabola defined
by the given informaƟon. Sketch the parabola.

6. Focus: (3, 2); directrix: y = 1

7. Focus: (−1,−4); directrix: y = 2

8. Focus: (1, 5); directrix: x = 3

9. Focus: (1/4, 0); directrix: x = −1/4

10. Focus: (1, 1); vertex: (1, 2)

11. Focus: (−3, 0); vertex: (0, 0)

12. Vertex: (0, 0); directrix: y = −1/16

13. Vertex: (2, 3); directrix: x = 4

In Exercises 14 – 15, the equaƟon of a parabola and a point
on its graph are given. Find the focus and directrix of the
parabola, and verify that the given point is equidistant from
the focus and directrix.

14. y = 1
4 x

2, P = (2, 1)

15. x = 1
8 (y− 2)2 + 3, P = (11, 10)

In Exercises 16 – 17, sketch the ellipse defined by the given
equaƟon. Label the center, foci and verƟces.

16.
(x− 1)2

3
+

(y− 2)2

5
= 1

17.
1
25

x2 +
1
9
(y+ 3)2 = 1

In Exercises 18 – 19, find the equaƟon of the ellipse shown in
the graph. Give the locaƟon of the foci and the eccentricity
of the ellipse.

18.
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In Exercises 20 – 23, find the equaƟon of the ellipse defined
by the given informaƟon. Sketch the elllipse.

20. Foci: (±2, 0); verƟces: (±3, 0)

21. Foci: (−1, 3) and (5, 3); verƟces: (−3, 3) and (7, 3)

22. Foci: (2,±2); verƟces: (2,±7)

23. Focus: (−1, 5); vertex: (−1,−4); center: (−1, 1)

In Exercises 24 – 27, write the equaƟon of the given ellipse in
standard form.

24. x2 − 2x+ 2y2 − 8y = −7

25. 5x2 + 3y2 = 15

26. 3x2 + 2y2 − 12y+ 6 = 0

27. x2 + y2 − 4x− 4y+ 4 = 0

28. Consider the ellipse given by
(x− 1)2

4
+

(y− 3)2

12
= 1.

(a) Verify that the foci are located at (1, 3± 2
√
2).

(b) The points P1 = (2, 6) and P2 = (1+
√
2, 3+

√
6) ≈

(2.414, 5.449) lie on the ellipse. Verify that the sum
of distances from each point to the foci is the same.

In Exercises 29 – 32, find the equaƟonof the hyperbola shown
in the graph.
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In Exercises 33 – 34, sketch the hyperbola defined by the
given equaƟon. Label the center and foci.

33.
(x− 1)2

16
− (y+ 2)2

9
= 1

34. (y− 4)2 − (x+ 1)2

25
= 1

In Exercises 35 – 38, find the equaƟon of the hyperbola de-
fined by the given informaƟon. Sketch the hyperbola.

35. Foci: (±3, 0); verƟces: (±2, 0)

36. Foci: (0,±3); verƟces: (0,±2)

37. Foci: (−2, 3) and (8, 3); verƟces: (−1, 3) and (7, 3)

38. Foci: (3,−2) and (3, 8); verƟces: (3, 0) and (3, 6)

In Exercises 39 – 42, write the equaƟon of the hyperbola in
standard form.

39. 3x2 − 4y2 = 12

40. 3x2 − y2 + 2y = 10

41. x2 − 10y2 + 40y = 30

42. (4y− x)(4y+ x) = 4

43. Johannes Kepler discovered that the planets of our solar
system have ellipƟcal orbits with the Sun at one focus. The
Earth’s ellipƟcal orbit is used as a standard unit of distance;
the distance from the center of Earth’s ellipƟcal orbit to one
vertex is 1 Astronomical Unit, or A.U.
The following table gives informaƟon about the orbits of
three planets.

Distance from
center to vertex

eccentricity

Mercury 0.387 A.U. 0.2056
Earth 1 A.U. 0.0167
Mars 1.524 A.U. 0.0934

(a) In an ellipse, knowing c2 = a2 − b2 and e = c/a
allows us to find b in terms of a and e. Show b =
a
√
1− e2.

(b) For each planet, find equaƟons of their ellipƟcal orbit

of the form
x2

a2
+

y2

b2
= 1. (This places the center at

(0, 0), but the Sun is in a different locaƟon for each
planet.)

(c) ShiŌ the equaƟons so that the Sun lies at the origin.
Plot the three ellipƟcal orbits.

44. A loud sound is recorded at three staƟons that lie on a line
as shown in the figure below. StaƟon A recorded the sound
1 second aŌer StaƟon B, and StaƟon C recorded the sound
3 seconds aŌer B. Using the speed of sound as 340m/s,
determine the locaƟon of the sound’s originaƟon.

..
A
.
1000m

.
B

.
2000m

.
C
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9.2 Parametric EquaƟons
We are familiar with sketching shapes, such as parabolas, by following this basic
procedure:

..Choose
x
.

Use a funcƟon
f to find y(
y = f(x)

). Plot point
(x, y)

The rectangular equaƟon y = f(x)workswell for some shapes like a parabola
with a verƟcal axis of symmetry, but in the previous secƟonwe encountered sev-
eral shapes that could not be sketched in this manner. (To plot an ellipse using
the above procedure, we need to plot the “top” and “boƩom” separately.)

In this secƟon we introduce a new sketching procedure:

..Choose
t
.

Use a funcƟon
f to find x(
x = f(t)

)
.

Use a funcƟon
g to find y(
y = g(t)

)
. Plot point

(x, y)

Here, x and y are found separately but then ploƩed together. This leads us
to a definiƟon.

..
DefiniƟon 45 Parametric EquaƟons and Curves

Let f and g be conƟnuous funcƟons on an interval I. The set of all points(
x, y
)
=
(
f(t), g(t)

)
in the Cartesian plane, as t varies over I, is the graph

of the parametric equaƟons x = f(t) and y = g(t), where t is the param-
eter. A curve is a graph along with the parametric equaƟons that define
it.

This is a formal definiƟon of the word curve. When a curve lies in a plane
(such as the Cartesian plane), it is oŌen referred to as a plane curve. Examples
will help us understand the concepts introduced in the definiƟon.

.. Example 279 ..Ploƫng parametric funcƟons

Plot the graph of the parametric equaƟons x = t2, y = t+ 1 for t in [−2, 2].

Notes:
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t x y
−2 4 −1
−1 1 0
0 0 1
1 1 2
2 4 3

(a)

.....

2

.

4

.−2.

2

.

4

.
t = −2

.

t = −1

.

t = 0

.

t = 1

.

t = 2

.

x

.

y

(b)

Figure 9.20: A table of values of the para-
metric equaƟons in Example 279 along
with a sketch of their graph.

t x y
0 1 2

π/4 1/2 1+
√
2/2

π/2 0 1
3π/4 1/2 1−

√
2/2

π 1 0

(a)

.....
0.5

.
1

.
1.5

.

0.5

.

1

.

1.5

.

2

.

t = 0

.

t = π/4

.

t = π/2

.

t = 3π/4

.
t = π

. x.

y

(b)

Figure 9.21: A table of values of the para-
metric equaƟons in Example 280 along
with a sketch of their graph.

Chapter 9 Curves in the Plane

SÊ½çã®ÊÄ We plot the graphs of parametric equaƟons in much the
samemanner as we ploƩed graphs of funcƟons like y = f(x): wemake a table of
values, plot points, then connect these pointswith a “reasonable” looking curve.
Figure 9.20(a) shows such a table of values; note how we have 3 columns.

The points (x, y) from the table are ploƩed in Figure 9.20(b). The points have
been connected with a smooth curve. Each point has been labeled with its cor-
responding t-value. These values, along with the two arrows along the curve,
are used to indicate the orientaƟon of the graph. This informaƟon helps us de-
termine the direcƟon in which the graph is “moving.” ...

We oŌen use the leƩer t as the parameter as we oŌen regard t as represent-
ing Ɵme. Certainly there are many contexts in which the parameter is not Ɵme,
but it can be helpful to think in terms of Ɵme as one makes sense of parametric
plots and their orientaƟon (for instance, “At Ɵme t = 0 the posiƟon is (1, 2) and
at Ɵme t = 3 the posiƟon is (5, 1).”).

.. Example 280 Ploƫng parametric funcƟons

Sketch the graph of the parametric equaƟons x = cos2 t, y = cos t + 1 for t
in [0, π].

SÊ½çã®ÊÄ We again start by making a table of values in Figure 9.21(a),
then plot the points (x, y) on the Cartesian plane in Figure 9.21(b).

It is not difficult to show that the curves in Examples 279 and280 are porƟons
of the same parabola. While the parabola is the same, the curves are different.
In Example 279, if we let t vary over all real numbers, we’d obtain the enƟre
parabola. In this example, leƫng t vary over all real numbers would sƟll produce
the same graph; this porƟon of the parabola would be traced, and re–traced,
infinitely. The orientaƟon shown in Figure 9.21 shows the orientaƟon on [0, π],
but this orientaƟon is reversed on [π, 2π].

These examples begin to illustrate the powerful nature of parametric equa-
Ɵons. Their graphs are far more diverse than the graphs of funcƟons produced
by “y = f(x)” funcƟons. ..

Technology Note: Most graphing uƟliƟes can graph funcƟons given in paramet-
ric form. OŌen the word “parametric” is abbreviated as “PAR” or “PARAM” in
the opƟons. The user usually needs to determine the graphing window (i.e, the
minimum and maximum x- and y-values), along with the values of t that are to
be ploƩed. The user is oŌen prompted to give a tminimum, a tmaximum, and
a “t-step” or “∆t.” Graphing uƟliƟes effecƟvely plot parametric funcƟons just as
we’ve shown here: they plots lots of points. A smaller t-step plots more points,
making for a smoother graph (but may take longer). In Figure 9.20, the t-step is

Notes:

484



.....

2

.

4

.

6

.

8

.

10

.−2.

2

.

4

.

6

.

x = t2 + t

y = t2 − t

.

x

.

y

(a)

.....

2

.

4

.

6

.

8

.

10

.−2.

2

.

4

.

6

.

x = t2 + t + 3

y = t2 − t − 2

.

x

.

y

(b)

Figure 9.22: IllustraƟng how to shiŌ
graphs in Example 281.
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x = t3 − 5t2 + 3t + 11

y = t2 − 2t + 3
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y

Figure 9.23: A graph of the parametric
equaƟons from Example 282.

9.2 Parametric EquaƟons

1; in Figure 9.21, the t-step is π/4.

One nice feature of parametric equaƟons is that their graphs are easy to
shiŌ. While this is not too difficult in the “y = f(x)” context, the resulƟng func-
Ɵon can look rather messy. (Plus, to shiŌ to the right by two, we replace x with
x− 2, which is counter–intuiƟve.) The following example demonstrates this.

.. Example 281 ShiŌing the graph of parametric funcƟons
Sketch the graph of the parametric equaƟons x = t2 + t, y = t2 − t. Find new
parametric equaƟons that shiŌ this graph to the right 3 places and down 2.

SÊ½çã®ÊÄ The graph of the parametric equaƟons is given in Figure 9.22
(a). It is a parabola with a axis of symmetry along the line y = x; the vertex is at
(0, 0).

In order to shiŌ the graph to the right 3 units, we need to increase the x-
value by 3 for every point. The straighƞorward way to accomplish this is simply
to add 3 to the funcƟon defining x: x = t2 + t+ 3. To shiŌ the graph down by 2
units, we wish to decrease each y-value by 2, so we subtract 2 from the funcƟon
defining y: y = t2 − t− 2. Thus our parametric equaƟons for the shiŌed graph
are x = t2 + t+ 3, y = t2 − t− 2. This is graphed in Figure 9.22 (b). NoƟce how
the vertex is now at (3,−2). ..

Because the x- and y-values of a graph are determined independently, the
graphs of parametric funcƟons oŌen possess features not seen on “y = f(x)”
type graphs. The next example demonstrates how such graphs can arrive at the
same point more than once.

.. Example 282 ..Graphs that cross themselves
Plot the parametric funcƟons x = t3 − 5t2 + 3t + 11 and y = t2 − 2t + 3 and
determine the t-values where the graph crosses itself.

SÊ½çã®ÊÄ Using the methods developed in this secƟon, we again plot
points and graph the parametric equaƟons as shown in Figure 9.23. It appears
that the graph crosses itself at the point (2, 6), but we’ll need to analyƟcally
determine this.

We are looking for two different values, say, s and t, where x(s) = x(t) and
y(s) = y(t). That is, the x-values are the same precisely when the y-values are
the same. This gives us a system of 2 equaƟons with 2 unknowns:

s3 − 5s2 + 3s+ 11 = t3 − 5t2 + 3t+ 11
s2 − 2s+ 3 = t2 − 2t+ 3

Notes:
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Chapter 9 Curves in the Plane

Solving this system is not trivial but involves only algebra. Using the quadraƟc
formula, one can solve for t in the second equaƟon and find that t = 1 ±√

s2 − 2s+ 1. This can be subsƟtuted into the first equaƟon, revealing that the
graph crosses itself at t = −1 and t = 3. We confirm our result by compuƟng
x(−1) = x(3) = 2 and y(−1) = y(3) = 6. ...

ConverƟng between rectangular and parametric equaƟons

It is someƟmes useful to rewrite equaƟons in rectangular form (i.e., y = f(x))
into parametric form, and vice–versa. ConverƟng from rectangular to paramet-
ric can be very simple: given y = f(x), the parametric equaƟons x = t, y = f(t)
produce the same graph. As an example, given y = x2, the parametric equaƟons
x = t, y = t2 produce the familiar parabola. However, other parametrizaƟons
can be used. The following example demonstrates one possible alternaƟve.

.. Example 283 ConverƟng from rectangular to parametric
Consider y = x2. Find parametric equaƟons x = f(t), y = g(t) for the parabola
where t = dy

dx . That is, t = a corresponds to the point on the graph whose
tangent line has slope a.

SÊ½çã®ÊÄ We start by compuƟng dy
dx : y

′ = 2x. Thus we set t = 2x. We
can solve for x and find x = t/2. Knowing that y = x2, we have y = t2/4. Thus
parametric equaƟons for the parabola y = x2 are

x = t/2 y = t2/4.

To find the point where the tangent line has a slope of −2, we set t = −2. This
gives the point (−1, 1). We can verify that the slope of the line tangent to the
curve at this point indeed has a slope of−2. ..

We someƟmes chose the parameter to accurately model physical behavior.

.. Example 284 ..ConverƟng from rectangular to parametric
An object is fired from a height of 0Ō and lands 6 seconds later, 192Ō away. As-
suming ideal projecƟlemoƟon, the height, in feet, of the object can be described
by h(x) = −x2/64+ 3x, where x is the distance in feet from the iniƟal locaƟon.
(Thus h(0) = h(192) = 0Ō.) Find parametric equaƟons x = f(t), y = g(t)
for the path of the projecƟle where x is the horizontal distance the object has
traveled at Ɵme t (in seconds) and y is the height at Ɵme t.

SÊ½çã®ÊÄ Physics tells us that the horizontal moƟon of the projecƟle
is linear; that is, the horizontal speed of the projecƟle is constant. Since the
object travels 192Ō in 6s, we deduce that the object is moving horizontally at

Notes:
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Figure 9.24: Graphing projecƟlemoƟon in
Example 284.
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Figure 9.25: Graphing parametric and
rectangular equaƟons for a graph in Ex-
ample 285.

9.2 Parametric EquaƟons

a rate of 32Ō/s, giving the equaƟon x = 32t. As y = −x2/64 + 3x, we find
y = −16t2 + 96t. We can quickly verify that y′′ = −32Ō/s2, the acceleraƟon
due to gravity, and that the projecƟle reaches its maximum at t = 3, halfway
along its path.

These parametric equaƟonsmake certain determinaƟons about the object’s
locaƟon easy: 2 seconds into the flight the object is at the point

(
x(2), y(2)

)
=(

64, 128
)
. That is, it has traveled horizontally 64Ō and is at a height of 128Ō, as

shown in Figure 9.24. ...

It is someƟmes necessary to convert given parametric equaƟons into rect-
angular form. This can be decidedly more difficult, as some “simple” looking
parametric equaƟons can have very “complicated” rectangular equaƟons. This
conversion is oŌen referred to as “eliminaƟng the parameter,” as we are looking
for a relaƟonship between x and y that does not involve the parameter t.

.. Example 285 ..EliminaƟng the parameter
Find a rectangular equaƟon for the curve described by

x =
1

t2 + 1
and y =

t2

t2 + 1
.

SÊ½çã®ÊÄ There is not a setway to eliminate a parameter. Onemethod
is to solve for t in one equaƟon and then subsƟtute that value in the second. We
use that technique here, then show a second, simpler method.

StarƟng with x = 1/(t2 + 1), solve for t: t = ±
√

1/x− 1. SubsƟtute this
value for t in the equaƟon for y:

y =
t2

t2 + 1

=
1/x− 1

1/x− 1+ 1

=
1/x− 1
1/x

=

(
1
x
− 1
)
· x

= 1− x.

Thus y = 1 − x. One may have recognized this earlier by manipulaƟng the
equaƟon for y:

y =
t2

t2 + 1
= 1− 1

t2 + 1
= 1− x.

Notes:
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Figure 9.26: Graphing the parametric
equaƟons x = 4 cos t+ 3, y = 2 sin t+ 1
in Example 286.

Chapter 9 Curves in the Plane

This is a shortcut that is very specific to this problem; someƟmes shortcuts exist
and are worth looking for.

We should be careful to limit the domain of the funcƟon y = 1 − x. The
parametric equaƟons limit x to values in (0, 1], thus to produce the same graph
we should limit the domain of y = 1− x to the same.

The graphs of these funcƟons is given in Figure 9.25. The porƟonof the graph
defined by the parametric equaƟons is given in a thick line; the graph defined
by y = 1− x with unrestricted domain is given in a thin line. ...

.. Example 286 EliminaƟng the parameter
Eliminate the parameter in x = 4 cos t+ 3, y = 2 sin t+ 1

SÊ½çã®ÊÄ We should not try to solve for t in this situaƟon as the re-
sulƟng algebra/trig would be messy. Rather, we solve for cos t and sin t in each
equaƟon, respecƟvely. This gives

cos t =
x− 3
4

and sin t =
y− 1
2

.

The Pythagorean Theorem gives cos2 t+ sin2 t = 1, so:

cos2 t+ sin2 t = 1(
x− 3
4

)2

+

(
y− 1
2

)2

= 1

(x− 3)2

16
+

(y− 1)2

4
= 1

This final equaƟon should look familiar – it is the equaƟon of an ellipse! Figure
9.26 plots the parametric equaƟons, demonstraƟng that the graph is indeed of
an ellipse with a horizontal major axis with center at (3, 1). ..

The Pythagorean Theorem can also be used to idenƟfy parametric equaƟons
for hyperbolas. We give the parametric equaƟons for ellipses and hyperbolas in
the following Key Ideas.

Notes:
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Figure 9.27: A gallery of interesƟng planar
curves.

9.2 Parametric EquaƟons

..
Key Idea 36 Parametric EquaƟons for Ellipses

The parametric equaƟons

x = a cos t+ h, y = b sin t+ k

define an ellipse with horizontal axis of length 2a and verƟcal axis of
length 2b, centered at (h, k).

..
Key Idea 37 Parametric EquaƟons for Hyperbolas

The parametric equaƟons

x = a tan t+ h, y = ±b sec t+ k

define a hyperbola with verƟcal transverse axis centered at (h, k), and

x = ±a sec t+ h, y = b tan t+ k

defines a hyperbolawith horizontal transverse axis. Each has asymptotes
at y = ±b/a(x− h) + k.

Special Curves

Figure 9.27 gives a small gallery of “interesƟng” and “famous” curves along
with parametric equaƟons that produce them. Interested readers can begin
learning more about these curves through internet searches.

One might note a feature shared by two of these graphs: “sharp corners,”
or cusps. We have seen graphs with cusps before and determined that such
funcƟons are not differenƟable at these points. This leads us to a definiƟon.

..
DefiniƟon 46 Smooth

A curve C defined by x = f(t), y = g(t) is smooth on an interval I if f ′ and
g′ are conƟnuous on I and not simultaneously 0 (except possibly at the
endpoints of I). A curve is piecewise smooth on I if I can be parƟƟoned
into subintervals where C is smooth on each subinterval.

Notes:
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Figure 9.28: Graphing the curve in Exam-
ple 287; note it is not smooth at (1, 4).

Chapter 9 Curves in the Plane

Consider the astroid, given by x = cos3 t, y = sin3 t. Taking derivaƟves, we
have:

x′ = −3 cos2 t sin t and y′ = 3 sin2 t cos t.

It is clear that each is 0 when t = 0, π/2, π, . . .. Thus the astroid is not smooth
at these points, corresponding to the cusps seen in the figure.

We demonstrate this once more.

.. Example 287 Determine where a curve is not smooth
Let a curve C be defined by the parametric equaƟons x = t3 − 12t + 17 and
y = t2 − 4t+ 8. Determine the points, if any, where it is not smooth.

SÊ½çã®ÊÄ We begin by taking derivaƟves.

x′ = 3t2 − 12, y′ = 2t− 4.

We set each equal to 0:

x′ = 0 ⇒ 3t2 − 12 = 0 ⇒ t = ±2
y′ = 0 ⇒ 2t− 4 = 0 ⇒ t = 2

We see at t = 2 both x′ and y′ are 0; thus C is not smooth at t = 2, correspond-
ing to the point (1, 4). The curve is graphed in Figure 9.28, illustraƟng the cusp
at (1, 4). ..

If a curve is not smooth at t = t0, it means that x′(t0) = y′(t0) = 0 as
defined. This, in turn, means that rate of change of x (and y) is 0; that is, at
that instant, neither x nor y is changing. If the parametric equaƟons describe
the path of some object, this means the object is at rest at t0. An object at rest
canmake a “sharp” change in direcƟon, whereas moving objects tend to change
direcƟon in a “smooth” fashion.

One should be careful to note that a “sharp corner” does not have to occur
when a curve is not smooth. For instance, one can verify that x = t3, y = t6
produce the familiar y = x2 parabola. However, in this parametrizaƟon, the
curve is not smooth. A parƟcle traveling along the parabola according to the
given parametric equaƟons comes to rest at t = 0, though no sharp point is
created.

Notes:
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Exercises 9.2
Terms and Concepts
1. T/F:When sketching the graph of parametric equaƟons, the

x and y values are found separately, then ploƩed together.

2. The direcƟon in which a graph is “moving” is called the
of the graph.

3. An equaƟon wriƩen as y = f(x) is wriƩen in form.

4. Create parametric equaƟons x = f(t), y = g(t) and sketch
their graph. Explain any interesƟng features of your graph
based on the funcƟons f and g.

Problems
In Exercises 5 – 8, sketch the graph of the given parametric
equaƟons by hand, making a table of points to plot. Be sure
to indicate the orientaƟon of the graph.

5. x = t2 + t, y = 1− t2, −3 ≤ t ≤ 3

6. x = 1, y = 5 sin t, −π/2 ≤ t ≤ π/2

7. x = t2, y = 2, −2 ≤ t ≤ 2

8. x = t3 − t+ 3, y = t2 + 1, −2 ≤ t ≤ 2

In Exercises 9 – 17, sketch the graph of the given paramet-
ric equaƟons; using a graphing uƟlity is advisable. Be sure to
indicate the orientaƟon of the graph.

9. x = t3 − 2t2, y = t2, −2 ≤ t ≤ 3

10. x = 1/t, y = sin t, 0 < t ≤ 10

11. x = 3 cos t, y = 5 sin t, 0 ≤ t ≤ 2π

12. x = 3 cos t+ 2, y = 5 sin t+ 3, 0 ≤ t ≤ 2π

13. x = cos t, y = cos(2t), 0 ≤ t ≤ π

14. x = cos t, y = sin(2t), 0 ≤ t ≤ 2π

15. x = 2 sec t, y = 3 tan t, −π/2 < t < π/2

16. x = cos t+ 1
4 cos(8t), y = sin t+ 1

4 sin(8t), 0 ≤ t ≤ 2π

17. x = cos t+ 1
4 sin(8t), y = sin t+ 1

4 cos(8t), 0 ≤ t ≤ 2π

In Exercises 18 – 19, four sets of parametric equaƟons are
given. Describe how their graphs are similar and different.
Be sure to discuss orientaƟon and ranges.

18. (a) x = t y = t2, −∞ < t < ∞
(b) x = sin t y = sin2 t, −∞ < t < ∞
(c) x = et y = e2t, −∞ < t < ∞
(d) x = −t y = t2, −∞ < t < ∞

19. (a) x = cos t y = sin t, 0 ≤ t ≤ 2π

(b) x = cos(t2) y = sin(t2), 0 ≤ t ≤ 2π

(c) x = cos(1/t) y = sin(1/t), 0 < t < 1

(d) x = cos(cos t) y = sin(cos t), 0 ≤ t ≤ 2π

In Exercises 20 – 29, eliminate the parameter in the given
parametric equaƟons.

20. x = 2t+ 5, y = −3t+ 1

21. x = sec t, y = tan t

22. x = 4 sin t+ 1, y = 3 cos t− 2

23. x = t2, y = t3

24. x =
1

t+ 1
, y =

3t+ 5
t+ 1

25. x = et, y = e3t − 3

26. x = ln t, y = t2 − 1

27. x = cot t, y = csc t

28. x = cosh t, y = sinh t

29. x = cos(2t), y = sin t

In Exercises 30 – 33, eliminate the parameter in the given
parametric equaƟons. Describe the curve defined by the
parametric equaƟons based on its rectangular form.

30. x = at+ x0, y = bt+ y0

31. x = r cos t, y = r sin t

32. x = a cos t+ h, y = b sin t+ k

33. x = a sec t+ h, y = b tan t+ k

In Exercises 34 – 37, find parametric equaƟons for the given

rectangular equaƟon using the parameter t =
dy
dx

. Verify that
at t = 1, the point on the graph has a tangent line with slope
of 1.

34. y = 3x2 − 11x+ 2

35. y = ex

36. y = sin x on [0, π]

37. y =
√
x on [0,∞)

In Exercises 38 – 41, find the values of t where the graph of
the parametric equaƟons crosses itself.

38. x = t3 − t+ 3, y = t2 − 3

39. x = t3 − 4t2 + t+ 7, y = t2 − t

40. x = cos t, y = sin(2t) on [0, 2π]

41. x = cos t cos(3t), y = sin t cos(3t) on [0, π]

In Exercises 42 – 45, find the value(s) of t where the curve
defined by the parametric equaƟons is not smooth.

42. x = t3 + t2 − t, y = t2 + 2t+ 3

43. x = t2 − 4t, y = t3 − 2t2 − 4t

44. x = cos t, y = 2 cos t

45. x = 2 cos t− cos(2t), y = 2 sin t− sin(2t)
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In Exercises 46 – 54, find parametric equaƟons that describe
the given situaƟon.

46. A projecƟle is fired from a height of 0Ō, landing 16Ō away
in 4s.

47. A projecƟle is fired from a height of 0Ō, landing 200Ō away
in 4s.

48. A projecƟle is fired from a height of 0Ō, landing 200Ō away
in 20s.

49. A circle of radius 2, centered at the origin, that is traced
clockwise once on [0, 2π].

50. A circle of radius 3, centered at (1, 1), that is traced once
counter–clockwise on [0, 1].

51. An ellipse centered at (1, 3) with verƟcal major axis of
length 6 and minor axis of length 2.

52. An ellipse with foci at (±1, 0) and verƟces at (±5, 0).

53. A hyperbola with foci at (5,−3) and (−1,−3), and with
verƟces at (1,−3) and (3,−3).

54. A hyperbola with verƟces at (0,±6) and asymptotes y =
±3x.
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9.3 Calculus and Parametric EquaƟons

9.3 Calculus and Parametric EquaƟons
The previous secƟon defined curves based on parametric equaƟons. In this sec-
Ɵon we’ll employ the techniques of calculus to study these curves.

We are sƟll interested in lines tangent to points on a curve. They describe
how the y-values are changing with respect to the x-values, they are useful in
making approximaƟons, and they indicate instantaneous direcƟon of travel.

The slope of the tangent line is sƟll dy
dx , and the Chain Rule allows us to cal-

culate this in the context of parametric equaƟons. If x = f(t) and y = g(t), the
Chain Rule states that

dy
dt

=
dy
dx

· dx
dt

.

Solving for dy
dx , we get

dy
dx

=
dy
dt

/dx
dt

=
g′(t)
f ′(t)

,

provided that f ′(t) ̸= 0. This is important so we label it a Key Idea.

..
Key Idea 38 Finding dy

dx with Parametric EquaƟons.

Let x = f(t) and y = g(t), where f and g are differenƟable on some open
interval I and f ′(t) ̸= 0 on I. Then

dy
dx

=
g′(t)
f ′(t)

.

We use this to define the tangent line.

..
DefiniƟon 47 Tangent and Normal Lines

Let a curve C be parametrized by x = f(t) and y = g(t), where f and g
are differenƟable funcƟons on some interval I containing t = t0. The
tangent line to C at t = t0 is the line through

(
f(t0), g(t0)

)
with slope

m = g′(t0)/f ′(t0), provided f ′(t0) ̸= 0.

The normal line to C at t = t0 is the line through
(
f(t0), g(t0)

)
with slope

m = −f ′(t0)/g′(t0), provided g′(t0) ̸= 0.

The definiƟon leaves two special cases to consider. When the tangent line is
horizontal, the normal line is undefined by the above definiƟon as g′(t0) = 0.

Notes:
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Figure 9.29: Graphing tangent and nor-
mal lines in Example 288.

Chapter 9 Curves in the Plane

Likewise, when the normal line is horizontal, the tangent line is undefined. It
seems reasonable that these lines be defined (one can draw a line tangent to
the “right side” of a circle, for instance), so we add the following to the above
definiƟon.

1. If the tangent line at t = t0 has a slope of 0, the normal line to C at t = t0
is the line x = f(t0).

2. If the normal line at t = t0 has a slope of 0, the tangent line to C at t = t0
is the line x = f(t0).

.. Example 288 ..Tangent and Normal Lines to Curves
Let x = 5t2−6t+4 and y = t2+6t−1, and let C be the curve defined by these
equaƟons.

1. Find the equaƟons of the tangent and normal lines to C at t = 3.

2. Find where C has verƟcal and horizontal tangent lines.

SÊ½çã®ÊÄ

1. We start by compuƟng f ′(t) = 10t− 6 and g′(t) = 2t+ 6. Thus

dy
dx

=
2t+ 6
10t− 6

.

Make note of something that might seem unusual: dy
dx is a funcƟon of t,

not x. Just as points on the curve are found in terms of t, so are the slopes
of the tangent lines.
The point onC at t = 3 is (31, 26). The slope of the tangent line ism = 1/2
and the slope of the normal line ism = −2. Thus,

• the equaƟon of the tangent line is y =
1
2
(x− 31) + 26, and

• the equaƟon of the normal line is y = −2(x− 31) + 26.

This is illustrated in Figure 9.29.

2. To find where C has a horizontal tangent line, we set dy
dx = 0 and solve

for t. In this case, this amounts to seƫng g′(t) = 0 and solving for t (and
making sure that f ′(t) ̸= 0).

g′(t) = 0 ⇒ 2t+ 6 = 0 ⇒ t = −3.

The point on C corresponding to t = −3 is (67,−10); the tangent line at
that point is horizontal (hence with equaƟon y = −10).

Notes:
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Figure 9.30: IllustraƟng how a circle’s nor-
mal lines pass through its center.

9.3 Calculus and Parametric EquaƟons

TofindwhereChas a verƟcal tangent line, wefindwhere it has a horizontal
normal line, and set − f ′(t)

g′(t) = 0. This amounts to seƫng f ′(t) = 0 and
solving for t (and making sure that g′(t) ̸= 0).

f ′(t) = 0 ⇒ 10t− 6 = 0 ⇒ t = 0.6.

The point on C corresponding to t = 0.6 is (2.2, 2.96). The tangent line at
that point is x = 2.2.
The points where the tangent lines are verƟcal and horizontal are indi-
cated on the graph in Figure 9.29....

.. Example 289 Tangent and Normal Lines to a Circle

1. Find where the circle, defined by x = cos t and y = sin t on [0, 2π], has
verƟcal and horizontal tangent lines.

2. Find the equaƟon of the normal line at t = t0.

SÊ½çã®ÊÄ

1. We compute the derivaƟve following Key Idea 38:

dy
dx

=
g′(t)
f ′(t)

= −cos t
sin t

.

The derivaƟve is 0 when cos t = 0; that is, when t = π/2, 3π/2. These
are the points (0, 1) and (0,−1) on the circle.
The normal line is horizontal (and hence, the tangent line is verƟcal) when
sin t = 0; that is, when t = 0, π, 2π, corresponding to the points (−1, 0)
and (0, 1) on the circle. These results should make intuiƟve sense.

2. The slope of the normal line at t = t0 ism =
sin t0
cos t0

= tan t0. This normal

line goes through the point (cos t0, sin t0), giving the line

y =
sin t0
cos t0

(x− cos t0) + sin t0

= (tan t0)x,

as long as cos t0 ̸= 0. It is an important fact to recognize that the nor-
mal lines to a circle pass through its center, as illustrated in Figure 9.30.
Stated in another way, any line that passes through the center of a circle
intersects the circle at right angles...

Notes:
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Chapter 9 Curves in the Plane

.. Example 290 Tangent lines when dy
dx is not defined

Find the equaƟon of the tangent line to the astroid x = cos3 t, y = sin3 t at
t = 0, shown in Figure 9.31.

SÊ½çã®ÊÄ We start by finding x′(t) and y′(t):

x′(t) = −3 sin t cos2 t, y′(t) = 3 cos t sin2 t.

Note that both of these are 0 at t = 0; the curve is not smooth at t = 0 forming
a cusp on the graph. EvaluaƟng dy

dx at this point returns the indeterminate form
of “0/0”.

We can, however, examine the slopes of tangent lines near t = 0, and take
the limit as t → 0.

lim
t→0

y′(t)
x′(t)

= lim
t→0

3 cos t sin2 t
−3 sin t cos2 t

(We can cancel as t ̸= 0.)

= lim
t→0

− sin t
cos t

= 0.

Wehave accomplished something significant. When the derivaƟve dy
dx returns an

indeterminate form at t = t0, we can define its value by seƫng it to be lim
t→t0

dy
dx

,

if that limit exists. This allows us to find slopes of tangent lines at cusps, which
can be very beneficial.

We found the slope of the tangent line at t = 0 to be 0; therefore the tan-
gent line is y = 0, the x-axis. ..

Concavity

We conƟnue to analyze curves in the plane by considering their concavity;
that is, we are interested in d2y

dx2 , “the second derivaƟve of y with respect to x.”
To find this, we need to find the derivaƟve of dy

dx with respect to x; that is,

d2y
dx2

=
d
dx

[
dy
dx

]
,

but recall that dy
dx is a funcƟon of t, not x, making this computaƟon not straight-

forward.
To make the upcoming notaƟon a bit simpler, let h(t) = dy

dx . We want
d
dx [h(t)]; that is, we want

dh
dx . We again appeal to the Chain Rule. Note:

dh
dt

=
dh
dx

· dx
dt

⇒ dh
dx

=
dh
dt

/
dx
dt

.

Notes:
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Figure 9.32: Graphing the parametric
equaƟons in Example 291 to demonstrate
concavity.

9.3 Calculus and Parametric EquaƟons

In words, to find d2y
dx2 , we first take the derivaƟve of

dy
dx with respect to t, then

divide by x′(t). We restate this as a Key Idea.

..
Key Idea 39 Finding d2y

dx2 with Parametric EquaƟons

Let x = f(t) and y = g(t) be twice differenƟable funcƟons on an open
interval I. Then

d2y
dx2

=
d
dt

[
dy
dx

]/
dx
dt

=
d
dt

[
dy
dx

]/
f ′(t).

Examples will help us understand this Key Idea.

.. Example 291 ..Concavity of Plane Curves
Let x = 5t2 − 6t + 4 and y = t2 + 6t − 1 as in Example 288. Determine the
t-intervals on which the graph is concave up/down.

SÊ½çã®ÊÄ Concavity is determined by the second derivaƟve of y with
respect to x, d2y

dx2 , so we compute that here following Key Idea 39.

In Example 288, we found
dy
dx

=
2t+ 6
10t− 6

and f ′(t) = 10t− 6. So:

d2y
dx2

=
d
dt

[
2t+ 6
10t− 6

]/
(10t− 6)

= − 18
(5t− 3)2

/
(10t− 6)

= − 9
(5t− 3)3

The graph of the parametric funcƟons is concave up when d2y
dx2 > 0 and con-

cave down when d2y
dx2 < 0. We determine the intervals when the second deriva-

Ɵve is greater/less than 0 by first finding when it is 0 or undefined.

As the numerator of − 9
(5t− 3)3

is never 0, d2y
dx2 ̸= 0 for all t. It is undefined

when 5t − 3 = 0; that is, when t = 3/5. Following the work established in
SecƟon 3.4, we look at values of t greater/less than 3/5 on a number line:

Notes:
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Chapter 9 Curves in the Plane

..

3/5

.

d2y
dx2

> 0

c. up
.

d2y
dx2

< 0

c. down

Reviewing Example 288, we see that when t = 3/5 = 0.6, the graph of the
parametric equaƟons has a verƟcal tangent line. This point is also a point of in-
flecƟon for the graph, illustrated in Figure 9.32. ...

.. Example 292 Concavity of Plane Curves
Find the points of inflecƟon of the graph of the parametric equaƟons x =

√
t,

y = sin t, for 0 ≤ t ≤ 16.

SÊ½çã®ÊÄ We need to compute dy
dx and

d2y
dx2 .

dy
dx

=
y′(t)
x′(t)

=
cos t

1/(2
√
t)

= 2
√
t cos t.

d2y
dx2

=
d
dt

[ dy
dx

]
x′(t)

=
cos t/

√
t− 2

√
t sin t

1/(2
√
t)

= 2 cos t− 4t sin t.

The points of inflecƟon are found by seƫng d2y
dx2 = 0. This is not trivial, as equa-

Ɵons that mix polynomials and trigonometric funcƟons generally do not have
“nice” soluƟons.

In Figure 9.33we see a plot of the secondderivaƟve. It shows that it has zeros
at approximately t = 0.5, 3.5, 6.5, 9.5, 12.5 and 16. These approximaƟons are
not very good, made only by looking at the graph. Newton’s Method provides
more accurate approximaƟons. Accurate to 2 decimal places, we have:

t = 0.65, 3.29, 6.36, 9.48, 12.61 and 15.74.

The corresponding points have been ploƩed on the graph of the parametric
equaƟons in Figure 9.34. Note how most occur near the x-axis, but not exactly
on the axis. ..

Arc Length

We conƟnue our study of the features of the graphs of parametric equaƟons
by compuƟng their arc length.

Recall in SecƟon 7.4 we found the arc length of the graph of a funcƟon, from
x = a to x = b, to be

L =
∫ b

a

√
1+

(
dy
dx

)2

dx.

Notes:
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9.3 Calculus and Parametric EquaƟons

We can use this equaƟon and convert it to the parametric equaƟon context.
Leƫng x = f(t) and y = g(t), we know that dy

dx = g′(t)/f ′(t). It will also be
useful to calculate the differenƟal of x:

dx = f ′(t)dt ⇒ dt =
1

f ′(t)
· dx.

StarƟng with the arc length formula above, consider:

L =
∫ b

a

√
1+

(
dy
dx

)2

dx

=

∫ b

a

√
1+

g′(t)2

f ′(t)2
dx.

Factor out the f ′(t)2:

=

∫ b

a

√
f ′(t)2 + g′(t)2 · 1

f ′(t)
dx︸ ︷︷ ︸

=dt

=

∫ t2

t1

√
f ′(t)2 + g′(t)2 dt.

Note the new bounds (no longer “x” bounds, but “t” bounds). They are found
by finding t1 and t2 such that a = f(t1) and b = f(t2). This formula is important,
so we restate it as a theorem.

..
Theorem 82 Arc Length of Parametric Curves

Let x = f(t) and y = g(t) be parametric equaƟons with f ′ and g′ con-
Ɵnuous on some open interval I containing t1 and t2 on which the graph
traces itself only once. The arc length of the graph, from t = t1 to t = t2,
is

L =
∫ t2

t1

√
f ′(t)2 + g′(t)2 dt.

As before, these integrals are oŌen not easy to compute. We start with a
simple example, then give another where we approximate the soluƟon.

Notes:
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.. Example 293 Arc Length of a Circle
Find the arc length of the circle parametrized by x = 3 cos t, y = 3 sin t on
[0, 3π/2].

SÊ½çã®ÊÄ By direct applicaƟon of Theorem 82, we have

L =
∫ 3π/2

0

√
(−3 sin t)2 + (3 cos t)2 dt.

Apply the Pythagorean Theorem.

=

∫ 3π/2

0
3 dt

= 3t
∣∣∣3π/2
0

= 9π/2.

This should make sense; we know from geometry that the circumference of
a circle with radius 3 is 6π; since we are finding the arc length of 3/4 of a circle,
the arc length is 3/4 · 6π = 9π/2. ..

.. Example 294 Arc Length of a Parametric Curve
The graph of the parametric equaƟons x = t(t2 − 1), y = t2 − 1 crosses itself as
shown in Figure 9.35, forming a “teardrop.” Find the arc length of the teardrop.

SÊ½çã®ÊÄ We can see by the parametrizaƟons of x and y that when
t = ±1, x = 0 and y = 0. This means we’ll integrate from t = −1 to t = 1.
Applying Theorem 82, we have

L =
∫ 1

−1

√
(3t2 − 1)2 + (2t)2 dt

=

∫ 1

−1

√
9t4 − 2t2 + 1 dt.

Unfortunately, the integrand does not have an anƟderivaƟve expressible by el-
ementary funcƟons. We turn to numerical integraƟon to approximate its value.
Using 4 subintervals, Simpson’s Rule approximates the value of the integral as
2.65051. Using a computer, more subintervals are easy to employ, and n = 20
gives a value of 2.71559. Increasing n shows that this value is stable and a good
approximaƟon of the actual value. ..

Notes:
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Figure 9.36: RotaƟng a teardrop shape
about the x-axis in Example 295.

9.3 Calculus and Parametric EquaƟons

Surface Area of a Solid of RevoluƟon

Related to the formula for finding arc length is the formula for finding surface
area. We can adapt the formula found in Key Idea 28 from SecƟon 7.4 in a similar
way as done to produce the formula for arc length done before.

..
Key Idea 40 Surface Area of a Solid of RevoluƟon

Consider the graph of the parametric equaƟons x = f(t) and y = g(t), where f ′ and g′ are
conƟnuous on an open interval I containing t1 and t2 on which the graph does not cross itself.

1. The surface area of the solid formed by revolving the graph about the x-axis is (where
g(t) ≥ 0 on [t1, t2]):

Surface Area = 2π
∫ t2

t1
g(t)

√
f ′(t)2 + g′(t)2 dt.

2. The surface area of the solid formed by revolving the graph about the y-axis is (where
f(t) ≥ 0 on [t1, t2]):

Surface Area = 2π
∫ t2

t1
f(t)
√

f ′(t)2 + g′(t)2 dt.

.. Example 295 Surface Area of a Solid of RevoluƟon
Consider the teardrop shape formed by the parametric equaƟons x = t(t2 − 1),
y = t2 − 1 as seen in Example 294. Find the surface area if this shape is rotated
about the x-axis, as shown in Figure 9.36.

SÊ½çã®ÊÄ The teardrop shape is formed between t = −1 and t = 1.
Using Key Idea 40, we see we need for g(t) ≥ 0 on [−1, 1], and this is not the
case. To fix this, we simplify replace g(t)with−g(t), which flips the whole graph
about the x-axis (and does not change the surface area of the resulƟng solid).
The surface area is:

Area S = 2π
∫ 1

−1
(1− t2)

√
(3t2 − 1)2 + (2t)2 dt

= 2π
∫ 1

−1
(1− t2)

√
9t4 − 2t2 + 1 dt.

Once again we arrive at an integral that we cannot compute in terms of ele-
mentary funcƟons. Using Simpson’s Rule with n = 20, we find the area to be
S = 9.44. Using larger values of n shows this is accurate to 2 places aŌer the
decimal. ..

Notes:
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Exercises 9.3
Terms and Concepts
1. T/F: Given parametric equaƟons x = f(t) and y = g(t),

dy
dx = f ′(t)/g′(t), as long as g′(t) ̸= 0.

2. Given parametric equaƟons x = f(t) and y = g(t),
the derivaƟve dy

dx as given in Key Idea 38 is a funcƟon of
?

3. T/F: Given parametric equaƟons x = f(t) and y = g(t), to
find d2y

dx2 , one simply computes d
dt

(
dy
dx

)
.

4. T/F: If dy
dx = 0 at t = t0, then the normal line to the curve at

t = t0 is a verƟcal line.

Problems
In Exercises 5 – 12, parametric equaƟons for a curve are given.

(a) Find
dy
dx

.

(b) Find the equaƟons of the tangent and normal line(s)
at the point(s) given.

(c) Sketch the graph of the parametric funcƟons along
with the found tangent and normal lines.

5. x = t, y = t2; t = 1

6. x =
√
t, y = 5t+ 2; t = 4

7. x = t2 − t, y = t2 + t; t = 1

8. x = t2 − 1, y = t3 − t; t = 0 and t = 1

9. x = sec t, y = tan t on (−π/2, π/2); t = π/4

10. x = cos t, y = sin(2t) on [0, 2π]; t = π/4

11. x = cos t sin(2t), y = sin t sin(2t) on [0, 2π]; t = 3π/4

12. x = et/10 cos t, y = et/10 sin t; t = π/2

In Exercises 13 – 20, find t-values where the curve defined by
the given parametric equaƟons has a horizontal tangent line.
Note: these are the same equaƟons as in Exercises 5 – 12.

13. x = t, y = t2

14. x =
√
t, y = 5t+ 2

15. x = t2 − t, y = t2 + t

16. x = t2 − 1, y = t3 − t

17. x = sec t, y = tan t on (−π/2, π/2)

18. x = cos t, y = sin(2t) on [0, 2π]

19. x = cos t sin(2t), y = sin t sin(2t) on [0, 2π]

20. x = et/10 cos t, y = et/10 sin t

In Exercises 21 – 24, find t = t0 where the graph of the given

parametric equaƟons is not smooth, then find lim
t→t0

dy
dx

.

21. x =
1

t2 + 1
, y = t3

22. x = −t3 + 7t2 − 16t+ 13, y = t3 − 5t2 + 8t− 2

23. x = t3 − 3t2 + 3t− 1, y = t2 − 2t+ 1

24. x = cos2 t, y = 1− sin2 t

In Exercises 25 – 32, parametric equaƟons for a curve are
given. Find d2y

dx2 , then determine the intervals on which the
graph of the curve is concave up/down. Note: these are the
same equaƟons as in Exercises 5 – 12.

25. x = t, y = t2

26. x =
√
t, y = 5t+ 2

27. x = t2 − t, y = t2 + t
28. x = t2 − 1, y = t3 − t
29. x = sec t, y = tan t on (−π/2, π/2)
30. x = cos t, y = sin(2t) on [0, 2π]
31. x = cos t sin(2t), y = sin t sin(2t) on [−π/2, π/2]
32. x = et/10 cos t, y = et/10 sin t
In Exercises 33 – 36, find the arc length of the graph of the
parametric equaƟons on the given interval(s).

33. x = −3 sin(2t), y = 3 cos(2t) on [0, π]
34. x = et/10 cos t, y = et/10 sin t on [0, 2π] and [2π, 4π]
35. x = 5t+ 2, y = 1− 3t on [−1, 1]
36. x = 2t3/2, y = 3t on [0, 1]
In Exercises 37 – 40, numerically approximate the given arc
length.

37. Approximate the arc length of one petal of the rose curve
x = cos t cos(2t), y = sin t cos(2t) using Simpson’s Rule
and n = 4.

38. Approximate the arc length of the “bow Ɵe curve” x =
cos t, y = sin(2t) using Simpson’s Rule and n = 6.

39. Approximate the arc length of the parabola x = t2 − t,
y = t2 + t on [−1, 1] using Simpson’s Rule and n = 4.

40. A common approximate of the circumference of an ellipse

given by x = a cos t, y = b sin t is C ≈ 2π

√
a2 + b2

2
.

Use this formula to approximate the circumference of x =
5 cos t, y = 3 sin t and compare this to the approxima-
Ɵon given by Simpson’s Rule and n = 6.

In Exercises 41 – 44, a solid of revoluƟon is described. Find or
approximate its surface area as specified.

41. Find the surface area of the sphere formed by rotaƟng the
circle x = 2 cos t, y = 2 sin t about:

(a) the x-axis and
(b) the y-axis.

42. Find the surface area of the torus (or “donut”) formed by
rotaƟng the circle x = cos t + 2, y = sin t about the y-
axis.

43. Approximate the surface area of the solid formed by rotat-
ing the “upper right half” of the bow Ɵe curve x = cos t,
y = sin(2t) on [0, π/2] about the x-axis, using Simpson’s
Rule and n = 4.

44. Approximate the surface area of the solid formed by ro-
taƟng the one petal of the rose curve x = cos t cos(2t),
y = sin t cos(2t) on [0, π/4] about the x-axis, using Simp-
son’s Rule and n = 4.
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Figure 9.38: Ploƫng polar points in Exam-
ple 296.

9.4 IntroducƟon to Polar Coordinates

9.4 IntroducƟon to Polar Coordinates
We are generally introduced to the idea of graphing curves by relaƟng x-values
to y-values through a funcƟon f. That is, we set y = f(x), and plot lots of point
pairs (x, y) to get a good noƟon of how the curve looks. This method is useful
but has limitaƟons, not least of which is that curves that “fail the verƟcal line
test” cannot be graphed without using mulƟple funcƟons.

The previous two secƟons introduced and studied a new way of ploƫng
points in the x, y-plane. Using parametric equaƟons, x and y values are com-
puted independently and then ploƩed together. This method allows us to graph
an extraordinary range of curves. This secƟon introduces yet anotherway to plot
points in the plane: using polar coordinates.

Polar Coordinates

Start with a point O in the plane called the pole (we will always idenƟfy this
point with the origin). From the pole, draw a ray, called the iniƟal ray (we will
always draw this ray horizontally, idenƟfying it with the posiƟve x-axis). A point
P in the plane is determined by the distance r that P is from O, and the an-
gle θ formed between the iniƟal ray and the segment OP (measured counter-
clockwise). We record the distance and angle as an ordered pair (r, θ). To avoid
confusion with rectangular coordinates, we will denote polar coordinates with
the leƩer P, as in P(r, θ). This is illustrated in Figure 9.37

PracƟce will make this process more clear.

.. Example 296 Ploƫng Polar Coordinates
Plot the following polar coordinates:

A = P(1, π/4) B = P(1.5, π) C = P(2,−π/3) D = P(−1, π/4)

SÊ½çã®ÊÄ To aid in the drawing, a polar grid is provided at the boƩom
of this page. To place the point A, go out 1 unit along the iniƟal ray (puƫng
you on the inner circle shown on the grid), then rotate counter-clockwise π/4
radians (or 45◦). Alternately, one can consider the rotaƟon first: think about the
ray from O that forms an angle of π/4 with the iniƟal ray, then move out 1 unit
along this ray (again placing you on the inner circle of the grid).

To plot B, go out 1.5 units along the iniƟal ray and rotate π radians (180◦).
To plot C, go out 2 units along the iniƟal ray then rotate clockwise π/3 radi-

ans, as the angle given is negaƟve.
To plot D, move along the iniƟal ray “−1” units – in other words, “back up” 1

unit, then rotate counter-clockwise by π/4. The results are given in Figure 9.38. ..

Notes:
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Chapter 9 Curves in the Plane

Consider the following two points: A = P(1, π) and B = P(−1, 0). To locate
A, go out 1 unit on the iniƟal ray then rotate π radians; to locate B, go out −1
units on the iniƟal ray and don’t rotate. One should see that A and B are located
at the same point in the plane. We can also consider C = P(1, 3π), or D =
P(1,−π); all four of these points share the same locaƟon.

This ability to idenƟfy a point in the plane with mulƟple polar coordinates is
both a “blessing” and a “curse.” We will see that it is beneficial as we can plot
beauƟful funcƟons that intersect themselves (much like we sawwith parametric
funcƟons). The unfortunate part of this is that it can be difficult to determine
when this happens. We’ll explore this more later in this secƟon.

Polar to Rectangular Conversion

It is useful to recognize both the rectangular (or, Cartesian) coordinates of a
point in the plane and its polar coordinates. Figure 9.39 shows a point P in the
plane with rectangular coordinates (x, y) and polar coordinates P(r, θ). Using
trigonometry, we can make the idenƟƟes given in the following Key Idea.

..
Key Idea 41 ConverƟng Between Rectangular and Polar Coordi-
nates

Given the polar point P(r, θ), the rectangular coordinates are determined
by

x = r cos θ y = r sin θ.

Given the rectangular coordinates (x, y), the polar coordinates are de-
termined by

r2 = x2 + y2 tan θ =
y
x
.

.. Example 297 ..ConverƟng Between Polar and Rectangular Coordinates

1. Convert the polar coordinates P(2, 2π/3) and P(−1, 5π/4) to rectangular
coordinates.

2. Convert the rectangular coordinates (1, 2) and (−1, 1) to polar coordi-
nates.

SÊ½çã®ÊÄ

Notes:

504



..
O
.

P(2, 2π
3 )

.

P(−1, 5π
4 )

(a)

..
(0, 0)

.

(1, 2)

.

(−1, 1)

.
3π
4

.
3π
4

.
−π

4 .

1.11

(b)

Figure 9.40: Ploƫng rectangular and po-
lar points in Example 297.

9.4 IntroducƟon to Polar Coordinates

1. (a) We start with P(2, 2π/3). Using Key Idea 41, we have

x = 2 cos(2π/3) = −1 y = 2 sin(2π/3) =
√
3.

So the rectangular coordinates are (−1,
√
3) ≈ (−1, 1.732).

(b) The polar point P(−1, 5π/4) is converted to rectangular with:

x = −1 cos(5π/4) =
√
2/2 y = −1 sin(5π/4) =

√
2/2.

So the rectangular coordinates are (
√
2/2,

√
2/2) ≈ (0.707, 0.707).

These points are ploƩed in Figure 9.40 (a). The rectangular coordinate
system is drawn lightly under the polar coordinate system so that the re-
laƟonship between the two can be seen.

2. (a) To convert the rectangular point (1, 2) to polar coordinates, we use
the Key Idea to form the following two equaƟons:

12 + 22 = r2 tan θ =
2
1
.

The first equaƟon tells us that r =
√
5. Using the inverse tangent

funcƟon, we find

tan θ = 2 ⇒ θ = tan−1 2 ≈ 1.11 ≈ 63.43◦.

Thus polar coordinates of (1, 2) are P(
√
5, 1.11).

(b) To convert (−1, 1) to polar coordinates, we form the equaƟons

(−1)2 + 12 = r2 tan θ =
1
−1

.

Thus r =
√
2. We need to be careful in compuƟng θ: using the

inverse tangent funcƟon, we have

tan θ = −1 ⇒ θ = tan−1(−1) = −π/4 = −45◦.

This is not the angle we desire. The range of tan−1 x is (−π/2, π/2);
that is, it returns angles that lie in the 1st and 4th quadrants. To
find locaƟons in the 2nd and 3rd quadrants, add π to the result of
tan−1 x. So π + (−π/4) puts the angle at 3π/4. Thus the polar
point is P(

√
2, 3π/4).

An alternate method is to use the angle θ given by arctangent, but
change the sign of r. Thus we could also refer to (−1, 1) as
P(−

√
2,−π/4).

These points are ploƩed in Figure 9.40 (b). The polar system is drawn
lightly under the rectangular grid with rays to demonstrate the angles
used....

Notes:
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Chapter 9 Curves in the Plane

Polar FuncƟons and Polar Graphs

Defining a new coordinate system allows us to create a new kind of func-
Ɵon, a polar funcƟon. Rectangular coordinates lent themselves well to creaƟng
funcƟons that related x and y, such as y = x2. Polar coordinates allow us to cre-
ate funcƟons that relate r and θ. Normally these funcƟons look like r = f(θ),
although we can create funcƟons of the form θ = f(r). The following examples
introduce us to this concept.

.. Example 298 IntroducƟon to Graphing Polar FuncƟons
Describe the graphs of the following polar funcƟons.

1. r = 1.5

2. θ = π/4

SÊ½çã®ÊÄ

1. The equaƟon r = 1.5 describes all points that are 1.5 units from the pole;
as the angle is not specified, any θ is allowable. All points 1.5 units from
the pole describes a circle of radius 1.5.

We can consider the rectangular equivalent of this equaƟon; using r2 =
x2+y2, we see that 1.52 = x2+y2, which we recognize as the equaƟon of
a circle centered at (0, 0) with radius 1.5. This is sketched in Figure 9.41.

2. The equaƟon θ = π/4 describes all points such that the line through them
and the polemake an angle of π/4with the iniƟal ray. As the radius r is not
specified, it can be any value (even negaƟve). Thus θ = π/4 describes the
line through the pole that makes an angle of π/4 = 45◦ with the iniƟal
ray.

We can again consider the rectangular equivalent of this equaƟon. Com-
bine tan θ = y/x and θ = π/4:

tan π/4 = y/x ⇒ x tan π/4 = y ⇒ y = x.

This graph is also ploƩed in Figure 9.41...

The basic rectangular equaƟons of the form x = h and y = k create verƟcal
and horizontal lines, respecƟvely; the basic polar equaƟons r = h and θ = α
create circles and lines through the pole, respecƟvely. With this as a foundaƟon,
we can create more complicated polar funcƟons of the form r = f(θ). The input
is an angle; the output is a length, how far in the direcƟon of the angle to go out.

Notes:
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θ r = 1+ cos θ
0 2

π/6 1.86603
π/2 1
4π/3 0.5
7π/4 1.70711
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Figure 9.42: Graphing a polar funcƟon in
Example 299 by ploƫng points.

..
O
.

1
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2

Figure 9.43: Using technology to graph a
polar funcƟon.

9.4 IntroducƟon to Polar Coordinates

We sketch these funcƟons much like we sketch rectangular and parametric
funcƟons: we plot lots of points and “connect the dots”with curves. We demon-
strate this in the following example.

.. Example 299 Sketching Polar FuncƟons
Sketch the polar funcƟon r = 1+ cos θ on [0, 2π] by ploƫng points.

SÊ½çã®ÊÄ AcommonquesƟonwhen sketching curves by ploƫngpoints
is “Which points should I plot?” With rectangular equaƟons, we oŌen choose
“easy” values – integers, then addedmore if needed. When ploƫng polar equa-
Ɵons, start with the “common” angles – mulƟples of π/6 and π/4. Figure 9.42
gives a table of just a few values of θ in [0, π].

Consider the point P(0, 2) determined by the first line of the table. The angle
is 0 radians – we do not rotate from the iniƟal ray – then we go out 2 units from
the pole. When θ = π/6, r = 1.866 (actually, it is 1+

√
3/2); so rotate by π/6

radians and go out 1.866 units.
The graph shownusesmorepoints, connectedwith straight lines. (The points

on the graph that correspond to points in the table are signifiedwith larger dots.)
Such a sketch is likely good enough to give one an idea of what the graph looks
like. ..

Technology Note: Ploƫng funcƟons in this way can be tedious, just as it was
with rectangular funcƟons. To obtain very accurate graphs, technology is a great
aid. Most graphing calculators can plot polar funcƟons; in the menu, set the
ploƫng mode to something like polar or POL, depending on one’s calculator.
As with ploƫng parametric funcƟons, the viewing “window” no longer deter-
mines the x-values that are ploƩed, so addiƟonal informaƟon needs to be pro-
vided. OŌen with the “window” seƫngs are the seƫngs for the beginning and
ending θ values (oŌen called θmin and θmax) as well as the θstep – that is, how far
apart the θ values are spaced. The smaller the θstep value, the more accurate
the graph (which also increases ploƫng Ɵme). Using technology, we graphed
the polar funcƟon r = 1+ cos θ from Example 299 in Figure 9.43.

.. Example 300 ..Sketching Polar FuncƟons
Sketch the polar funcƟon r = cos(2θ) on [0, 2π] by ploƫng points.

SÊ½çã®ÊÄ We start by making a table of cos(2θ) evaluated at common
angles θ, as shown in Figure 9.44. These points are then ploƩed in Figure 9.45
(a). This parƟcular graph “moves” around quite a bit and one can easily forget
which points should be connected to each other. To help us with this, we num-
bered each point in the table and on the graph.

Notes:
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Figure 9.45: Polar plots from Example
300.

Chapter 9 Curves in the Plane

Pt. θ cos(2θ)
1 0 1.
2 π/6 0.5
3 π/4 0.
4 π/3 −0.5
5 π/2 −1.
6 2π/3 −0.5
7 3π/4 0.
8 5π/6 0.5
9 π 1.

Pt. θ cos(2θ)
10 7π/6 0.5
11 5π/4 0.
12 4π/3 −0.5
13 3π/2 −1.
14 5π/3 −0.5
15 7π/4 0.
16 11π/6 0.5
17 2π 1.

Figure 9.44: Tables of points for ploƫng a polar curve.

Using more points (and the aid of technology) a smoother plot can be made as
shown in Figure 9.45 (b). This plot is an example of a rose curve. ...

It is someƟmes desirable to refer to a graph via a polar equaƟon, and other
Ɵmes by a rectangular equaƟon. Therefore it is necessary to be able to convert
between polar and rectangular funcƟons, which we pracƟce in the following ex-
ample. We will make frequent use of the idenƟƟes found in Key Idea 41.

.. Example 301 ..ConverƟng between rectangular and polar equaƟons.

Convert from rectangular to polar.

1. y = x2

2. xy = 1

Convert from polar to rectangular.

3. r =
2

sin θ − cos θ

4. r = 2 cos θ

SÊ½çã®ÊÄ

1. Replace y with r sin θ and replace x with r cos θ, giving:

y = x2

r sin θ = r2 cos2 θ
sin θ
cos2 θ

= r

We have found that r = sin θ/ cos2 θ = tan θ sec θ. The domain of this
polar funcƟon is [−π/2, π/2]; plot a few points to see how the familiar
parabola is traced out by the polar equaƟon.

Notes:
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Figure 9.46: Graphing xy = 1 from Exam-
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9.4 IntroducƟon to Polar Coordinates

2. We again replace x and y using the standard idenƟƟes and work to solve
for r:

xy = 1
r cos θ · r sin θ = 1

r2 =
1

cos θ sin θ

r =
1√

cos θ sin θ

This funcƟon is valid only when the product of cos θ sin θ is posiƟve. This
occurs in the first and third quadrants, meaning the domain of this polar
funcƟon is (0, π/2) ∪ (π, 3π/2).
We can rewrite the original rectangular equaƟon xy = 1 as y = 1/x.
This is graphed in Figure 9.46; note how it only exists in the first and third
quadrants.

3. There is no set way to convert from polar to rectangular; in general, we
look to form the products r cos θ and r sin θ, and then replace these with
x and y, respecƟvely. We start in this problem by mulƟplying both sides
by sin θ − cos θ:

r =
2

sin θ − cos θ
r(sin θ − cos θ) = 2
r sin θ − r cos θ = 2. Now replace with y and x:

y− x = 2
y = x+ 2.

The original polar equaƟon, r = 2/(sin θ − cos θ) does not easily reveal
that its graph is simply a line. However, our conversion shows that it is.
The upcoming gallery of polar curves gives the general equaƟons of lines
in polar form.
..

4. By mulƟplying both sides by r, we obtain both an r2 term and an r cos θ
term, which we replace with x2 + y2 and x, respecƟvely.

r = 2 cos θ

r2 = 2r cos θ

x2 + y2 = 2x.

Notes:
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Chapter 9 Curves in the Plane

We recognize this as a circle; by compleƟng the square we can find its
radius and center.

x2 − 2x+ y2 = 0

(x− 1)2 + y2 = 1.

The circle is centered at (1, 0) and has radius 1. The upcoming gallery
of polar curves gives the equaƟons of some circles in polar form; circles
with arbitrary centers have a complicated polar equaƟon that we do not
consider here....

Some curves have very simple polar equaƟons but rather complicated rect-
angular ones. For instance, the equaƟon r = 1 + cos θ describes a cardiod
(a shape important the sensiƟvity of microphones, among other things; one is
graphed in the gallery in the Limaçon secƟon). It’s rectangular form is not nearly
as simple; it is the implicit equaƟon x4 + y4 + 2x2y2 − 2xy2 − 2x3 − y2 = 0. The
conversion is not “hard,” but takes several steps, and is leŌ as a problem in the
Exercise secƟon.

Gallery of Polar Curves

There are a number of basic and “classic” polar curves, famous for their
beauty and/or applicability to the sciences. This secƟon endswith a small gallery
of some of these graphs. We encourage the reader to understand how these
graphs are formed, and to invesƟgate with technology other types of polar func-
Ɵons.

Lines

Through the origin: Horizontal line: VerƟcal line: Not through origin:

θ = α r = a csc θ r = a sec θ r =
b

sin θ −m cos θ

..
α

..
a
{

..︷ ︸︸ ︷.
a

..

slo
pe
=
m

.

}
b

Notes:
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Circles Spiral

Centered on x-axis: Centered on y-axis: Centered on origin: Archimedean spiral
r = a cos θ r = a sin θ r = a r = θ

..︷ ︸︸ ︷.
a

..

a


..︷ ︸︸ ︷.

a
.

Limaçons
Symmetric about x-axis: r = a± b cos θ; Symmetric about y-axis: r = a± b sin θ; a, b > 0

With inner loop: Cardiod: Dimpled: Convex:
a
b
< 1

a
b
= 1 1 <

a
b
< 2

a
b
> 2

. . . .

Rose Curves
Symmetric about x-axis: r = a cos(nθ); Symmetric about y-axis: r = a sin(nθ)
Curve contains 2n petals when n is even and n petals when n is odd.

r = a cos(2θ) r = a sin(2θ) r = a cos(3θ) r = a sin(3θ)

. . . .

Special Curves

Rose curves Lemniscate: Eight Curve:

r = a sin(θ/5) r = a sin(2θ/5) r2 = a2 cos(2θ) r2 = a2 sec4 θ cos(2θ)

. . . .
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Figure 9.47: Graphs to help determine
the points of intersecƟon of the polar
funcƟons given in Example 302.

Chapter 9 Curves in the Plane

Earlier we discussed how each point in the plane does not have a unique
representaƟon in polar form. This can be a “good” thing, as it allows for the
beauƟful and interesƟng curves seen in the preceding gallery. However, it can
also be a “bad” thing, as it can be difficult to determine where two curves inter-
sect.

.. Example 302 ..Finding points of intersecƟon with polar curves
Determinewhere the graphs of the polar equaƟons r = 1+3 cos θ and r = cos θ
intersect.

SÊ½çã®ÊÄ As technology is generally readily available, it is generally a
good idea to start with a graph. We have graphed the two funcƟons in Figure
9.47 (a); to beƩer discern the intersecƟon points, part (b) of the figure zooms
in around the origin. We start by seƫng the two funcƟons equal to each other
and solving for θ:

1+ 3 cos θ = cos θ
2 cos θ = −1

cos θ = −1
2

θ =
2π
3
,
4π
3
.

(There are, of course, infinite soluƟons to the equaƟon cos θ = −1/2; as the
limaçon is traced out once on [0, 2π], we restrict our soluƟons to this interval.)

We need to analyze this soluƟon. When θ = 2π/3 we obtain the point of
intersecƟon that lies in the 4th quadrant. When θ = 4π/3, we get the point of
intersecƟon that lies in the 2nd quadrant. There is more to say about this second
intersecƟon point, however. The circle defined by r = cos θ is traced out once on
[0, π], meaning that this point of intersecƟon occurs while tracing out the circle
a second Ɵme. It seems strange to pass by the point once and then recognize
it as a point of intersecƟon only when arriving there a “second Ɵme.” The first
Ɵme the circle arrives at this point is when θ = π/3. It is key to understand that
these two points are the same: (cos π/3, π/3) and (cos 4π/3, 4π/3).

To summarize what we have done so far, we have found two points of in-
tersecƟon: when θ = 2π/3 and when θ = 4π/3. When referencing the circle
r = cos θ, the laƩer point is beƩer referenced as when θ = π/3.

There is yet another point of intersecƟon: the pole (or, the origin). We did
not recognize this intersecƟon point using our work above as each graph arrives
at the pole at a different θ value.

A graph intersects the pole when r = 0. Considering the circle r = cos θ,
r = 0 when θ = π/2 (and odd mulƟples thereof, as the circle is repeatedly

Notes:
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9.4 IntroducƟon to Polar Coordinates

traced). The limaçon intersects the pole when 1+3 cos θ = 0; this occurs when
cos θ = −1/3, or for θ = cos−1(−1/3). This is a nonstandard angle, approxi-
mately θ = 1.9106 = 109.47◦. The limaçon intersects the pole twice in [0, 2π];
the other angle at which the limaçon is at the pole is the reflecƟon of the first
angle across the x-axis. That is, θ = 4.3726 = 250.53◦. ...

If all one is concernedwith is the (x, y) coordinates at which the graphs inter-
sect, much of the above work is extraneous. We know they intersect at (0, 0);
we might not care at what θ value. Likewise, using θ = 2π/3 and θ = 4π/3
can give us the needed rectangular coordinates. However, in the next secƟon
we apply calculus concepts to polar funcƟons. When compuƟng the area of a
region bounded by polar curves, understanding the nuances of the points of
intersecƟon becomes important.

Notes:
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Exercises 9.4
Terms and Concepts
1. In your own words, describe how to plot the polar point

P(r, θ).

2. T/F: When ploƫng a point with polar coordinate P(r, θ), r
must be posiƟve.

3. T/F: Every point in the Cartesian plane can be represented
by a polar coordinate.

4. T/F: Every point in the Cartesian plane can be represented
uniquely by a polar coordinate.

Problems
5. Plot the points with the given polar coordinates.

(a) A = P(2, 0)

(b) B = P(1, π)

(c) C = P(−2, π/2)

(d) D = P(1, π/4)

6. Plot the points with the given polar coordinates.

(a) A = P(2, 3π)

(b) B = P(1,−π)

(c) C = P(1, 2)

(d) D = P(1/2, 5π/6)

7. For each of the given points give two sets of polar coordi-
nates that idenƟfy it, where 0 ≤ θ ≤ 2π.

..
O
.

1
.

2
.

3
.

A

.

B

.

C

.

D

8. For each of the given points give two sets of polar coordi-
nates that idenƟfy it, where−π ≤ θ ≤ π.

..
O
.

1
.

2
.

3
.

A

.

B

.

C

.
D

9. Convert each of the following polar coordinates to rectan-
gular, and each of the following rectangular coordinates to
polar.

(a) A = P(2, π/4)

(b) B = P(2,−π/4)

(c) C = (2,−1)

(d) D = (−2, 1)

10. Convert each of the following polar coordinates to rectan-
gular, and each of the following rectangular coordinates to
polar.

(a) A = P(3, π)

(b) B = P(1, 2π/3)

(c) C = (0, 4)

(d) D = (1,−
√
3)

In Exercises 11 – 29, graph the polar funcƟon on the given
interval.

11. r = 2, 0 ≤ θ ≤ π/2

12. θ = π/6, −1 ≤ r ≤ 2

13. r = 1− cos θ, [0, 2π]

14. r = 2+ sin θ, [0, 2π]

15. r = 2− sin θ, [0, 2π]

16. r = 1− 2 sin θ, [0, 2π]

17. r = 1+ 2 sin θ, [0, 2π]

18. r = cos(2θ), [0, 2π]

19. r = sin(3θ), [0, π]

20. r = cos(θ/3), [0, 3π]

21. r = cos(2θ/3), [0, 6π]

22. r = θ/2, [0, 4π]

23. r = 3 sin(θ), [0, π]

24. r = cos θ sin θ, [0, 2π]

25. r = θ2 − (π/2)2, [−π, π]

26. r =
3

5 sin θ − cos θ
, [0, 2π]

27. r =
−2

3 cos θ − 2 sin θ
, [0, 2π]

28. r = 3 sec θ, (−π/2, π/2)

29. r = 3 csc θ, (0, π)

In Exercises 30 – 38, convert the polar equaƟon to a rectan-
gular equaƟon.

30. r = 2 cos θ

31. r = −4 sin θ

32. r = cos θ + sin θ

33. r =
7

5 sin θ − 2 cos θ

34. r =
3

cos θ

35. r =
4

sin θ
36. r = tan θ

37. r = 2

38. θ = π/6
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In Exercises 39 – 46, convert the rectangular equaƟon to a
polar equaƟon.

39. y = x

40. y = 4x+ 7

41. x = 5

42. y = 5

43. x = y2

44. x2y = 1

45. x2 + y2 = 7

46. (x+ 1)2 + y2 = 1

In Exercises 47 – 54, find the points of intersecƟon of the po-
lar graphs.

47. r = sin(2θ) and r = cos θ on [0, π]

48. r = cos(2θ) and r = cos θ on [0, π]

49. r = 2 cos θ and r = 2 sin θ on [0, π]

50. r = sin θ and r =
√
3+ 3 sin θ on [0, 2π]

51. r = sin(3θ) and r = cos(3θ) on [0, π]

52. r = 3 cos θ and r = 1+ cos θ on [−π, π]

53. r = 1 and r = 2 sin(2θ) on [0, 2π]

54. r = 1− cos θ and r = 1+ sin θ on [0, 2π]

55. Pick a integer value for n, where n ̸= 2, 3, and use technol-
ogy to plot r = sin

(m
n
θ
)
for three different integer values

of m. Sketch these and determine a minimal interval on
which the enƟre graph is shown.

56. Create your own polar funcƟon, r = f(θ) and sketch it. De-
scribe why the graph looks as it does.

515



Chapter 9 Curves in the Plane

9.5 Calculus and Polar FuncƟons

The previous secƟon defined polar coordinates, leading to polar funcƟons. We
invesƟgated ploƫng these funcƟons and solving a fundamental quesƟon about
their graphs, namely, where do two polar graphs intersect?

We now turn our aƩenƟon to answering other quesƟons, whose soluƟons
require the use of calculus. A basis for much of what is done in this secƟon is
the ability to turn a polar funcƟon r = f(θ) into a set of parametric equaƟons.
Using the idenƟƟes x = r cos θ and y = r sin θ, we can create the parametric
equaƟons x = f(θ) cos θ, y = f(θ) sin θ and apply the concepts of SecƟon 9.3.

Polar FuncƟons and
dy
dx

We are interested in the lines tangent a given graph, regardless of whether
that graph is produced by rectangular, parametric, or polar equaƟons. In each
of these contexts, the slope of the tangent line is dy

dx . Given r = f(θ), we are
generally not concerned with r ′ = f ′(θ); that describes how fast r changes with
respect to θ. Instead, we will use x = f(θ) cos θ, y = f(θ) sin θ to compute dy

dx .
Using Key Idea 38 we have

dy
dx

=
dy
dθ

/dx
dθ

.

Each of the two derivaƟves on the right hand side of the equality requires the
use of the Product Rule. We state the important result as a Key Idea.

..
Key Idea 42 Finding dy

dx with Polar FuncƟons

Let r = f(θ) be a polar funcƟon. With x = f(θ) cos θ and y = f(θ) sin θ,

dy
dx

=
f ′(θ) sin θ + f(θ) cos θ
f ′(θ) cos θ − f(θ) sin θ

.

.. Example 303 ..Finding dy
dx with polar funcƟons.

Consider the limaçon r = 1+ 2 sin θ on [0, 2π].

1. Find the equaƟons of the tangent and normal lines to the graph at θ =
π/4.

2. Find where the graph has verƟcal and horizontal tangent lines.

Notes:
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Figure 9.48: The limaçon in Example 303
with its tangent line at θ = π/4 and
points of verƟcal and horizontal tangency.

9.5 Calculus and Polar FuncƟons

SÊ½çã®ÊÄ

1. We start by compuƟng dy
dx . With f ′(θ) = 2 cos θ, we have

dy
dx

=
2 cos θ sin θ + cos θ(1+ 2 sin θ)

2 cosθ − sin θ(1+ 2 sin θ)

=
cos θ(4 sin θ + 1)

2(cos2 θ − sin2 θ)− sin θ
.

When θ = π/4, dy
dx = −2

√
2 − 1 (this requires a bit of simplificaƟon).

In rectangular coordinates, the point on the graph at θ = π/4 is (1 +√
2/2, 1 +

√
2/2). Thus the rectangular equaƟon of the line tangent to

the limaçon at θ = π/4 is

y = (−2
√
2− 1)

(
x− (1+

√
2/2)

)
+ 1+

√
2/2 ≈ −3.83x+ 8.24.

The limaçon and the tangent line are graphed in Figure 9.48.
The normal line has the opposite–reciprocal slope as the tangent line, so
its equaƟon is

y ≈ 1
3.83

x+ 1.26.

..

2. To find the horizontal lines of tangency, we find where dy
dx = 0; thus we

find where the numerator of our equaƟon for dy
dx is 0.

cos θ(4 sin θ + 1) = 0 ⇒ cos θ = 0 or 4 sin θ + 1 = 0.

On [0, 2π], cos θ = 0 when θ = π/2, 3π/2.
Seƫng 4 sin θ + 1 = 0 gives θ = sin−1(−1/4) ≈ −0.2527 = −14.48◦.
We want the results in [0, 2π]; we also recognize there are two soluƟons,
one in the 3rd quadrant and one in the 4th. Using reference angles, we
have our two soluƟons as θ = 3.39 and 6.03 radians. The four points we
obtained where the limaçon has a horizontal tangent line are given in Fig-
ure 9.48 with black–filled dots.

To find the verƟcal lines of tangency, we set the denominator of dy
dx = 0.

2(cos2 θ − sin2 θ)− sin θ = 0.

Convert the cos2 θ term to 1− sin2 θ:

2(1− sin2 θ − sin2 θ)− sin θ = 0

4 sin2 θ + sin θ − 1 = 0.

Notes:
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Figure 9.49: Graphing the tangent lines at
the pole in Example 304.

Chapter 9 Curves in the Plane

Recognize this as a quadraƟc in the variable sin θ. Using the quadraƟc
formula, we have

sin θ =
−1±

√
33

8
.

We solve sin θ = −1+
√
33

8 and sin θ = −1−
√
33

8 :

sin θ =
−1+

√
33

8
sin θ =

−1−
√
33

8

θ = sin−1
(
−1+

√
33

8

)
θ = sin−1

(
−1−

√
33

8

)
θ = 0.6399 θ = −1.0030

In each of the soluƟons above, we only get one of the possible two so-
luƟons as sin−1 x only returns soluƟons in [−π/2, π/2], the 4th and 1st
quadrants. Again using reference angles, we have:

sin θ =
−1+

√
33

8
⇒ θ = 0.6399, 3.7815 radians

and

sin θ =
−1−

√
33

8
⇒ θ = 4.1446, 5.2802 radians.

These points are also shown in Figure 9.48 with white–filled dots.
...

When the graph of the polar funcƟon r = f(θ) intersects the pole, it means
that f(α) = 0 for some angle α. Thus the formula for dy

dx in such instances is very
simple, reducing simply to

dy
dx

= tanα.

This equaƟon makes an interesƟng point. It tells us the slope of the tangent
line at the pole is tanα; some of our previous work (see, for instance, Example
298) shows us that the line through the pole with slope tanα has polar equaƟon
θ = α. Thus when a polar graph touches the pole at θ = α, the equaƟon of the
tangent line at the pole is θ = α.

.. Example 304 ..Finding tangent lines at the pole.
Let r = 1 + 2 sin θ, a limaçon. Find the equaƟons of the lines tangent to the
graph at the pole.

Notes:
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Note: Recall that the area of a sector of a
circle with radius r subtended by an angle
θ is A = 1

2θr
2.
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..... 0.5. 1.

0.5

.

1

.

θ = α

.

θ
=

β

.

r = f(θ)

.
0

.

π/2

(a)

..... 0.5. 1.

0.5

.

1

.

θ
=

β

.

r = f(θ)

.

θ = α

.
0

.

π/2

(b)

Figure 9.50: CompuƟng the area of a po-
lar region.

9.5 Calculus and Polar FuncƟons

SÊ½çã®ÊÄ We need to know when r = 0.

1+ 2 sin θ = 0
sin θ = −1/2

θ =
7π
6
,
11π
6

.

Thus the equaƟons of the tangent lines, in polar, are θ = 7π/6 and θ = 11π/6.
In rectangular form, the tangent lines are y = tan(7π/6)x and y = tan(11π/6)x.
The full limaçon can be seen in Figure 9.48; we zoom in on the tangent lines in
Figure 9.49. ...

Area

When using rectangular coordinates, the equaƟons x = h and y = k defined
verƟcal and horzontal lines, respecƟvely, and combinaƟons of these lines create
rectangles (hence the name “rectangular coordinates”). It is then somewhat
natural to use rectangles to approximate area as we did when learning about
the definite integral.

When using polar coordinates, the equaƟons θ = α and r = c form lines
through the origin and circles centered at the origin, respecƟvely, and combi-
naƟons of these curves form sectors of circles. It is then somewhat natural to
calculate the area of regions defined by polar funcƟons by first approximaƟng
with sectors of circles.

Consider Figure 9.50 (a) where a region defined by r = f(θ) on [α, β] is given.
(Note how the “sides” of the region are the lines θ = α and θ = β, whereas in
rectangular coordinates the “sides” of regionswere oŌen the verƟcal lines x = a
and x = b.)

ParƟƟon the interval [α, β] into n equally spaced subintervals as α = θ1 <
θ2 < · · · < θn+1 = β. The length of each subinterval is ∆θ = (β − α)/n,
represenƟng a small change in angle. The area of the region defined by the i th
subinterval [θi, θi+1] can be approximated with a sector of a circle with radius
f(ci), for some ci in [θi, θi+1]. The area of this sector is 1

2 f(ci)
2∆θ. This is shown

in part (b) of the figure, where [α, β] has been divided into 4 subintervals. We
approximate the area of the whole region by summing the areas of all sectors:

Area ≈
n∑

i=1

1
2
f(ci)2∆θ.

This is a Riemann sum. By taking the limit of the sum as n → ∞, we find the

Notes:

519



Note: Example 305 requires the use of

the integral
∫

cos2 θ dθ. This is handled

well by using the power reducing formula
as found in the back of this text. Due to
the nature of the area formula, integrat-
ing cos2 θ and sin2 θ is required oŌen.
We offer here these indefinite integrals
as a Ɵme–saving measure.∫

cos2 θ dθ =
1
2
θ +

1
4
sin(2θ) + C∫

sin2 θ dθ =
1
2
θ − 1

4
sin(2θ) + C

...

..
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.

θ =
π/
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θ
=

π
/

3
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0
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π/2

Figure 9.51: Finding the area of the
shaded region of a cardiod in Example
306.

Chapter 9 Curves in the Plane

exact area of the region in the form of a definite integral.

..
Theorem 83 Area of a Polar Region

Let f be conƟnuous and non-negaƟve on [α, β], where 0 ≤ β− α ≤ 2π.
The area A of the region bounded by the curve r = f(θ) and the lines
θ = α and θ = β is

A =
1
2

∫ β

α

f(θ)2 dθ =
1
2

∫ β

α

r 2 dθ

The theorem states that 0 ≤ β−α ≤ 2π. This ensures that region does not
overlap itself, giving a result that does not correspond directly to the area.

.. Example 305 Area of a polar region
Find the area of the circle defined by r = cos θ.

SÊ½çã®ÊÄ This is a direct applicaƟonof Theorem83. The circle is traced
out on [0, π], leading to the integral

Area =
1
2

∫ π

0
cos2 θ dθ

=
1
2

∫ π

0

1+ cos(2θ)
2

dθ

=
1
4
(
θ +

1
2
sin(2θ)

)∣∣∣∣∣
π

0

=
1
4
π.

Of course, we already knew the area of a circle with radius 1/2. We did this ex-
ample to demonstrate that the area formula is correct. ..

.. Example 306 ..Area of a polar region
Find the area of the cardiod r = 1+cos θ bound between θ = π/6 and θ = π/3,
as shown in Figure 9.51.

Notes:
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Figure 9.52: IllustraƟng area bound be-
tween two polar curves.

.....

1

.

2

.

3

.

−1

.

1

.

0

.

π/2

Figure 9.53: Finding the area betweenpo-
lar curves in Example 307.

9.5 Calculus and Polar FuncƟons

SÊ½çã®ÊÄ This is again a direct appliaƟon of Theorem 83.

Area =
1
2

∫ π/3

π/6
(1+ cos θ)2 dθ

=
1
2

∫ π/3

π/6
(1+ 2 cos θ + cos2 θ) dθ

=
1
2

(
θ + 2 sin θ +

1
2
θ +

1
4
sin(2θ)

) ∣∣∣∣∣
π/3

π/6

=
1
8
(
π + 4

√
3− 4

)
≈ 0.7587.

...

Area Between Curves

Our study of area in the context of rectangular funcƟons led naturally to
finding area bounded between curves. We consider the same in the context of
polar funcƟons.

Consider the shaded region shown in Figure 9.52. We can find the area of
this region by compuƟng the area bounded by r2 = f2(θ) and subtracƟng the
area bounded by r1 = f1(θ) on [α, β]. Thus

Area =
1
2

∫ β

α

r 22 dθ − 1
2

∫ β

α

r 21 dθ =
1
2

∫ β

α

(
r 22 − r 21

)
dθ.

..
Key Idea 43 Area Between Polar Curves

The area A of the region bounded by r1 = f1(θ) and r2 = f2(θ), θ = α
and θ = β, where f1(θ) ≤ f2(θ) on [α, β], is

A =
1
2

∫ β

α

(
r 22 − r 21

)
dθ.

.. Example 307 ..Area between polar curves
Find the area bounded between the curves r = 1 + cos θ and r = 3 cos θ, as
shown in Figure 9.53.

SÊ½çã®ÊÄ We need to find the points of intersecƟon between these

Notes:
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Figure 9.54: Graphing the region
bounded by the funcƟons in Example
308.

Chapter 9 Curves in the Plane

two funcƟons. Seƫng them equal to each other, we find:

1+ cos θ = 3 cos θ
cos θ = 1/2

θ = ±π/3

Thus we integrate 1
2

(
(3 cos θ)2 − (1+ cos θ)2

)
on [−π/3, π/3].

Area =
1
2

∫ π/3

−π/3

(
(3 cos θ)2 − (1+ cos θ)2

)
dθ

=
1
2

∫ π/3

−π/3

(
8 cos2 θ − 2 cos θ − 1

)
dθ

=
(
2 sin(2θ)− 2 sin θ + 3θ

)∣∣∣∣∣
π/3

−π/3

= 2π.

Amazingly enough, the area between these curves has a “nice” value. ...

.. Example 308 ..Area defined by polar curves
Find the area bounded between the polar curves r = 1 and r = 2 cos(2θ), as
shown in Figure 9.54 (a).

SÊ½çã®ÊÄ We need to find the point of intersecƟon between the two
curves. Seƫng the two funcƟons equal to each other, we have

2 cos(2θ) = 1 ⇒ cos(2θ) =
1
2

⇒ 2θ = π/3 ⇒ θ = π/6.

In part (b) of the figure, we zoom in on the region and note that it is not really
bounded between two polar curves, but rather by two polar curves, along with
θ = 0. The dashed line breaks the region into its component parts. Below
the dashed line, the region is defined by r = 1, θ = 0 and θ = π/6. (Note:
the dashed line lies on the line θ = π/6.) Above the dashed line the region is
bounded by r = 2 cos(2θ) and θ = π/6. Since we have two separate regions,
we find the area using two separate integrals.

Call the area below the dashed line A1 and the area above the dashed line
A2. They are determined by the following integrals:

A1 =
1
2

∫ π/6

0
(1)2 dθ A2 =

1
2

∫ π/4

π/6

(
2 cos(2θ)

)2 dθ.

Notes:
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9.5 Calculus and Polar FuncƟons

(The upper bound of the integral compuƟng A2 is π/4 as r = 2 cos(2θ) is at the
pole when θ = π/4.)

We omit the integraƟon details and let the reader verify that A1 = π/12 and
A2 = π/12−

√
3/8; the total area is A = π/6−

√
3/8. ...

Arc Length

As we have already considered the arc length of curves defined by rectangu-
lar and parametric equaƟons, we now consider it in the context of polar equa-
Ɵons. Recall that the arc length L of the graph defined by the parametric equa-
Ɵons x = f(t), y = g(t) on [a, b] is

L =
∫ b

a

√
f ′(t)2 + g′(t)2 dt =

∫ b

a

√
x′(t)2 + y′(t)2 dt. (9.1)

Now consider the polar funcƟon r = f(θ). We again use the idenƟƟes x =
f(θ) cos θ and y = f(θ) sin θ to create parametric equaƟons based on the polar
funcƟon. We compute x′(θ) and y′(θ) as done before when compuƟng dy

dx , then
apply EquaƟon (9.1).

The expression x′(θ)2 + y′(θ)2 can be simplified a great deal; we leave this
as an exercise and state that

x′(θ)2 + y′(θ)2 = f ′(θ)2 + f(θ)2.

This leads us to the arc length formula.

..
Key Idea 44 Arc Length of Polar Curves

Let r = f(θ) be a polar funcƟon with f ′ conƟnuous on an open interval
I containing [α, β], on which the graph traces itself only once. The arc
length L of the graph on [α, β] is

L =
∫ β

α

√
f ′(θ)2 + f(θ)2 dθ =

∫ β

α

√
(r ′)2 + r2 dθ.

.. Example 309 ..Arc length of a limaçon
Find the arc length of the limaçon r = 1+ 2 sin t.

SÊ½çã®ÊÄ With r = 1 + 2 sin t, we have r ′ = 2 cos t. The limaçon is
traced out once on [0, 2π], giving us our bounds of integraƟon. Applying Key

Notes:
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Figure 9.55: The limaçon in Example 309
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Chapter 9 Curves in the Plane

Idea 44, we have

L =
∫ 2π

0

√
(2 cos θ)2 + (1+ 2 sin θ)2 dθ

=

∫ 2π

0

√
4 cos2 θ + 4 sin2 θ + 4 sin θ + 1 dθ

=

∫ 2π

0

√
4 sin θ + 5 dθ

≈ 13.3649.

The final integral cannot be solved in terms of elementary funcƟons, so we re-
sorted to a numerical approximaƟon. (Simpson’s Rule, with n = 4, approximates
the value with 13.0608. Using n = 22 gives the value above, which is accurate
to 4 places aŌer the decimal.) ...

Surface Area

The formula for arc length leads us to a formula for surface area. The follow-
ing Key Idea is based on Key Idea 40.

..
Key Idea 45 Surface Area of a Solid of RevoluƟon

Consider the graph of the polar equaƟon r = f(θ), where f ′ is conƟnuous
on an open interval containing [α, β] on which the graph does not cross
itself.

1. The surface area of the solid formed by revolving the graph about
the iniƟal ray (θ = 0) is:

Surface Area = 2π
∫ β

α

f(θ) sin θ
√

f ′(θ)2 + f(θ)2 dθ.

2. The surface area of the solid formed by revolving the graph about
the line θ = π/2 is:

Surface Area = 2π
∫ β

α

f(θ) cos θ
√

f ′(θ)2 + f(θ)2 dθ.

Notes:
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Figure 9.56: Finding the surface area of a
rose–curve petal that is revolved around
its central axis.

9.5 Calculus and Polar FuncƟons

.. Example 310 Surface area determined by a polar curve
Find the surface area formedby revolving onepetal of the rose curve r = cos(2θ)
about its central axis (see Figure 9.56).

SÊ½çã®ÊÄ We choose, as implied by the figure, to revolve the porƟon
of the curve that lies on [0, π/4] about the iniƟal ray. Using Key Idea 45 and the
fact that f ′(θ) = −2 sin(2θ), we have

Surface Area = 2π
∫ π/4

0
cos(2θ) sin(θ)

√(
− 2 sin(2θ)

)2
+
(
cos(2θ)

)2 dθ
≈ 1.36707.

The integral is another that cannot be evaluated in terms of elementary func-
Ɵons. Simpson’s Rule, with n = 4, approximates the value at 1.36751...

Notes:
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Exercises 9.5
Terms and Concepts
1. Given polar equaƟon r = f(θ), how can one create para-

metric equaƟons of the same curve?

2. With rectangular coordinates, it is natural to approximate
area with ; with polar coordinates, it is natural to
approximate area with .

Problems

In Exercises 3 – 10, find:

(a)
dy
dx

(b) the equaƟon of the tangent and normal lines to the
curve at the indicated θ–value.

3. r = 1; θ = π/4

4. r = cos θ; θ = π/4

5. r = 1+ sin θ; θ = π/6

6. r = 1− 3 cos θ; θ = 3π/4

7. r = θ; θ = π/2

8. r = cos(3θ); θ = π/6

9. r = sin(4θ); θ = π/3

10. r =
1

sin θ − cos θ
; θ = π

In Exercises 11 – 14, find the values of θ in the given inter-
val where the graph of the polar funcƟon has horizontal and
verƟcal tangent lines.

11. r = 3; [0, 2π]

12. r = 2 sin θ; [0, π]

13. r = cos(2θ); [0, 2π]

14. r = 1+ cos θ; [0, 2π]

In Exercises 15 – 16, find the equaƟon of the lines tangent to
the graph at the pole.

15. r = sin θ; [0, π]

16. r = sin(3θ); [0, π]

In Exercises 17 – 27, find the area of the described region.

17. Enclosed by the circle: r = 4 sin θ

18. Enclosed by the circle r = 5

19. Enclosed by one petal of r = sin(3θ)

20. Enclosed by the cardiod r = 1− sin θ

21. Enclosed by the inner loop of the limaçon r = 1+ 2 cos t

22. Enclosed by the outer loop of the limaçon r = 1 + 2 cos t
(including area enclosed by the inner loop)

23. Enclosed between the inner and outer loop of the limaçon
r = 1+ 2 cos t

24. Enclosed by r = 2 cos θ and r = 2 sin θ, as shown:

.....

−1

.

1

.

2

. −1.

1

.

2

.

x

.

y

25. Enclosed by r = cos(3θ) and r = sin(3θ), as shown:

.....

1

.

0.5

.

x

.

y

26. Enclosed by r = cos θ and r = sin(2θ), as shown:

..... 1.

1

.
x

.

y
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27. Enclosed by r = 3 cos θ and r = 1− cos θ, as shown:

.....

1

.

2

.

3

.

−1

.

1

.

x

.

y

In Exercises 28 – 32, answer the quesƟons involving arc
length.

28. Let x(θ) = f(θ) cos θ and y(θ) = f(θ) sin θ. Show, as sug-
gested by the text, that

x ′(θ)2 + y ′(θ)2 = f ′(θ)2 + f(θ)2.

29. Use the arc length formula to compute the arc length of the
circle r = 2.

30. Use the arc length formula to compute the arc length of the
circle r = 4 sin θ.

31. Approximate the arc length of one petal of the rose curve
r = sin(3θ) with Simpson’s Rule and n = 4.

32. Approximate the arc length of the cardiod r = 1 + cos θ
with Simpson’s Rule and n = 6.

In Exercises 33 – 37, answer the quesƟons involving surface
area.

33. Use Key Idea 45 to find the surface area of the sphere
formed by revolving the circle r = 2 about the iniƟal ray.

34. Use Key Idea 45 to find the surface area of the sphere
formed by revolving the circle r = 2 cos θ about the iniƟal
ray.

35. Find the surface area of the solid formed by revolving the
cardiod r = 1+ cos θ about the iniƟal ray.

36. Find the surface area of the solid formed by revolving the
circle r = 2 cos θ about the line θ = π/2.

37. Find the surface area of the solid formed by revolving the
line r = 3 sec θ, −π/4 ≤ θ ≤ π/4, about the line
θ = π/2.
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Figure 10.1: Ploƫng the point P =
(2, 1, 3) in space.

10: V��ãÊÙÝ

10.1 IntroducƟon to Cartesian Coordinates in Space
Up to this point in this text we have consideredmathemaƟcs in a 2–dimensional
world. We have ploƩed graphs on the x-y plane using rectangular and polar
coordinates and found the area of regions in the plane. We have considered
properƟes of solid objects, such as volume and surface area, but only by first
defining a curve in the plane and then rotaƟng it out of the plane.

While there is wonderful mathemaƟcs to explore in “2D,” we live in a “3D”
world and eventually we will want to apply mathemaƟcs involving this third di-
mension. In this secƟon we introduce Cartesian coordinates in space and ex-
plore basic surfaces. This will lay a foundaƟon for much of what we do in the
remainder of the text.

EachpointP in space canbe representedwith anordered triple, P = (a, b, c),
where a, b and c represent the relaƟve posiƟon of P to the x-, y- and z-axes, re-
specƟvely. Each axis is perpendicular to the other two.

Visualizing points in space on paper can be problemaƟc, as we are trying
to represent a 3-dimensional concept on a 2–dimensional medium. We cannot
draw three line represenƟng the three axes inwhich each line is perpendicular to
the other two. Despite this issue, standard convenƟons exist for ploƫng shapes
in space that we will discuss that are more than adequate.

One convenƟon is that the axes must conform to the right hand rule. This
rule states that when the index finger of the right hand is extended in the direc-
Ɵon of the posiƟve x-axis, and the middle finger (bent “inward” so it is perpen-
dicular to the palm) points along the posiƟve y axis, then the extended thumb
will point in the direcƟon of the posiƟve z-axis. (It may take some thought to
verify this, but this system is inherently different from the one created by using
the “leŌ hand rule.”)

As long as the coordinate axes are posiƟoned so that they follow this rule,
it does not maƩer how the axes are drawn on paper. There are two popular
methods that we briefly discuss.

In Figure 10.1 we see the point P = (2, 1, 3) ploƩed on a set of axes. The
basic convenƟon here is that the x-y plane is drawn in its standard way, with the
z-axis down to the leŌ. The perspecƟve is that the paper represents the x-y plane
and the posiƟve z axis is coming up, off the page. This method is preferred by
many engineers. Because it can behard to tell where a single point lies in relaƟon



...

..

z

.

y

.

x

. −2.

2

.
−2

.

2

.

2

Figure 10.2: Ploƫng the point P =
(2, 1, 3) in space with a perspecƟve used
in this text.
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Figure 10.3: Ploƫng points P and Q in Ex-
ample 311.

Chapter 10 Vectors

to all the axes, dashed lines have been added to let one see how far along each
axis the point lies.

One can also consider the x-y plane as being a horizontal plane in, say, a
room, where the posiƟve z-axis is poinƟng up. When one steps back and looks
at this room, onemight draw the axes as shown in Figure 10.2. The same point P
is drawn, again with dashed lines. This point of view is preferred by most math-
emaƟcians, and is the convenƟon adopted by this text.

Measuring Distances

It is of criƟcal importance to knowhow tomeasure distances between points
in space. The formula for doing so is based on measuring distance in the plane,
and is known (in both contexts) as the Euclidean measure of distance.

..
DefiniƟon 48 Distance In Space

Let P = (x1, y1, z1) and Q = (x2, y2, z2) be points in space. The distance
D between P and Q is

D =
√
(x2 − x1)2 + (y2 − y1)2 + (z2 − z1)2.

We refer to the line segment that connects points P and Q in space as PQ,
and refer to the length of this segment as ||PQ||. The above distance formula
allows us to compute the length of this segment.

.. Example 311 Length of a line segment
Let P = (1, 4,−1) and let Q = (2, 1, 1). Draw the line segment PQ and find its
length.

SÊ½çã®ÊÄ The points P andQ are ploƩed in Figure 10.3; no special con-
sideraƟon need bemade to draw the line segment connecƟng these two points;
simply connect them with a straight line. One cannot actually measure this line
on the page and deduce anything meaningful; its true length must be measured
analyƟcally. Applying DefiniƟon 48, we have

||PQ|| =
√
(2− 1)2 + (1− 4)2 + (1− (−1))2 =

√
14 ≈ 3.74.

..

Spheres

Just as a circle is the set of all points in the plane equidistant from a given

Notes:
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Figure 10.4: The coordinate planes.

10.1 IntroducƟon to Cartesian Coordinates in Space

point (its center), a sphere is the set of all points in space that are equidistant
from a given point. DefiniƟon 48 allows us to write an equaƟon of the sphere.

We start with a point C = (a, b, c)which is to be the center of a sphere with
radius r. If a point P = (x, y, z) lies on the sphere, then P is r units from C; that
is,

||PC|| =
√
(x− a)2 + (y− b)2 + (z− c)2 = r.

Squaring both sides, we get the standard equaƟon of a sphere in space with
center at C = (a, b, c) with radius r, as given in the following Key Idea.

..
Key Idea 46 Standard EquaƟon of a Sphere in Space

The standard equaƟon of the sphere with radius r, centered at C =
(a, b, c), is

(x− a)2 + (y− b)2 + (z− c)2 = r2.

.. Example 312 EquaƟon of a sphere
Find the center and radius of the sphere defined by x2+2x+y2−4y+z2−6z = 2.

SÊ½çã®ÊÄ To determine the center and radius, we must put the equa-
Ɵon in standard form. This requires us to complete the square (three Ɵmes).

x2 + 2x+ y2 − 4y+ z2 − 6z = 2

(x2 + 2x+ 1) + (y2 − 4y+ 4) + (z2 − 6z+ 9)− 14 = 2

(x+ 1)2 + (y− 2)2 + (z− 3)2 = 16

The sphere is centered at (−1, 2, 3) and has a radius of 4. ..

The equaƟon of a sphere is an example of an implicit funcƟon defining a sur-
face in space. In the case of a sphere, the variables x, y and z are all used. We
now consider situaƟons where surfaces are defined where one or two of these
variables are absent.

IntroducƟon to Planes in Space

The coordinate axes naturally define three planes (shown in Figure 10.4), the
coordinate planes: the x-y plane, the y-z plane and the x-z plane. The x-y plane
is characterized as the set of all points in space where the z-value is 0. This,
in fact, gives us an equaƟon that describes this plane: z = 0. Likewise, the x-z
plane is all points where the y-value is 0, characterized by y = 0.

Notes:
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Figure 10.7: Sketching x2 + y2 = 1.
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The equaƟon x = 2 describes all points in space where the x-value is 2. This
is a plane, parallel to the y-z coordinate plane, shown in Figure 10.5.

.. Example 313 Regions defined by planes
Sketch the region defined by the inequaliƟes−1 ≤ y ≤ 2.

SÊ½çã®ÊÄ The region is all points between the planes y = −1 and
y = 2. These planes are sketched in Figure 10.6, which are parallel to the x-z
plane. Thus the region extends infinitely in the x and z direcƟons, and is bounded
by planes in the y direcƟon. ..

Cylinders

The equaƟon x = 1 obviously lacks the y and z variables, meaning it defines
points where the y and z coordinates can take on any value. Now consider the
equaƟon x2 + y2 = 1 in space. In the plane, this equaƟon describes a circle
of radius 1, centered at the origin. In space, the z coordinate is not specified,
meaning it can take on any value. In Figure 10.7 (a), we show part of the graph
of the equaƟon x2+y2 = 1 by sketching 3 circles: the boƩomone has a constant
z-value of−1.5, themiddle one has a z-value of 0 and the top circle has a z-value
of 1. By ploƫng all possible z-values, we get the surface shown in Figure 10.7
(b).

This surface looks like a “tube,” or a “cylinder”; mathemaƟcians call this sur-
face a cylinder for an enƟrely different reason.

..
DefiniƟon 49 Cylinder

Let C be a curve in a plane and let L be a line not parallel to C. A cylinder
is the set of all lines parallel to L that pass through C. The curve C is the
directrix of the cylinder, and the lines are the rulings.

In this text, we consider curves C that lie in planes parallel to one of the
coordinate planes, and lines L that are perpendicular to these planes, forming
right cylinders. Thus the directrix can be defined using equaƟons involving 2
variables, and the rulings will be parallel to the axis of the 3rd variable.

In the example preceding the definiƟon, the curve x2 + y2 = 1 in the x-y
plane is the directrix and the rulings are lines parallel to the z-axis. (Any circle
shown in Figure 10.7 can be considered a directrix; we simply choose the one
where z = 0.) Sample rulings can also be viewed in part (b) of the figure. More
examples will help us understand this definiƟon.

Notes:

532



10.1 IntroducƟon to Cartesian Coordinates in Space

.. Example 314 Graphing cylinders
Graph the cylinder following cylinders.

1. z = y2

2. x = sin z

SÊ½çã®ÊÄ

1. We can view the equaƟon z = y2 as a parabola in the y-z plane, as illus-
trated in Figure 10.8 (a). As x does not appear in the equaƟon, the rulings
are lines through this parabola parallel to the x-axis, shown in (b). These
rulings give a general idea as to what the surface looks like, drawn in (c).
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Figure 10.8: Sketching the cylinder defined by z = y2.

2. We can view the equaƟon x = sin z as a sine curve that exists in the x-z
plane, as shown in Figure 10.9 (a). The rules are parallel to the y axis as
the variable y does not appear in the equaƟon x = sin z; some of these
are shown in part (b). The surface is shown in part (c) of the figure.
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Figure 10.9: Sketching the cylinder defined by x = sin z...

Notes:
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Figure 10.10: Introducing surfaces of rev-
oluƟon.
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Figure 10.11: Revolving y = sin z about
the z-axis in Example 315.
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Surfaces of RevoluƟon

One of the applicaƟons of integraƟon we learned previously was to find the
volume of solids of revoluƟon – solids formed by revolving a curve about a hori-
zontal or verƟcal axis. We now consider how to find the equaƟon of the surface
of such a solid.

Consider the surface formed by revolving y =
√
x about the x-axis. Cross–

secƟons of this surface parallel to the y-z plane are circles, as shown in Figure
10.10a. Each circle has equaƟon of the form y2 + z2 = r2 for some radius r. The
radius is a funcƟon of x; in fact, it is r(x) =

√
x. Thus the equaƟon of the surface

shown in Figure 10.10b is y2 + z2 = (
√
x)2.

We generalize the above principles to give the equaƟons of surfaces formed
by revolving curves about the coordinate axes.

..
Key Idea 47 Surfaces of RevoluƟon, Part 1

Let r be a radius funcƟon.

1. The equaƟon of the surface formed by revolving y = r(x) or z =
r(x) about the x-axis is y2 + z2 = r(x)2.

2. The equaƟon of the surface formed by revolving x = r(y) or z =
r(y) about the y-axis is x2 + z2 = r(y)2.

3. The equaƟon of the surface formed by revolving x = r(z) or y =
r(z) about the z-axis is x2 + y2 = r(z)2.

.. Example 315 Finding equaƟon of a surface of revoluƟon
Let y = sin z on [0, π]. Find the equaƟon of the surface of revoluƟon formed by
revolving y = sin z about the z-axis.

SÊ½çã®ÊÄ Using Key Idea 47, we find the surface has equaƟon x2+y2 =
sin2 z. The curve is sketched in Figure 10.11a and the surface is drawn in Figure
10.11b.

Note how the surface (and hence the resulƟng equaƟon) is the same if we
began with the curve x = sin z, which is also drawn in Figure 10.11a. ..

This parƟcular method of creaƟng surfaces of revoluƟon is limited. For in-
stance, in Example 210 of SecƟon 7.3 we found the volume of the solid formed
by revolving y = sin x about the y-axis. Our current method of forming surfaces
can only rotate y = sin x about the x-axis. Trying to rewrite y = sin x as a func-
Ɵon of y is not trivial, as simply wriƟng x = sin−1 y only gives part of the region

Notes:

534



...

.. −5.
5

.−5 .
5

.

−1

.

1

.
x

. y.

z

(a)

...

.. −5.
5

.−5 .
5

.

−1

.

1

.
x

. y.

z

(b)

Figure 10.12: Revolving z = sin x about
the z-axis in Example 316.
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we desire.
What we desire is a way of wriƟng the surface of revoluƟon formed by ro-

taƟng y = f(x) about the y-axis. We start by first recognizing this surface is the
same as revolving z = f(x) about the z-axis. This will give us a more natural way
of viewing the surface.

A value of x is a measurement of distance from the z-axis. At the distance r,
we plot a z-height of f(r). When rotaƟng f(x) about the z-axis, wewant all points
a distance of r from the z-axis in the x-y plane to have a z-height of f(r). All such
points saƟsfy the equaƟon r2 = x2 + y2; hence r =

√
x2 + y2. Replacing r with√

x2 + y2 in f(r) gives z = f(
√

x2 + y2). This is the equaƟon of the surface.

..
Key Idea 48 Surfaces of RevoluƟon, Part 2

Let z = f(x), x ≥ 0, be a curve in the x-z plane. The surface formed by
revolving this curve about the z-axis has equaƟon z = f

(√
x2 + y2

)
.

.. Example 316 Finding equaƟon of surface of revoluƟon
Find the equaƟon of the surface found by revolving z = sin x about the z-axis.

SÊ½çã®ÊÄ Using Key Idea 48, the surface has equaƟon z = sin
(√

x2 + y2
)
.

The curve and surface are graphed in Figure 10.12. ..

Quadric Surfaces

Spheres, planes and cylinders are important surfaces to understand. We
now consider one last type of surface, a quadric surface. The definiƟon may
look inƟmidaƟng, but we will show how to analyze these surfaces in an illumi-
naƟng way.

..
DefiniƟon 50 Quadric Surface

A quadric surface is the graph of the general second–degree equaƟon in
three variables:

Ax2 + By2 + Cz2 + Dxy+ Exz+ Fyz+ Gx+ Hy+ Iz+ J = 0.

When the coefficients D, E or F are not zero, the basic shapes of the quadric
surfaces are rotated in space. We will focus on quadric surfaces where these co-
effiecients are 0; we will not consider rotaƟons. There are six basic quadric sur-

Notes:
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faces: the ellipƟc paraboloid, ellipƟc cone, ellipsoid, hyperboloid of one sheet,
hyperboloid of two sheets, and the hyperbolic paraboloid.

We study each shape by considering traces, that is, intersecƟons of each
surface with a plane parallel to a coordinate plane. For instance, consider the
ellipƟc paraboloid z = x2/4 + y2, shown in Figure 10.13. If we intersect this
shape with the plane z = d (i.e., replace z with d), we have the equaƟon:

d =
x2

4
+ y2.

Divide both sides by d:

1 =
x2

4d
+

y2

d
.

This describes an ellipse – so cross secƟons parallel to the x-y coordinate plane
are ellipses. This ellipse is drawn in the figure.

Now consider cross secƟons parallel to the x-z plane. For instance, leƫng
y = 0 gives the equaƟon z = x2/4, clearly a parabola. IntersecƟng with the
plane x = 0 gives a cross secƟon defined by z = y2, another parabola. These
parabolas are also sketched in the figure.

Thuswe seewhere the ellipƟc paraboloid gets its name: some cross secƟons
are ellipses, and others are parabolas.

Such an analysis can be made with each of the quadric surfaces. We give a
sample equaƟon of each, provide a sketch with representaƟve traces, and de-
scribe these traces.

Notes:
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EllipƟc Paraboloid, z =
x2

a2
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Plane Trace
x = d Parabola
y = d Parabola
z = d Ellipse
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In plane
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In plane
x = 0
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One variable in the equaƟon of the ellipƟc paraboloid will be raised to the first power; above,
this is the z variable. The paraboloid will “open” in the direcƟon of this variable’s axis. Thus
x = y2/a2 + z2/b2 is an ellipƟc paraboloid that opens along the x-axis.

MulƟplying the right hand side by (−1) defines an ellipƟc paraboloid that “opens” in the opposite
direcƟon.

EllipƟc Cone, z2 =
x2

a2
+

y2

b2

...

..x . y.

z Plane Trace
x = 0 Crossed Lines
y = 0 Crossed Lines

x = d Hyperbola
y = d Hyperbola
z = d Ellipse

...

......x . y.

z

.

in plane
z = d

.

in plane
y = 0

...

...x . y.

z

.

in plane
y = d

One can rewrite the equaƟon as z2 − x2/a2 − y2/b2 = 0. The one variable with a posiƟve
coefficient corresponds to the axis that the cones “open” along.
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Ellipsoid,
x2

a2
+

y2

b2
+

z2

c2
= 1

...

..x . y.

z Plane Trace
x = d Ellipse
y = d Ellipse
z = d Ellipse

...

.....x . y.

z

.

in plane
y = 0

.

in plane
x = 0

.

in plane
z = 0

If a = b = c ̸= 0, the ellipsoid is a sphere with radius a; compare to Key Idea 46.

Hyperboloid of One Sheet,
x2

a2
+

y2

b2
− z2

c2
= 1

...

..x . y.

z Plane Trace
x = d Hyperbola
y = d Hyperbola
z = d Ellipse

...

.....x . y.

z

.

in plane
y = 0

.

in plane
x = 0

.

in plane
z = 0

The one variable with a negaƟve coefficient corresponds to the axis that the hyperboloid “opens”
along.
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Hyperboloid of Two Sheets,
z2

c2
− x2

a2
− y2

b2
= 1

...

..x . y.

z
Plane Trace
x = d Hyperbola
y = d Hyperbola
z = d Ellipse

...

.....x . y.

z

.

in plane
y = 0

.

in plane
x = 0

.

in plane
z = d

The one variable with a posiƟve coefficient corresponds to the axis that the hyperboloid “opens”
along. In the case illustrated, when |d| < |c|, there is no trace.

Hyperbolic Paraboloid, z =
x2

a2
− y2

b2

...

..
x

.
y

.

z Plane Trace
x = d Parabola
y = d Parabola
z = d Hyperbola

...

....
x

.
y

.

z

.

in plane
y = 0

.

in plane
x = 0

...

......
x

.
y

.

z

.

in plane
z = d

(d > 0)

.

in plane
z = d

(d < 0)

The parabolic traces will open along the axis of the one variable that is raised to the first power.

539



...

..

−4

.
4

.
1
. 2.

−4
.

4

.
x

. y.

z

(a)

...

..
x

. y.

z

(b)

Figure 10.14: Sketching an ellipƟc
paraboloid.
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Figure 10.15: Sketching an ellipsoid.

Chapter 10 Vectors

.. Example 317 ..Sketching quadric surfaces
Sketch the quadric surface defined by the given equaƟon.

1. y =
x2

4
+

z2

16
2. x2 +

y2

9
+

z2

4
= 1. 3. z = y2 − x2.

SÊ½çã®ÊÄ

1. y =
x2

4
+

z2

16
:

Wefirst idenƟfy thequadric by paƩern–matchingwith the equaƟons given
previously. Only two surfaces have equaƟons where one variable is raised
to the first power, the ellipƟc paraboloid and the hyperbolic paraboloid.
In the laƩer case, the other variables have different signs, so we conclude
that this describes a hyperbolic paraboloid. As the variable with the first
power is y, we note the parboloid opens along the y-axis.

To make a decent sketch by hand, we need only draw a few traces. In this
case, the traces x = 0 and z = 0 form parabolas that outline the shape.

x = 0: The trace is the parabola y = z2/16

z = 0: The trace is the parabola y = x2/4.

Graphing each trace in the respecƟve plane creates a sketch as shown in
Figure 10.14 (a). This is enough to give an idea of what the paraboloid
looks like. The surface is filled in in (b).

2. x2 +
y2

9
+

z2

4
= 1 :

This is an ellipsoid. We can get a good idea of its shape by drawing the
traces in the coordinate planes.

x = 0: The trace is the ellipse
y2

9
+

z2

4
= 1. The major axis is along the

y–axis with length 6 (as b = 3, the length of the axis is 6); the minor axis
is along the z-axis with length 4.

y = 0: The trace is the ellipse x2 +
z2

4
= 1. The major axis is along the

z-axis, and the minor axis has length 2 along the x-axis.

z = 0: The trace is the ellipse x2 +
y2

9
= 1, with major axis along the

y-axis.

Graphing each trace in the respecƟve plane creates a sketch as shown in
Figure 10.15 (a). Filling in the surface gives Figure 10.15 (b).

3. z = y2 − x2:

Notes:
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Figure 10.16: Sketching a hyperbolic
paraboloid.
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.3.−3 .
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Figure 10.17: A possible equaƟon of this
quadric surface is found in Example 318.

10.1 IntroducƟon to Cartesian Coordinates in Space

This defines a hyperbolic paraboloid, very similar to the one shown in the
gallery of quadric secƟons. Consider the traces in the y−z and x−z planes:
x = 0: The trace is z = y2, a parabola opening up in the y− z plane.
y = 0: The trace is z = −x2, a parabola opening down in the x− z plane.
Sketching these two parabolas gives a sketch like that in Figure 10.16 (a),
and filling in the surface gives a sketch like (b)....

.. Example 318 IdenƟfying quadric surfaces
Consider the quadric surface shown in Figure 10.17. Which of the following
equaƟons best fits this surface?

(a) x2 − y2 − z2

9
= 0 (c) z2 − x2 − y2 = 1

(b) x2 − y2 − z2 = 1 (d) 4x2 − y2 − z2

9
= 1

SÊ½çã®ÊÄ The image clearly displays a hyperboloid of two sheets. The
gallery informs us that the equaƟon will have a form similar to z2

c2 −
x2
a2 −

y2
b2 = 1.

We can immediately eliminate opƟon (a), as the constant in that equaƟon is
not 1.

The hyperboloid “opens” along the x-axis, meaning xmust be the only vari-
able with a posiƟve coefficient, eliminaƟng (c).

The hyperboloid is wider in the z-direcƟon than in the y-direcƟon, so we
need an equaƟon where c > b. This eliminates (b), leaving us with (d). We
should verify that the equaƟon given in (d), 4x2 − y2 − z2

9 = 1, fits.
We already established that this equaƟon describes a hyperboloid of two

sheets that opens in the x-direcƟon and is wider in the z-direcƟon than in the
y. Now note the coefficient of the x-term. RewriƟng 4x2 in standard form, we

have: 4x2 =
x2

(1/2)2
. Thus when y = 0 and z = 0, x must be 1/2; i.e., each

hyperboloid “starts” at x = 1/2. This matches our figure.

We conclude that 4x2 − y2 − z2

9
= 1 best fits the graph. ..

This secƟon has introduced points in space and shown how equaƟons can
describe surfaces. The next secƟons explore vectors, an importantmathemaƟcal
object that we’ll use to explore curves in space.

Notes:
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Exercises 10.1
Terms and Concepts
1. Axes drawn in space must conform to the

rule.

2. In the plane, the equaƟon x = 2 defines a ; in
space, x = 2 defines a .

3. In the plane, the equaƟon y = x2 defines a ; in
space, y = x2 defines a .

4. Which quadric surface looks like a Pringles® chip?

5. Consider the hyperbola x2 − y2 = 1 in the plane. If this
hyperbola is rotated about the x-axis, what quadric surface
is formed?

6. Consider the hyperbola x2 − y2 = 1 in the plane. If this
hyperbola is rotated about the y-axis, what quadric surface
is formed?

Problems
7. The points A = (1, 4, 2), B = (2, 6, 3) and C = (4, 3, 1)

form a triangle in space. Find the distances between each
pair of points and determine if the triangle is a right trian-
gle.

8. The points A = (1, 1, 3), B = (3, 2, 7), C = (2, 0, 8) and
D = (0,−1, 4) form a quadrilateral ABCD in space. Is this
a parallelogram?

9. Find the center and radius of the sphere defined by
x2 − 8x+ y2 + 2y+ z2 + 8 = 0.

10. Find the center and radius of the sphere defined by
x2 + y2 + z2 + 4x− 2y− 4z+ 4 = 0.

In Exercises 11 – 14, describe and sketch the regions in space
defined by the inequaliƟes.

11. x2 + y2 + z2 < 1

12. 0 ≤ x ≤ 3

13. x ≥ 0, y ≥ 0, z ≥ 0

14. y ≥ 3

In Exercises 15 – 18, sketch the cylinder in space.

15. z = x3

16. y = cos z

17.
x2

4
+

y2

9
= 1

18. y =
1
x

In Exercises 19 – 22, give the equaƟon of the surface of revo-
luƟon described.

19. Revolve z =
1

1+ y2
about the y-axis.

20. Revolve y = x2 about the x-axis.

21. Revolve z = x2 about the z-axis.

22. Revolve z = 1/x about the z-axis.

In Exercises 23 – 26, a quadric surface is sketched. Determine
which of the given equaƟons best fits the graph.

23.

...

..1 .

−3

.
3

.
−3

.

3

.x .
y

.

z

(a) x = y2 +
z2

9
(b) x = y2 +

z2

3

24.

...

..

−1

. 1.
−1

.
1

.
−1

.

1

.x.
y

.

z

(a) x2 − y2 − z2 = 0 (b) x2 − y2 + z2 = 0

25.

...

..
1

.
−1

. 3.−2 .

2

.x . y.

z

(a) x2 +
y2

3
+

z2

2
= 1 (b) x2 +

y2

9
+

z2

4
= 1

26.

...

..

−2

.2 .

−2

. 2.

−2

.

2

.x .
y

.

z

(a) y2 − x2 − z2 = 1 (b) y2 + x2 − z2 = 1

In Exercises 27 – 32, sketch the quadric surface.
27. z− y2 + x2 = 0

28. z2 = x2 +
y2

4
29. x = −y2 − z2

30. 16x2 − 16y2 − 16z2 = 1

31.
x2

9
− y2 +

z2

25
= 1

32. 4x2 + 2y2 + z2 = 4
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Figure 10.18: Drawing the same vector
with different iniƟal points.
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Figure 10.19: IllustraƟng how equal vec-
tors have the same displacement.

10.2 An IntroducƟon to Vectors

10.2 An IntroducƟon to Vectors

Many quanƟƟes we think about daily can be described by a single number: tem-
perature, speed, cost, weight and height. There are also many other concepts
we encounter daily that cannot be describedwith just one number. For instance,
a weather forecaster oŌen describes wind with its speed and its direcƟon (“. . .
with winds from the southeast gusƟng up to 30 mph . . .”). When applying a
force, we are concerned with both the magnitude and direcƟon of that force.
In both of these examples, direcƟon is important. Because of this, we study
vectors, mathemaƟcal objects that convey both magnitude and direcƟon infor-
maƟon.

One “bare–bones” definiƟon of a vector is based on what we wrote above:
“a vector is a mathemaƟcal object with magnitude and direcƟon parameters.”
This definiƟon leaves much to be desired, as it gives no indicaƟon as to how
such an object is to be used. Several other definiƟons exist; we choose here a
definiƟon rooted in a geometric visualizaƟon of vectors. It is very simplisƟc but
readily permits further invesƟgaƟon.

..
DefiniƟon 51 Vector

A vector is a directed line segment.

Given points P and Q (either in the plane or in space), we denote with
#  ‰PQ the vector from P to Q. The point P is said to be the iniƟal point of
the vector, and the point Q is the terminal point.

The magnitude, or norm of #  ‰PQ is the length of the line segment PQ:
|| #  ‰PQ || = || PQ ||.

Two vectors are equal if they have the same magnitude and direcƟon.

Figure 10.18 showsmulƟple instances of the same vector. Each directed line
segment has the same direcƟon and length (magnitude), hence each is the same
vector.

We use R2 (pronounced “r two”) to represent all the vectors in the plane,
and use R3 (pronounced “r three”) to represent all the vectors in space.

Consider the vectors #  ‰PQ and #‰RS as shown in Figure 10.19. The vectors look to
be equal; that is, they seem to have the same length and direcƟon. Indeed, they
are. Both vectors move 2 units to the right and 1 unit up from the iniƟal point
to reach the terminal point. One can analyze this movement to measure the

Notes:
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Chapter 10 Vectors

magnitude of the vector, and the movement itself gives direcƟon informaƟon
(one could also measure the slope of the line passing through P and Q or R and
S). Since they have the same length and direcƟon, these two vectors are equal.

This demonstrates that inherently all we care about is displacement; that is,
how far in the x, y and possibly z direcƟons the terminal point is from the iniƟal
point. Both the vectos #  ‰PQ and #‰RS in Figure 10.19 have an x-displacement of 2
and a y-displacement of 1. This suggests a standard way of describing vectors
in the plane. A vector whose x-displacement is a and whose y-displacement is
b will have terminal point (a, b) when the iniƟal point is the origin, (0, 0). This
leads us to a definiƟon of a standard and concise way of referring to vectors.

..
DefiniƟon 52 Component Form of a Vector

1. The component form of a vector v⃗ in R2, whose terminal point is
(a, b) when its iniƟal point is (0, 0), is ⟨a, b⟩ .

2. The component form of a vector v⃗ in R3, whose terminal point is
(a, b, c) when its iniƟal point is (0, 0, 0), is ⟨a, b, c⟩ .

The numbers a, b (and c, respecƟvely) are the components of v⃗.

It follows from the definiƟon that the component form of the vector #  ‰PQ,
where P = (x1, y1) and Q = (x2, y2) is

#  ‰PQ = ⟨x2 − x1, y2 − y1⟩ ;

in space, where P = (x1, y1, z1) and Q = (x2, y2, z2), the component form of #  ‰PQ
is

#  ‰PQ = ⟨x2 − x1, y2 − y1, z2 − z1⟩ .

We pracƟce using this notaƟon in the following example.

.. Example 319 ..Using component form notaƟon for vectors

1. Sketch the vector v⃗ = ⟨2,−1⟩ starƟng at P = (3, 2) and find its magni-
tude.

2. Find the component formof the vector w⃗whose iniƟal point isR = (−3,−2)
and whose terminal point is S = (−1, 2).

3. Sketch the vector u⃗ = ⟨2,−1, 3⟩ starƟng at the point Q = (1, 1, 1) and
find its magnitude.

Notes:
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(b)

Figure 10.20: Graphing vectors in Exam-
ple 319.

10.2 An IntroducƟon to Vectors

SÊ½çã®ÊÄ

1. Using P as the iniƟal point, wemove 2 units in the posiƟve x-direcƟon and
−1 units in the posiƟve y-direcƟon to arrive at the terminal point P ′ =
(5, 1), as drawn in Figure 10.20 (a).

The magnitude of v⃗ is determined directly from the component form:

|| v⃗ || =
√

22 + (−1)2 =
√
5.

2. Using the note following DefiniƟon 52, we have

#‰RS = ⟨−1− (−3), 2− (−2)⟩ = ⟨2, 4⟩ .

One can readily see from Figure 10.20 (a) that the x- and y-displacement
of #‰RS is 2 and 4, respecƟvely, as the component form suggests.

3. Using Q as the iniƟal point, we move 2 units in the posiƟve x-direcƟon,
−1 unit in the posiƟve y-direcƟon, and 3 units in the posiƟve z-direcƟon
to arrive at the terminal point Q′ = (3, 0, 4), illustrated in Figure 10.20
(b).

The magnitude of u⃗ is:

|| u⃗ || =
√

22 + 02 + 32 =
√
13.

...

Now thatwehave defined vectors, and have created a nice notaƟonbywhich
to describe them, we start considering how vectors interact with each other.
That is, we define an algebra on vectors.

Notes:
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Figure 10.21: Graphing the sumof vectors
in Example 320.

Chapter 10 Vectors

..
DefiniƟon 53 Vector Algebra

1. Let u⃗ = ⟨u1, u2⟩ and v⃗ = ⟨v1, v2⟩ be vectors in R2, and let c be a
scalar.

(a) The addiƟon, or sum, of the vectors u⃗ and v⃗ is the vector

u⃗+ v⃗ = ⟨u1 + v1, u2 + v2⟩ .

(b) The scalar product of c and v⃗ is the vector

c⃗v = c ⟨v1, v2⟩ = ⟨cv1, cv2⟩ .

2. Let u⃗ = ⟨u1, u2, u3⟩ and v⃗ = ⟨v1, v2, v3⟩ be vectors in R3, and let c
be a scalar.

(a) The addiƟon, or sum, of the vectors u⃗ and v⃗ is the vector

u⃗+ v⃗ = ⟨u1 + v1, u2 + v2, u3 + v3⟩ .

(b) The scalar product of c and v⃗ is the vector

c⃗v = c ⟨v1, v2⟩ = ⟨cv1, cv2, cv3⟩ .

In short, we say addiƟon and scalarmulƟplicaƟon are computed “component–
wise.”

.. Example 320 Adding vectors
Sketch the vectors u⃗ = ⟨1, 3⟩, v⃗ = ⟨2, 1⟩ and u⃗ + v⃗ all with iniƟal point at the
origin.

SÊ½çã®ÊÄ We first compute u⃗+ v⃗.

u⃗+ v⃗ = ⟨1, 3⟩+ ⟨2, 1⟩
= ⟨3, 4⟩ .

These are all sketched in Figure 10.21. ..

As vectors convey magnitude and direcƟon informaƟon, the sum of vectors
also convey length and magnitude informaƟon. Adding u⃗ + v⃗ suggests the fol-
lowing idea:

Notes:
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Figure 10.22: IllustraƟng how to add vec-
tors using the Head to Tail Rule and Paral-
lelogram Law.
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Figure 10.23: IllustraƟng how to subtract
vectors graphically.

10.2 An IntroducƟon to Vectors

“StarƟng at an iniƟal point, go out u⃗, then go out v⃗.”

This idea is sketched in Figure 10.22, where the iniƟal point of v⃗ is the termi-
nal point of u⃗. This is known as the “Head to Tail Rule” of adding vectors. Vector
addiƟon is very important. For instance, if the vectors u⃗ and v⃗ represent forces
acƟng on a body, the sum u⃗ + v⃗ gives the resulƟng force. Because of various
physical applicaƟons of vector addiƟon, the sum u⃗+ v⃗ is oŌen referred to as the
resultant vector, or just the “resultant.”

AnalyƟcally, it is easy to see that u⃗ + v⃗ = v⃗ + u⃗. Figure 10.22 also gives a
graphical representaƟon of this, using gray vectors. Note that the vectors u⃗ and
v⃗, when arranged as in the figure, form a parallelogram. Because of this, the
Head to Tail Rule is also known as the Parallelogram Law: the vector u⃗ + v⃗ is
defined by forming the parallelogram defined by the vectors u⃗ and v⃗; the iniƟal
point of u⃗ + v⃗ is the common iniƟal point of parallelogram, and the terminal
point of the sum is the common terminal point of the parallelogram.

While not illustrated here, the Head to Tail Rule and Parallelogram Law hold
for vectors in R3 as well.

It follows from the properƟes of the real numbers and DefiniƟon 53 that

u⃗− v⃗ = u⃗+ (−1)⃗v.

The Parallelogram Law gives us a good way to visualize this subtracƟon. We
demonstrate this in the following example.

.. Example 321 Vector SubtracƟon
Let u⃗ = ⟨3, 1⟩ and v⃗ = ⟨1, 2⟩ . Compute and sketch u⃗− v⃗.

SÊ½çã®ÊÄ The computaƟon of u⃗ − v⃗ is straighƞorward, and we show
all steps below. Usually the formal step of mulƟplying by (−1) is omiƩed and
we “just subtract.”

u⃗− v⃗ = u⃗+ (−1)⃗v
= ⟨3, 1⟩+ ⟨−1,−2⟩
= ⟨2,−1⟩ .

Figure 10.23 illustrates, using the Head to Tail Rule, how the subtracƟon can be
viewed as the sum u⃗ + (−v⃗). The figure also illustrates how u⃗ − v⃗ can be ob-
tained by looking only at the terminal points of u⃗ and v⃗ (when their iniƟal points
are the same). ..

.. Example 322 ..Scaling vectors

1. Sketch the vectors v⃗ = ⟨2, 1⟩ and 2⃗v with iniƟal point at the origin.

Notes:
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Figure 10.24: Graphing vectors v⃗ and 2⃗v
in Example 322.

Chapter 10 Vectors

2. Compute the magnitudes of v⃗ and 2⃗v.

SÊ½çã®ÊÄ

1. We compute 2⃗v:

2⃗v = 2 ⟨2, 1⟩
= ⟨4, 2⟩ .

These are sketched in Figure 10.24. Make note that 2⃗v does not start at
the terminal point of v⃗; rather, its iniƟal point is also the origin.

2. The figure suggests that 2⃗v is twice as long as v⃗. We compute their mag-
nitudes to confirm this.

|| v⃗ || =
√

22 + 12

=
√
5.

|| 2⃗v || =
√

42 + 22

=
√
20

=
√
4 · 5 = 2

√
5.

As we suspected, 2⃗v is twice as long as v⃗.
...

The zero vector is the vector whose iniƟal point is also its terminal point. It
is denoted by 0⃗. Its component form, inR2, is ⟨0, 0⟩; inR3, it is ⟨0, 0, 0⟩. Usually
the context makes is clear whether 0⃗ is referring to a vector in the plane or in
space.

Our examples have illustrated key principles in vector algebra: how to add
and subtract vectors and how to mulƟply vectors by a scalar. The following the-
orem states formally the properƟes of these operaƟons.

Notes:
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..
Theorem 84 ProperƟes of Vector OperaƟons

The following are true for all scalars c and d, and for all vectors u⃗, v⃗ and
w⃗, where u⃗, v⃗ and w⃗ are all in R2 or where u⃗, v⃗ and w⃗ are all in R3:

1. u⃗+ v⃗ = v⃗+ u⃗ CommutaƟve Property

2. (⃗u+ v⃗) + w⃗ = u⃗+ (⃗v+ w⃗) AssociaƟve Property

3. v⃗+ 0⃗ = v⃗ AddiƟve IdenƟty

4. (cd)⃗v = c(d⃗v)

5. c(⃗u+ v⃗) = c⃗u+ c⃗v DistribuƟve Property

6. (c+ d)⃗v = c⃗v+ d⃗v DistribuƟve Property

7. 0 · v⃗ = 0⃗

8. || c⃗v || = |c| · || v⃗ ||

9. || u⃗ || = 0 if, and only if, u⃗ = 0⃗.

As stated before, each vector v⃗ conveys magnitude and direcƟon informa-
Ɵon. We have a method of extracƟng the magnitude, which we write as || v⃗ ||.
Unit vectors are a way of extracƟng just the direcƟon informaƟon from a vector.

..
DefiniƟon 54 Unit Vector

A unit vector is a vector v⃗ with a magnitude of 1; that is,

|| v⃗ || = 1.

Consider this scenario: you are given a vector v⃗ and are told to create a vector
of length 10 in the direcƟon of v⃗. How does one do that? If we knew that u⃗ was
the unit vector in the direcƟon of v⃗, the answer would be easy: 10u⃗. So how do
we find u⃗ ?

Property 8 of Theorem 84 holds the key. If we divide v⃗ by its magnitude, it
becomes a vector of length 1. Consider:∣∣∣∣∣∣∣∣ 1

|| v⃗ ||
v⃗
∣∣∣∣∣∣∣∣ = 1

|| v⃗ ||
|| v⃗ || (we can pull out

1
|| v⃗ || as it is a scalar)

= 1.

Notes:
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5⃗u

.

v⃗

.

u⃗

. 2. 4.

1

.

2

.

3

.
x

.

y

Figure 10.25: Graphing vectors in Exam-
ple 323. All vectors shown have their ini-
Ɵal point at the origin.

Chapter 10 Vectors

So the vector of length 10 in the direcƟon of v⃗ is 10 · 1
|| v⃗ ||

· v⃗. An example will

make this more clear.

.. Example 323 Using Unit Vectors
Let v⃗ = ⟨3, 1⟩ and let w⃗ = ⟨1, 2, 2⟩.

1. Find the unit vector in the direcƟon of v⃗.

2. Find the unit vector in the direcƟon of w⃗.

3. Find the vector in the direcƟon of v⃗ with magnitude 5.

SÊ½çã®ÊÄ

1. We find || v⃗ || =
√
10. So the unit vector u⃗ in the direcƟon of v⃗ is

u⃗ =
1√
10

v⃗ =
⟨

3√
10

,
1√
10

⟩
.

2. We find || w⃗ || = 3, so the unit vector z⃗ in the direcƟon of w⃗ is

u⃗ =
1
3
w⃗ =

⟨
1
3
,
2
3
,
2
3

⟩
.

3. To create a vector with magnitude 5 in the direcƟon of v⃗, we mulƟply the
unit vector u⃗ by 5. Thus 5u⃗ =

⟨
15/

√
10, 5/

√
10
⟩
is the vector we seek.

This is sketched in Figure 10.25.
..

The basic formaƟon of the unit vector u⃗ in the direcƟon of a vector v⃗ leads
to a interesƟng equaƟon. It is:

v⃗ = || v⃗ || 1
|| v⃗ ||

v⃗.

We rewrite the equaƟon with parentheses to make a point:

v⃗ = || v⃗ ||︸︷︷︸
magnitude

·
(

1
|| v⃗ ||

v⃗
)

︸ ︷︷ ︸
direcƟon

.

This equaƟon illustrates the fact that a vector has both magnitude and di-
recƟon, where we view a unit vector as supplying only direcƟon informaƟon.
IdenƟfying unit vectors with direcƟon allows us to define parallel vectors.

Notes:
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Note: 0⃗ is direcƟonless; because || 0⃗ || =
0, there is no unit vector in the “direcƟon”
of 0⃗.
Some texts define two vectors as being
parallel if one is a scalar mulƟple of the
other. By this definiƟon, 0⃗ is parallel to
all vectors as 0⃗ = 0⃗v for all v⃗.
We prefer the given definiƟon of parallel
as it is grounded in the fact that unit vec-
tors provide direcƟon informaƟon. One
may adopt the convenƟon that 0⃗ is paral-
lel to all vectors if they desire. (See also
the marginal note on page 573.)

..

50lb

.

45◦

.

30◦

Figure 10.26: A diagram of a weight hang-
ing from 2 chains in Example 324.

10.2 An IntroducƟon to Vectors

..
DefiniƟon 55 Parallel Vectors

1. Unit vectors u⃗1 and u⃗2 are parallel if u⃗1 = ±u⃗2.

2. Nonzero vectors v⃗1 and v⃗2 are parallel if their respecƟve unit vec-
tors are parallel.

It is equivalent to say that vectors v⃗1 and v⃗2 are parallel if there is a scalar
c ̸= 0 such that v⃗1 = c⃗v2 (see marginal note).

If one graphed all unit vectors in R2 with the iniƟal point at the origin, then
the terminal points would all lie on the unit circle. Based on what we know from
trigonometry, we can then say that the component form of all unit vectors inR2

is ⟨cos θ, sin θ⟩ for some angle θ.
A similar construcƟon inR3 shows that the terminal points all lie on the unit

sphere. These vectors also have a parƟcular component form, but its derivaƟon
is not as straighƞorward as the one for unit vectors in R2. Important concepts
about unit vectors are given in the following Key Idea.

..
Key Idea 49 Unit Vectors

1. The unit vector in the direcƟon of v⃗ is

u⃗ =
1

|| v⃗ ||
v⃗.

2. A vector u⃗ in R2 is a unit vector if, and only if, its component form
is ⟨cos θ, sin θ⟩ for some angle θ.

3. A vector u⃗ in R3 is a unit vector if, and only if, its component form
is ⟨sin θ cosφ, sin θ sinφ, cos θ⟩ for some angles θ and φ.

These formulas can come in handy in a variety of situaƟons, especially the
formula for unit vectors in the plane.

.. Example 324 ..Finding Component Forces
Consider a weight of 50lb hanging from two chains, as shown in Figure 10.26.
One chain makes an angle of 30◦ with the verƟcal, and the other an angle of
45◦. Find the force applied to each chain.

SÊ½çã®ÊÄ Knowing that gravity is pulling the 50lbweight straight down,

Notes:
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..

F⃗1

.

F⃗2

.

F⃗

. 120◦.
45◦

Figure 10.27: A diagram of the force vec-
tors from Example 324.

Chapter 10 Vectors

we can create a vector F⃗ to represent this force.

F⃗ = 50 ⟨0,−1⟩ = ⟨0,−50⟩ .

We can view each chain as “pulling” theweight up, prevenƟng it from falling.
We can represent the force from each chain with a vector. Let F⃗1 represent the
force from the chain making an angle of 30◦ with the verƟcal, and let F⃗2 repre-
sent the force form the other chain. Convert all angles to be measured from the
horizontal (as shown in Figure 10.27), and apply Key Idea 49. As we do not yet
know the magnitudes of these vectors, (that is the problem at hand), we usem1
andm2 to represent them.

F⃗1 = m1 ⟨cos 120◦, sin 120◦⟩

F⃗2 = m2 ⟨cos 45◦, sin 45◦⟩

As the weight is not moving, we know the sum of the forces is 0⃗. This gives:

F⃗+ F⃗1 + F⃗2 = 0⃗

⟨0,−50⟩+m1 ⟨cos 120◦, sin 120◦⟩+m2 ⟨cos 45◦, sin 45◦⟩ = 0⃗

The sum of the entries in the first component is 0, and the sum of the entries
in the second component is also 0. This leads us to the following two equaƟons:

m1 cos 120◦ +m2 cos 45◦ = 0
m1 sin 120◦ +m2 sin 45◦ = 50

This is a simple 2-equaƟon, 2-unkown system of linear equaƟons. We leave it to
the reader to verify that the soluƟon is

m1 = 50(
√
3− 1) ≈ 36.6; m2 =

50
√
2

1+
√
3
≈ 25.88.

It might seem odd that the sum of the forces applied to the chains is more
than 50lb. We leave it to a physics class to discuss the full details, but offer this
short explanaƟon. Our equaƟons were established so that the verƟcal compo-
nents of each force sums to 50lb, thus supporƟng the weight. Since the chains
are at an angle, they also pull against each other, creaƟng an “addiƟonal” hori-
zontal force while holding the weight in place. ...

Unit vectors were very important in the previous calculaƟon; they allowed
us to define a vector in the proper direcƟon but with an unknown magnitude.
Our computaƟons were then computed component–wise. Because such calcu-
laƟons are oŌen necessary, the standard unit vectors can be useful.

Notes:
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2Ō

.

25lb

.
φ

.

θ

.

F⃗w

Figure 10.28: A figure of a weight being
pushed by the wind in Example 326.

10.2 An IntroducƟon to Vectors

..
DefiniƟon 56 Standard Unit Vectors

1. In R2, the standard unit vectors are

i⃗ = ⟨1, 0⟩ and j⃗ = ⟨0, 1⟩ .

2. In R3, the standard unit vectors are

i⃗ = ⟨1, 0, 0⟩ and j⃗ = ⟨0, 1, 0⟩ and k⃗ = ⟨0, 0, 1⟩ .

.. Example 325 Using standard unit vectors

1. Rewrite v⃗ = ⟨2,−3⟩ using the standard unit vectors.

2. Rewrite w⃗ = 4⃗i− 5⃗j+ 2⃗k in component form.

SÊ½çã®ÊÄ

1. v⃗ = ⟨2,−3⟩
= ⟨2, 0⟩+ ⟨0,−3⟩
= 2 ⟨1, 0⟩ − 3 ⟨0, 1⟩
= 2⃗i− 3⃗j

2. w⃗ = 4⃗i− 5⃗j+ 2⃗k
= ⟨4, 0, 0⟩+ ⟨0,−5, 0⟩+ ⟨0, 0, 2⟩
= ⟨4,−5, 2⟩

These twoexamples demonstrate that converƟng fromcomponent form to/from
using the standard unit vectors is rather straighƞorward. Many mathemaƟcians
prefer component form, and it is the preferred notaƟon in this text. Many en-
gineers prefer using the standard unit vectors, and many engineering text use
that notaƟon. ..

.. Example 326 ..Finding Component Force
Aweight of 25lb is suspended from a chain of length 2Ōwhile a wind pushes the
weight to the right with constant force of 5lb as shown in Figure 10.28. What
angle will the chain make with the verƟcal as a result of the wind’s pushing?
How much higher will the weight be?

Notes:
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SÊ½çã®ÊÄ The force of the wind is represented by the vector F⃗w = 5⃗i.
The force of gravity on the weight is represented by F⃗g = −25⃗j. The direcƟon
and magnitude of the vector represenƟng the force on the chain are both un-
known. We represent this force with

F⃗c = m ⟨cosφ, sinφ⟩ = m cosφ i⃗+m sinφ j⃗

for some magnitude m and some angle with the horizontal φ. (Note: θ is the
angle the chain makes with the verƟcal; φ is the angle with the horizontal.)

As the weight is at equilibrium, the sum of the forces is 0⃗:

F⃗c + F⃗w + F⃗g = 0⃗

m cosφ i⃗+m sinφ j⃗+ 5⃗i− 25⃗j = 0⃗

Thus the sum of the i⃗ and j⃗ components are 0, leading us to the following
system of equaƟons:

5+m cosφ = 0
−25+m sinφ = 0

(10.1)

This is enough to determine F⃗c already, as we know m cosφ = −5 and
m sinφ = 25. Thus Fc = ⟨−5, 25⟩ . We can use this to find the magnitude
m:

m =
√

(−5)2 + 252 = 5
√
26.

We can then use either equality from EquaƟon (10.1) to solve for φ. We choose
the first equality as using arccosine will return an angle in the 2nd quadrant:

5+ 5
√
26 cosφ = 0 ⇒ φ = cos−1

(
−5

5
√
26

)
≈ 1.7682 ≈ 101.31◦.

SubtracƟng 90◦ from this angle gives us an angle of 11.31◦ with the verƟcal.
We can now use trigonometry to find out how high the weight is liŌed.

The diagram shows that a right triangle is formed with the 2Ō chain as the hy-
potenuse with an interior angle of 11.31◦. The length of the adjacent side (in
the diagram, the dashed verƟcal line) is 2 cos 11.31◦ ≈ 1.96Ō. Thus the weight
is liŌed by about 0.04Ō, almost 1/2in. ...

The algebra we have applied to vectors is already demonstraƟng itself to be
very useful. There are two more fundamental operaƟons we can perform with
vectors, the dot product and the cross product. The next two secƟons explore
each in turn.

Notes:

554



Exercises 10.2
Terms and Concepts
1. Name two different things that cannot be described with

just one number, but rather need 2 or more numbers to
fully describe them.

2. What is the difference between (1, 2) and ⟨1, 2⟩?

3. What is a unit vector?

4. What does it mean for two vectors to be parallel?

5. What effect does mulƟplying a vector by−2 have?

Problems

In Exercises 6 – 9, points P and Q are given. Write the vector
# ‰PQ in component form and using the standard unit vectors.

6. P = (2,−1), Q = (3, 5)

7. P = (3, 2), Q = (7,−2)

8. P = (0, 3,−1), Q = (6, 2, 5)

9. P = (2, 1, 2), Q = (4, 3, 2)

10. Let u⃗ = ⟨1,−2⟩ and v⃗ = ⟨1, 1⟩.

(a) Find u⃗+ v⃗, u⃗− v⃗, 2⃗u− 3⃗v.

(b) Sketch the above vectors on the same axes, along
with u⃗ and v⃗.

(c) Find x⃗ where u⃗+ x⃗ = 2⃗v− x⃗.

11. Let u⃗ = ⟨1, 1,−1⟩ and v⃗ = ⟨2, 1, 2⟩.

(a) Find u⃗+ v⃗, u⃗− v⃗, πu⃗−
√
2⃗v.

(b) Sketch the above vectors on the same axes, along
with u⃗ and v⃗.

(c) Find x⃗ where u⃗+ x⃗ = v⃗+ 2⃗x.

In Exercises 12 – 15, sketch u⃗, v⃗, u⃗+ v⃗ and u⃗− v⃗ on the same
axes.

12.

.....

u⃗

. v⃗.

x

.

y

13.

.....

u⃗

.

v⃗

.

x

.

y

14.

...

..
u⃗

.v⃗ .

x

.

y

.

z

15.

...

..
u⃗

.

v⃗

.

x

.

y

.

z
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In Exercises 16 – 19, find || u⃗ ||, || v⃗ ||, || u⃗+ v⃗ || and || u⃗− v⃗ ||.
16. u⃗ = ⟨2, 1⟩, v⃗ = ⟨3,−2⟩
17. u⃗ = ⟨−3, 2, 2⟩, v⃗ = ⟨1,−1, 1⟩
18. u⃗ = ⟨1, 2⟩, v⃗ = ⟨−3,−6⟩
19. u⃗ = ⟨2,−3, 6⟩, v⃗ = ⟨10,−15, 30⟩
20. Under what condiƟons is || u⃗ ||+ || v⃗ || = || u⃗+ v⃗ ||?
In Exercises 21 – 24, find the unit vector u⃗ in the direcƟon of
v⃗.

21. v⃗ = ⟨3, 7⟩
22. v⃗ = ⟨6, 8⟩
23. v⃗ = ⟨1,−2, 2⟩
24. v⃗ = ⟨2,−2, 2⟩
25. Find the unit vector in the first quadrant of R2 that makes

a 50◦ angle with the x-axis.

26. Find the unit vector in the second quadrant of R2 that
makes a 30◦ angle with the y-axis.

27. Verify, fromKey Idea 49, that u⃗ = ⟨sin θ cosφ, sin θ sinφ, cos θ⟩
is a unit vector for all angles θ and φ.

A weight of 100lb is suspended from two chains, making an-
gles with the verƟcal of θ andφ as shown in the figure below.

..

100lb

.

θ

.

φ

In Exercises 28 – 31, angles θ and φ are given. Find the force
applied to each chain.

28. θ = 30◦, φ = 30◦

29. θ = 60◦, φ = 60◦

30. θ = 20◦, φ = 15◦

31. θ = 0◦, φ = 0◦

A weight of 1lb is suspended from a chain of length ℓ while
a constant force of F⃗w pushes the weight to the right, making
an angle of θ with the verƟcal, as shown in the figure below.

..

ℓ Ō

.

p lb

.

θ

.

F⃗w

In Exercises 32 – 35, a force F⃗w and length ℓ are given. Find
the angle θ and the height the weight is liŌed as it moves to
the right.

32. F⃗w = 1lb, ℓ = 1Ō, p = 1lb

33. F⃗w = 1lb, ℓ = 1Ō, p = 10lb

34. F⃗w = 1lb, ℓ = 10Ō, p = 1lb

35. F⃗w = 10lb, ℓ = 10Ō, p = 1lb
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10.3 The Dot Product

10.3 The Dot Product
The previous secƟon introduced vectors and described how to add them to-
gether and how to mulƟply them by scalars. This secƟon introduces a mulƟ-
plicaƟon on vectors called the dot product.

..
DefiniƟon 57 Dot Product

1. Let u⃗ = ⟨u1, u2⟩ and v⃗ = ⟨v1, v2⟩ in R2. The dot product of u⃗ and
v⃗, denoted u⃗ · v⃗, is

u⃗ · v⃗ = u1v1 + u2v2.

2. Let u⃗ = ⟨u1, u2, u3⟩ and v⃗ = ⟨v1, v2, v3⟩ in R3. The dot product of
u⃗ and v⃗, denoted u⃗ · v⃗, is

u⃗ · v⃗ = u1v1 + u2v2 + u3v3.

Note how this product of vectors returns a scalar, not another vector. We
pracƟce evaluaƟng a dot product in the following example, then we will discuss
why this product is useful.

.. Example 327 EvaluaƟng dot products

1. Let u⃗ = ⟨1, 2⟩, v⃗ = ⟨3,−1⟩ in R2. Find u⃗ · v⃗.

2. Let x⃗ = ⟨2,−2, 5⟩ and y⃗ = ⟨−1, 0, 3⟩ in R3. Find x⃗ · y⃗.

SÊ½çã®ÊÄ

1. Using DefiniƟon 57, we have

u⃗ · v⃗ = 1(3) + 2(−1) = 1.

2. Using the definiƟon, we have

x⃗ · y⃗ = 2(−1)− 2(0) + 5(3) = 13.
..

Notes:
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z

(b)

Figure 10.29: IllustraƟng the angle
formed by two vectors with the same
iniƟal point.

Chapter 10 Vectors

The dot product, as shown by the preceding example, is very simple to eval-
uate. It is only the sum of products. While the definiƟon gives no hint as to why
we would care about this operaƟon, there is an amazing connecƟon between
the dot product and angles formed by the vectors. Before staƟng this connec-
Ɵon, we give a theorem staƟng some of the properƟes of the dot product.

..
Theorem 85 ProperƟes of the Dot Product

Let u⃗, v⃗ and w⃗ be vectors in R2 or R3 and let c be a scalar.

1. u⃗ · v⃗ = v⃗ · u⃗ CommutaƟve Property

2. u⃗ · (⃗v+ w⃗) = u⃗ · v⃗+ u⃗ · w⃗ DistribuƟve Property

3. c(⃗u · v⃗) = (c⃗u) · v⃗ = u⃗ · (c⃗v)

4. 0⃗ · v⃗ = 0

5. v⃗ · v⃗ = || v⃗ ||2

The last statement of the theorem makes a handy connecƟon between the
magnitude of a vector and the dot product with itself. Our definiƟon and theo-
rem give properƟes of the dot product, but we are sƟll likely wondering “What
does the dot productmean?” It is helpful to understand that the dot product of
a vector with itself is connected to its magnitude.

The next theorem extends this understanding by connecƟng the dot product
tomagnitudes and angles. Given vectors u⃗ and v⃗ in the plane, an angle θ is clearly
formedwhen u⃗ and v⃗ are drawnwith the same iniƟal point as illustrated in Figure
10.29 (a). (We always take θ to be the angle in [0, π] as two angles are actually
created.)

The same is also true of 2 vectors in space: given u⃗ and v⃗ inR3 with the same
iniƟal point, there is a plane that contains both u⃗ and v⃗. (When u⃗ and v⃗ are co-
linear, there are infinite planes that contain both vectors.) In that plane, we can
again find an angle θ between them (and again, 0 ≤ θ ≤ π). This is illustrated
in Figure 10.29 (b).

The following theorem connects this angle θ to the dot product of u⃗ and v⃗.

Notes:
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Figure 10.31: Vectors used in Example
328.

10.3 The Dot Product

..
Theorem 86 The Dot Product and Angles

Let u⃗ and v⃗ be vectors in R2 or R3. Then

u⃗ · v⃗ = || u⃗ || || v⃗ || cos θ,

where θ, 0 ≤ θ ≤ π, is the angle between u⃗ and v⃗.

When θ is an acute angle (i.e., 0 ≤ θ < π/2), cos θ is posiƟve; when θ =
π/2, cos θ = 0; when θ is an obtuse angle (π/2 < θ ≤ π), cos θ is negaƟve.
Thus the sign of the dot product gives a general indicaƟon of the angle between
the vectors, illustrated in Figure 10.30.

..
u⃗ · v⃗ > 0

. u⃗.

v⃗

. θ.
u⃗ · v⃗ = 0

. u⃗.

v⃗

.
θ = π/2

.
u⃗ · v⃗ < 0

. u⃗.

v⃗

.
θ

Figure 10.30: IllustraƟng the relaƟonship between the angle between vectors and the
sign of their dot product.

We can use Theorem 86 to compute the dot product, but generally this the-
orem is used to find the angle between known vectors (since the dot product is
generally easy to compute). To this end, we rewrite the theorem’s equaƟon as

cos θ =
u⃗ · v⃗

|| u⃗ |||| v⃗ ||
⇔ θ = cos−1

(
u⃗ · v⃗

|| u⃗ |||| v⃗ ||

)
.

We pracƟce using this theorem in the following example.

.. Example 328 ..Using the dot product to find angles
Let u⃗ = ⟨3, 1⟩, v⃗ = ⟨−2, 6⟩ and w⃗ = ⟨−4, 3⟩, as shown in Figure 10.31. Find the
angles α, β and θ.

SÊ½çã®ÊÄ We start by compuƟng the magnitude of each vector.

|| u⃗ || =
√
10; || v⃗ || = 2

√
10; || w⃗ || = 5.

Notes:

559



...

..
u⃗

.

v⃗

.

w⃗

.
−5

.

5

.
2

.

4

.

−2

.

2

.

4

.

x

.
y

.

z

Figure 10.32: Vectors used in Example
329.
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We now apply Theorem 86 to find the angles.

α = cos−1
(

u⃗ · v⃗
(
√
10)(2

√
10)

)
= cos−1(0) =

π

2
= 90◦.

β = cos−1
(

v⃗ · w⃗
(2
√
10)(5)

)
= cos−1

(
26

10
√
10

)
≈ 0.6055 ≈ 34.7◦.

θ = cos−1
(

u⃗ · w⃗
(
√
10)(5)

)
= cos−1

(
−9

5
√
10

)
≈ 2.1763 ≈ 124.7◦

...

We see from our computaƟon that α+ β = θ, as indicated by Figure 10.31.
While we knew this should be the case, it is nice to see that this non-intuiƟve
formula indeed returns the results we expected.

We do a similar example next in the context of vectors in space.

.. Example 329 ..Using the dot product to find angles
Let u⃗ = ⟨1, 1, 1⟩, v⃗ = ⟨−1, 3,−2⟩ and w⃗ = ⟨−5, 1, 4⟩, as illustrated in Figure
10.32. Find the angle between each pair of vectors.
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1. Between u⃗ and v⃗:

θ = cos−1
(

u⃗ · v⃗
|| u⃗ |||| v⃗ ||

)
= cos−1

(
0√

3
√
14

)
=

π

2
.
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Note: The term perpendicular originally
referred to lines. As mathemaƟcs pro-
gressed, the concept of “being at right
angles to” was applied to other objects,
such as vectors and planes, and the term
orthogonal was introduced. It is espe-
cially used when discussing objects that
are hard, or impossible, to visualize: two
vectors in 5-dimensional space are or-
thogonal if their dot product is 0. It is not
wrong to say they are perpendicular, but
common convenƟon gives preference to
the word orthogonal.

10.3 The Dot Product

2. Between u⃗ and w⃗:

θ = cos−1
(

u⃗ · w⃗
|| u⃗ |||| w⃗ ||

)
= cos−1

(
0√

3
√
42

)
=

π

2
.

3. Between v⃗ and w⃗:

θ = cos−1
(

v⃗ · w⃗
|| v⃗ |||| w⃗ ||

)
= cos−1

(
0√

14
√
42

)
=

π

2
.

While our work shows that each angle is π/2, i.e., 90◦, none of these angles
looks to be a right angle in Figure 10.32. Such is the case when drawing three–
dimensional objects on the page. ...

All three angles between these vectors was π/2, or 90◦. We know from
geometry and everyday life that 90◦ angles are “nice” for a variety of reasons,
so it should seem significant that these angles are all π/2. NoƟce the common
feature in each calculaƟon (and also the calculaƟon of α in Example 328): the
dot products of each pair of angles was 0. We use this as a basis for a definiƟon
of the term orthogonal, which is essenƟally synonymous to perpendicular.

..
DefiniƟon 58 Orthogonal

Vectors u⃗ and v⃗ are orthogonal if their dot product is 0.

.. Example 330 ..Finding orthogonal vectors
Let u⃗ = ⟨3, 5⟩ and v⃗ = ⟨1, 2, 3⟩.

1. Find two vectors in R2 that are orthogonal to u⃗.

2. Find two non–parallel vectors in R3 that are orthogonal to v⃗.
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..

v⃗

.

u⃗

.
θ

(a)

..

v⃗

.

u⃗

.

w⃗

.

z⃗

.
θ

(b)

Figure 10.33: Developing the construc-
Ɵon of the orthogonal projecƟon.

Chapter 10 Vectors

1. Recall that a line perpendicular to a line with slope m have slope −1/m,
the “opposite reciprocal slope.” We can think of the slope of u⃗ as 5/3, its
“rise over run.” A vector orthogonal to u⃗ will have slope−3/5. There are
many such choices, though all parallel:

⟨−5, 3⟩ or ⟨5,−3⟩ or ⟨−10, 6⟩ or ⟨15,−9⟩ , etc.

2. There are infinite direcƟons in space orthogonal to any given direcƟon,
so there are an infinite number of non–parallel vectors orthogonal to v⃗.
Since there are so many, we have great leeway in finding some.

One way is to arbitrarily pick values for the first two components, leaving
the third unknown. For instance, let v⃗1 = ⟨2, 7, z⟩. If v⃗1 is to be orthogonal
to v⃗, then v⃗1 · v⃗ = 0, so

2+ 14+ 3z = 0 ⇒ z =
−16
3

.

So v⃗1 = ⟨2, 7,−16/3⟩ is orthogonal to v⃗. We can apply a similar technique
by leaving the first or second component unknown.

Another method of finding a vector orthogonal to v⃗ mirrors what we did
in part 1. Let v⃗2 = ⟨−2, 1, 0⟩. Here we switched the first two components
of v⃗, changing the sign of one of them (similar to the “opposite reciprocal”
concept before). Leƫng the third component be 0 effecƟvely ignores the
third component of v⃗, and it is easy to see that

v⃗2 · v⃗ = ⟨−2, 1, 0⟩ · ⟨1, 2, 3⟩ = 0.

Clearly v⃗1 and v⃗2 are not parallel....

An important construcƟon is illustrated in Figure 10.33, where vectors u⃗ and
v⃗ are sketched. In part (a), a doƩed line is drawn from the Ɵp of u⃗ to the line
containing v⃗, where the doƩed line is orthogonal to v⃗. In part (b), the doƩed
line is replaced with the vector z⃗ and w⃗ is formed, parallel to v⃗. It is clear by the
diagram that u⃗ = w⃗ + z⃗. What is important about this construcƟon is this: u⃗ is
decomposed as the sum of two vectors, one of which is parallel to v⃗ and one that
is perpendicular to v⃗. It is hard to overstate the importance of this construcƟon
(as we’ll see in upcoming examples).

The vectors w⃗, z⃗ and u⃗ as shown in Figure 10.33 (b) form a right triangle,
where the angle between v⃗ and u⃗ is labeled θ. We can find w⃗ in terms of v⃗ and
u⃗.

Using trigonometry, we can state that

|| w⃗ || = || u⃗ || cos θ. (10.2)
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10.3 The Dot Product

We also know that w⃗ is parallel to to v⃗ ; that is, the direcƟon of w⃗ is the
direcƟon of v⃗, described by the unit vector 1

|| v⃗ || v⃗. The vector w⃗ is the vector in
the direcƟon 1

|| v⃗ || v⃗ with magnitude || u⃗ || cos θ:

w⃗ =
(
|| u⃗ || cos θ

) 1
|| v⃗ ||

v⃗.

Replace cos θ using Theorem 86:

=

(
|| u⃗ || u⃗ · v⃗

|| u⃗ |||| v⃗ ||

)
1

|| v⃗ ||
v⃗

=
u⃗ · v⃗
|| v⃗ ||2

v⃗.

Now apply Theorem 85.

=
u⃗ · v⃗
v⃗ · v⃗

v⃗.

Since this construcƟon is so important, it is given a special name.

..
DefiniƟon 59 Orthogonal ProjecƟon

Let u⃗ and v⃗ be given. The orthogonal projecƟon of u⃗ onto v⃗, denoted
proj v⃗ u⃗, is

proj v⃗ u⃗ =
u⃗ · v⃗
v⃗ · v⃗

v⃗.

.. Example 331 ..CompuƟng the orthogonal projecƟon

1. Let u⃗ = ⟨−2, 1⟩ and v⃗ = ⟨3, 1⟩. Find proj v⃗ u⃗, and sketch all three vectors
with iniƟal points at the origin.

2. Let w⃗ = ⟨2, 1, 3⟩ and x⃗ = ⟨1, 1, 1⟩. Find proj x⃗ w⃗, and sketch all three
vectors with iniƟal points at the origin.
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u⃗

.

v⃗

.

proj v⃗ u⃗

.

−2

.

−1

.

1

.

2

.

3

.

1

.

2

.

−1

.
−2

.

x

.

y

(a)

...

..

w⃗

. x⃗.
proj x⃗ w⃗.

2

.
2

.

2

.

x

.
y

.

z

(b)

...

..

w⃗

.x⃗ .proj x⃗ w⃗ .
2

.

2

.

2

.
x

.

y

.

z

(c)

Figure 10.34: Graphing the vectors used
in Example 331.

..

v⃗

.

u⃗

.
proj v⃗ u⃗.

z⃗

Figure 10.35: IllustraƟng the orthogonal
projecƟon.

Chapter 10 Vectors

1. Applying DefiniƟon 59, we have

proj v⃗ u⃗ =
u⃗ · v⃗
v⃗ · v⃗

v⃗

=
−5
10

⟨3, 1⟩

=

⟨
−3
2
,−1

2

⟩
.

Vectors u⃗, v⃗ and proj v⃗ u⃗ are sketched in Figure 10.34 (a). Note how the
projecƟon is parallel to v⃗; that is, it lies on the same line through the origin
as v⃗, although it points in the opposite direcƟon. That is because the angle
between u⃗ and v⃗ is obtuse (i.e., greater than 90◦).

2. Apply the definiƟon:

proj x⃗ w⃗ =
w⃗ · x⃗
x⃗ · x⃗

x⃗

=
6
3
⟨1, 1, 1⟩

= ⟨2, 2, 2⟩ .

These vectors are sketched in Figure 10.34 (b), and again in part (c) from
a different perspecƟve. Because of the nature of graphing these vectors,
the sketch in part (b) makes it difficult to recognize that the drawn projec-
Ɵon has the geometric properƟes it should. The graph shown in part (c)
illustrates these properƟes beƩer.

...

Consider Figure 10.35 where the concept of the orthogonal projecƟon is
again illustrated. It is clear that

u⃗ = proj v⃗ u⃗+ z⃗. (10.3)

As we know what u⃗ and proj v⃗ u⃗ are, we can solve for z⃗ and state that

z⃗ = u⃗− proj v⃗ u⃗.

This leads us to rewrite EquaƟon (10.3) in a seemingly silly way:

u⃗ = proj v⃗ u⃗+ (⃗u− proj v⃗ u⃗).

This is not nonsense, as pointed out in the following Key Idea. (NotaƟon note:
the expression “∥ y⃗ ” means “is parallel to y⃗.” We can use this notaƟon to state
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10.3 The Dot Product

“⃗x ∥ y⃗ ” which means “⃗x is parallel to y⃗.” The expression “⊥ y⃗ ” means “is or-
thogonal to y⃗,” and is used similarly.)

..
Key Idea 50 Orthogonal DecomposiƟon of Vectors

Let u⃗ and v⃗ be given. Then u⃗ can be wriƩen as the sum of two vectors,
one of which is parallel to v⃗, and one of which is orthogonal to v⃗:

u⃗ = proj v⃗ u⃗︸ ︷︷ ︸
∥ v⃗

+ (⃗u− proj v⃗ u⃗︸ ︷︷ ︸
⊥ v⃗

).

We illustrate the use of this equality in the following example.

.. Example 332 ..Orthogonal decomposiƟon of vectors

1. Let u⃗ = ⟨−2, 1⟩ and v⃗ = ⟨3, 1⟩ as in Example 331. Decompose u⃗ as the
sum of a vector parallel to v⃗ and a vector orthogonal to v⃗.

2. Let w⃗ = ⟨2, 1, 3⟩ and x⃗ = ⟨1, 1, 1⟩ as in Example 331. Decompose w⃗ as
the sum of a vector parallel to x⃗ and a vector orthogonal to x⃗.

SÊ½çã®ÊÄ

1. In Example 331, we found that proj v⃗ u⃗ = ⟨−1.5,−0.5⟩. Let

z⃗ = u⃗− proj v⃗ u⃗ = ⟨−2, 1⟩ − ⟨−1.5,−0.5⟩ = ⟨−0.5, 1.5⟩ .

Is z⃗ orthogonal to v⃗? (I.e, is z⃗ ⊥ v⃗ ?) We check for orthogonality with the
dot product:

z⃗ · v⃗ = ⟨−0.5, 1.5⟩ · ⟨3, 1⟩ = 0.

Since the dot product is 0, we know z⃗ ⊥ v⃗. Thus:

u⃗ = proj v⃗ u⃗ + (⃗u− proj v⃗ u⃗)
⟨−2, 1⟩ = ⟨−1.5,−0.5⟩︸ ︷︷ ︸

∥ v⃗

+ ⟨−0.5, 1.5⟩︸ ︷︷ ︸
⊥ v⃗

.

2. We found in Example 331 that proj x⃗ w⃗ = ⟨2, 2, 2⟩. Applying the Key Idea,
we have:

z⃗ = w⃗− proj x⃗ w⃗ = ⟨2, 1, 3⟩ − ⟨2, 2, 2⟩ = ⟨0,−1, 1⟩ .

Notes:
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5

.
20

.

r⃗

.

g⃗

(a)

..
5

.
20

.

r⃗

.

g⃗

.
z⃗

.

proj r⃗ g⃗

(b)

Figure 10.36: Sketching the ramp and box
in Example 333. Note: The vectors are not
drawn to scale.

Chapter 10 Vectors

We check to see if z⃗ ⊥ x⃗:

z⃗ · x⃗ = ⟨0,−1, 1⟩ · ⟨1, 1, 1⟩ = 0.

Since the dot product is 0, we know the two vectors are orthogonal. We
now write w⃗ as the sum of two vectors, one parallel and one orthogonal
to x⃗:

w⃗ = proj x⃗ w⃗ + (w⃗− proj x⃗ w⃗)
⟨2, 1, 3⟩ = ⟨2, 2, 2⟩︸ ︷︷ ︸

∥ x⃗

+ ⟨0,−1, 1⟩︸ ︷︷ ︸
⊥ x⃗...

We give an example of where this decomposiƟon is useful.

.. Example 333 ..Orthogonally decomposing a force vector
Consider Figure 10.36 (a), showing a box weighing 50lb on a ramp that rises 5Ō
over a span of 20Ō. Find the components of force, and their magnitudes, acƟng
on the box (as sketched in part (b) of the figure):

1. in the direcƟon of the ramp, and

2. orthogonal to the ramp.

SÊ½çã®ÊÄ As the ramp rises 5Ō over a horizontal distance of 20Ō, we can
represent the direcƟon of the ramp with the vector r⃗ = ⟨20, 5⟩. Gravity pulls
down with a force of 50lb, which we represent with g⃗ = ⟨0,−50⟩.

1. To find the force of gravity in the direcƟonof the ramp,we compute proj r⃗ g⃗:

proj r⃗ g⃗ =
g⃗ · r⃗
r⃗ · r⃗

r⃗

=
−250
425

⟨20, 5⟩

=

⟨
−200

17
,−50

17

⟩
≈ ⟨−11.76,−2.94⟩ .

The magnitude of proj r⃗ g⃗ is || proj r⃗ g⃗ || = 50/
√
17 ≈ 12.13lb. Though

the box weighs 50lb, a force of about 12lb is enough to keep the box from
sliding down the ramp.

2. To find the component z⃗ of gravity orthogonal to the ramp, we use Key
Idea 50.

z⃗ = g⃗− proj r⃗ g⃗

=

⟨
200
17

,−800
17

⟩
≈ ⟨11.76,−47.06⟩ .
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..
d⃗

.

F⃗

.

proj d⃗ F⃗

Figure 10.37: Finding work when the
force and direcƟon of travel are given as
vectors.

10.3 The Dot Product

Themagnitude of this force is || z⃗ || ≈ 48.51lb. In physics and engineering,
knowing this force is importantwhen compuƟng things like staƟc fricƟonal
force. (For instance, we could easily compute if the staƟc fricƟonal force
alone was enough to keep the box from sliding down the ramp.)

...

ApplicaƟon to Work

In physics, the applicaƟon of a force F to move an object in a straight line a
distance d produces work; the amount of workW isW = Fd, (where F is in the
direcƟon of travel). The orthogonal projecƟon allows us to compute work when
the force is not in the direcƟon of travel.

Consider Figure 10.37, where a force F⃗ is being applied to an object moving
in the direcƟon of d⃗. (The distance the object travels is the magnitude of d⃗.) The
work done is the amount of force in the direcƟon of d⃗, || proj d⃗ F⃗ ||, Ɵmes || d⃗ ||:

|| proj d⃗ F⃗ || · || d⃗ || =

∣∣∣∣∣
∣∣∣∣∣ F⃗ · d⃗d⃗ · d⃗

d⃗

∣∣∣∣∣
∣∣∣∣∣ · || d⃗ ||

=

∣∣∣∣∣ F⃗ · d⃗
|| d⃗ ||2

∣∣∣∣∣ · || d⃗ || · || d⃗ ||
=

∣∣∣⃗F · d⃗∣∣∣
|| d⃗ ||2

|| d⃗ ||2

=
∣∣∣⃗F · d⃗∣∣∣ .

The expression F⃗ · d⃗ will be posiƟve if the angle between F⃗ and d⃗ is acute;
when the angle is obtuse (hence F⃗ · d⃗ is negaƟve), the force is causing moƟon
in the opposite direcƟon of d⃗, resulƟng in “negaƟve work.” We want to capture
this sign, so we drop the absolute value and find thatW = F⃗ · d⃗.

..
DefiniƟon 60 Work

Let F⃗ be a constant force thatmoves an object in a straight line frompoint
P to point Q. Let d⃗ =

#  ‰PQ. The workW done by F⃗ along d⃗ isW = F⃗ · d⃗.

.. Example 334 ..CompuƟng work
Aman slides a box along a ramp that rises 3Ō over a distance of 15Ō by applying
50lb of force as shown in Figure 10.38. Compute the work done.
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15

.
3

.

F⃗

.

30◦

Figure 10.38: CompuƟng work when slid-
ing a box up a ramp in Example 334.

Chapter 10 Vectors

SÊ½çã®ÊÄ The figure indicates that the force applied makes a 30◦ an-
gle with the horizontal, so F⃗ = 50 ⟨cos 30◦, sin 30◦⟩ ≈ ⟨43.3, 25⟩ . The ramp is
represented by d⃗ = ⟨15, 3⟩. The work done is simply

F⃗ · d⃗ = 50 ⟨cos 30◦, sin 30◦⟩ · ⟨15, 3⟩ ≈ 724.5Ō–lb.

Note how we did not actually compute the distance the object traveled, nor
the magnitude of the force in the direcƟon of travel; this is all inherently com-
puted by the dot product! ...

The dot product is a powerful way of evaluaƟng computaƟons that depend
onangleswithout actually using angles. Thenext secƟonexplores another “prod-
uct” on vectors, the cross product. Once again, angles play an important role,
though in a much different way.
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Exercises 10.3
Terms and Concepts
1. The dot product of two vectors is a , not a vector.

2. How are the concepts of the dot product and vector mag-
nitude related?

3. How can one quickly tell if the angle between two vectors
is acute or obtuse?

4. Give a synonym for “orthogonal.”

Problems
In Exercises 5 – 11, find the dot product of the given vectors.

5. u⃗ = ⟨2,−4⟩, v⃗ = ⟨3, 7⟩

6. u⃗ = ⟨5, 3⟩, v⃗ = ⟨6, 1⟩

7. u⃗ = ⟨1,−1, 2⟩, v⃗ = ⟨2, 5, 3⟩

8. u⃗ = ⟨3, 5,−1⟩, v⃗ = ⟨4,−1, 7⟩

9. u⃗ = ⟨1, 1⟩, v⃗ = ⟨1, 2, 3⟩

10. u⃗ = ⟨1, 2, 3⟩, v⃗ = ⟨0, 0, 0⟩

11. Create your own vectors u⃗, v⃗ and w⃗ in R2 and show that
u⃗ · (⃗v+ w⃗) = u⃗ · v⃗+ u⃗ · w⃗.

12. Create your own vectors u⃗ and v⃗ inR3 and scalar c and show
that c(⃗u · v⃗) = u⃗ · (c⃗v).

In Exercises 13 – 16, find the measure of the angle between
the two vectors in both radians and degrees.

13. u⃗ = ⟨1, 1⟩, v⃗ = ⟨1, 2⟩

14. u⃗ = ⟨−2, 1⟩, v⃗ = ⟨3, 5⟩

15. u⃗ = ⟨8, 1,−4⟩, v⃗ = ⟨2, 2, 0⟩

16. u⃗ = ⟨1, 7, 2⟩, v⃗ = ⟨4,−2, 5⟩

In Exercises 17 – 20, a vector v⃗ is given. Give two vectors that
are orthogonal to v⃗.

17. v⃗ = ⟨4, 7⟩

18. v⃗ = ⟨−3, 5⟩

19. v⃗ = ⟨1, 1, 1⟩

20. v⃗ = ⟨1,−2, 3⟩

In Exercises 21 – 26, vectors u⃗ and v⃗ are given. Find proj v⃗ u⃗,
the orthogonal projecƟon of u⃗ onto v⃗, and sketch all three
vectors on the same axes.

21. u⃗ = ⟨1, 2⟩, v⃗ = ⟨−1, 3⟩

22. u⃗ = ⟨5, 5⟩, v⃗ = ⟨1, 3⟩

23. u⃗ = ⟨−3, 2⟩, v⃗ = ⟨1, 1⟩

24. u⃗ = ⟨−3, 2⟩, v⃗ = ⟨2, 3⟩

25. u⃗ = ⟨1, 5, 1⟩, v⃗ = ⟨1, 2, 3⟩

26. u⃗ = ⟨3,−1, 2⟩, v⃗ = ⟨2, 2, 1⟩

In Exercises 27 – 32, vectors u⃗ and v⃗ are given. Write u⃗ as the
sum of two vectors, one of which is parallel to v⃗ and one of
which is perpendicular to v⃗. Note: these are the same pairs
of vectors as found in Exercises 21 – 26.

27. u⃗ = ⟨1, 2⟩, v⃗ = ⟨−1, 3⟩

28. u⃗ = ⟨5, 5⟩, v⃗ = ⟨1, 3⟩

29. u⃗ = ⟨−3, 2⟩, v⃗ = ⟨1, 1⟩

30. u⃗ = ⟨−3, 2⟩, v⃗ = ⟨2, 3⟩

31. u⃗ = ⟨1, 5, 1⟩, v⃗ = ⟨1, 2, 3⟩

32. u⃗ = ⟨3,−1, 2⟩, v⃗ = ⟨2, 2, 1⟩

33. A 10lb box sits on a ramp that rises 4Ō over a distance of
20Ō. Howmuch force is required to keep the box from slid-
ing down the ramp?

34. A 10lb box sits on a 15Ō ramp that makes a 30◦ angle with
the horizontal. Howmuch force is required to keep the box
from sliding down the ramp?

35. How much work is performed in moving a box horizontally
10Ō with a force of 20lb applied at an angle of 45◦ to the
horizontal?

36. How much work is performed in moving a box horizontally
10Ō with a force of 20lb applied at an angle of 10◦ to the
horizontal?

37. Howmuchwork is performed inmoving a box up the length
of a ramp that rises 2Ō over a distance of 10Ō, with a force
of 50lb applied horizontally?

38. Howmuchwork is performed inmoving a box up the length
of a ramp that rises 2Ō over a distance of 10Ō, with a force
of 50lb applied at an angle of 45◦ to the horizontal?

39. Howmuchwork is performed inmoving a box up the length
of a 10Ō ramp that makes a 5◦ angle with the horizontal,
with 50lb of force applied in the direcƟon of the ramp?
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10.4 The Cross Product
“Orthogonality” is immensely important. A quick scan of your current environ-
ment will undoubtedly reveal numerous surfaces and edges that are perpendic-
ular to each other (including the edges of this page). The dot product provides
a quick test for orthogonality: vectors u⃗ and v⃗ are perpendicular if, and only if,
u⃗ · v⃗ = 0.

Given two, non–parallel vectors u⃗ and v⃗ in space, it is very useful to find a
vector w⃗ that is perpendicular to both u⃗ and v⃗. There is a operaƟon, called the
cross product, that creates such a vector. This secƟon defines the cross product,
then explores its properƟes and applicaƟons.

..
DefiniƟon 61 Cross Product

Let u⃗ = ⟨u1, u2, u3⟩ and v⃗ = ⟨v1, v2, v3⟩ be vectors in R3. The cross
product of u⃗ and v⃗, denoted u⃗× v⃗, is the vector

u⃗× v⃗ = ⟨u2v3 − u3v2,−(u1v3 − u3v1), u1v2 − u2v1⟩ .

This definiƟon can be a bit cumbersome to remember. AŌer an example we
will give a convenient method for compuƟng the cross product. For now, careful
examinaƟon of the products and differences given in the definiƟon should reveal
a paƩern that is not too difficult to remember. (For instance, in the first compo-
nent only 2 and 3 appear as subscripts; in the second component, only 1 and 3
appear as subscripts. Further study reveals the order in which they appear.)

Let’s pracƟce using this definiƟon by compuƟng a cross product.

.. Example 335 ..CompuƟng a cross product
Let u⃗ = ⟨2,−1, 4⟩ and v⃗ = ⟨3, 2, 5⟩. Find u⃗ × v⃗, and verify that it is orthogonal
to both u⃗ and v⃗.

SÊ½çã®ÊÄ Using DefiniƟon 61, we have

u⃗× v⃗ =
⟨
(−1)5− (4)2,−

(
(2)5− (4)3

)
, (2)2− (−1)3

⟩
= ⟨−13, 2, 7⟩ .

(We encourage the reader to compute this product on their own, then verify
their result.)

We test whether or not u⃗× v⃗ is orthogonal to u⃗ and v⃗ using the dot product:(⃗
u× v⃗

)
· u⃗ = ⟨−13, 2, 7⟩ · ⟨2,−1, 4⟩ = 0,(⃗

u× v⃗
)
· v⃗ = ⟨−13, 2, 7⟩ · ⟨3, 2, 5⟩ = 0.

Notes:
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As each of these dot products is zero, u⃗× v⃗ is indeed orthogonal to both u⃗ and v⃗. ...

A convenient method of compuƟng the cross product starts with forming a
parƟcular 3 × 3 matrix, or rectangular array. The first row comprises the stan-
dard unit vectors i⃗, j⃗, and k⃗. The second and third rows are the vectors u⃗ and v⃗,
respecƟvely. Using u⃗ and v⃗ from Example 335, we begin with:

..
i⃗ j⃗ k⃗
2 −1 4
3 2 5

Now repeat the first two columns aŌer the original three:

..
i⃗ j⃗ k⃗ i⃗ j⃗
2 −1 4 2 −1
3 2 5 3 2

This gives three full “upper leŌ to lower right” diagonals, and three full “up-
per right to lower leŌ” diagonals, as shown. Compute the products along each
diagonal, then add the products on the right and subtract the products on the
leŌ:

..
i⃗ j⃗ k⃗ i⃗ j⃗
2 −1 4 2 −1
3 2 5 3 2

.

−5⃗i

.

12⃗j

.

4⃗k

.

−3⃗k

.

8⃗i

.

10⃗j

u⃗× v⃗ =
(
− 5⃗i+12⃗j+ 4⃗k

)
−
(
− 3⃗k+ 8⃗i+10⃗j

)
= −13⃗i+ 2⃗j+ 7⃗k = ⟨−13, 2, 7⟩ .

We pracƟce using this method.

.. Example 336 ..CompuƟng a cross product
Let u⃗ = ⟨1, 3, 6⟩ and v⃗ = ⟨−1, 2, 1⟩. Compute both u⃗× v⃗ and v⃗× u⃗.

SÊ½çã®ÊÄ To compute u⃗× v⃗, we form the matrix as prescribed above,
complete with repeated first columns:

i⃗ j⃗ k⃗ i⃗ j⃗
1 3 6 1 3
−1 2 1 −1 2

We let the reader compute the products of the diagonals; we give the result:

u⃗× v⃗ =
(
3⃗i− 6⃗j+ 2⃗k

)
−
(
− 3⃗k+ 12⃗i+ j⃗

)
= ⟨−9,−7, 5⟩ .

Notes:
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To compute v⃗× u⃗, we switch the second and third rows of the above matrix,
then mulƟply along diagonals and subtract:

i⃗ j⃗ k⃗ i⃗ j⃗
−1 2 1 −1 2
1 3 6 1 3

Note how with the rows being switched, the products that once appeared on
the right now appear on the leŌ, and vice–versa. Thus the result is:

v⃗× u⃗ =
(
12⃗i+ j⃗− 3⃗k

)
−
(
2⃗k+ 3⃗i− 6⃗j

)
= ⟨9, 7,−5⟩ ,

which is the opposite of u⃗ × v⃗. We leave it to the reader to verify that each of
these vectors is orthogonal to u⃗ and v⃗. ...

ProperƟes of the Cross Product

It is not coincidence that v⃗ × u⃗ = −(⃗u × v⃗) in the preceding example; one
can show using DefiniƟon 61 that this will always be the case. The following
theorem states several useful properƟes of the cross product, each of which can
be verified by referring to the definiƟon.

..
Theorem 87 ProperƟes of the Cross Product

Let u⃗, v⃗ and w⃗ be vectors in R3 and let c be a scalar. The following idenƟƟes hold:

1. u⃗× v⃗ = −(⃗v× u⃗) AnƟcommutaƟve Property

2. (a) (⃗u+ v⃗)× w⃗ = u⃗× w⃗+ v⃗× w⃗ DistribuƟve ProperƟes

(b) u⃗× (⃗v+ w⃗) = u⃗× v⃗+ u⃗× w⃗

3. c(⃗u× v⃗) = (c⃗u)× v⃗ = u⃗× (c⃗v)

4. (a) (⃗u× v⃗) · u⃗ = 0 Orthogonality ProperƟes

(b) (⃗u× v⃗) · v⃗ = 0

5. u⃗× u⃗ = 0⃗

6. u⃗× 0⃗ = 0⃗

7. u⃗ · (⃗v× w⃗) = (⃗u× v⃗) · w⃗ Triple Scalar Product

We introduced the cross product as a way to find a vector orthogonal to
two given vectors, but we did not give a proof that the construcƟon given in

Notes:
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Note: DefiniƟon 58 (through Theorem
86) defines u⃗ and v⃗ to be orthogonal if
u⃗ · v⃗ = 0. We could use Theorem 88 to
define u⃗ and v⃗ are parallel if u⃗× v⃗ = 0. By
such a definiƟon, 0⃗ would be both orthog-
onal and parallel to every vector. Appar-
ent paradoxes such as this are not uncom-
mon in mathemaƟcs and can be very use-
ful. (See also the marginal note on page
551.)

10.4 The Cross Product

DefiniƟon 61 saƟsfies this property. Theorem 87 asserts this property holds; we
leave it as a problem in the Exercise secƟon to verify this.

Property 5 from the theorem is also leŌ to the reader to prove in the Exercise
secƟon, but it reveals something more interesƟng than “the cross product of a
vector with itself is 0⃗.” Let u⃗ and v⃗ be parallel vectors; that is, let there be a scalar
c such that v⃗ = c⃗u. Consider their cross product:

u⃗× v⃗ = u⃗× (c⃗u)
= c(⃗u× u⃗) (by Property 3 of Theorem 87)
= 0⃗. (by Property 5 of Theorem 87)

We have just shown that the cross product of parallel vectors is 0⃗. This hints
at something deeper. Theorem 86 related the angle between two vectors and
their dot product; there is a similar relaƟonship relaƟng the cross product of two
vectors and the angle between them, given by the following theorem.

..
Theorem 88 The Cross Product and Angles

Let u⃗ and v⃗ be vectors in R3. Then

|| u⃗× v⃗ || = || u⃗ || || v⃗ || sin θ,

where θ, 0 ≤ θ ≤ π, is the angle between u⃗ and v⃗.

Note that this theoremmakes a statement about themagnitude of the cross
product. When the angle between u⃗ and v⃗ is 0 or π (i.e., the vectors are parallel),
the magnitude of the cross product is 0. The only vector with a magnitude of 0
is 0⃗ (see Property 9 of Theorem 84), hence the cross product of nonzero parallel
vectors is 0⃗.

We demonstrate the truth of this theorem in the following example.

.. Example 337 ..The cross product and angles
Let u⃗ = ⟨1, 3, 6⟩ and v⃗ = ⟨−1, 2, 1⟩ as in Example 336. Verify Theorem 88 by
finding θ, the angle between u⃗ and v⃗, and the magnitude of u⃗× v⃗.

Notes:
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.. u⃗.
v⃗

.
u⃗ × v⃗

.

x

.
y

.

z

Figure 10.39: IllustraƟng the Right Hand
Rule of the cross product.

Chapter 10 Vectors

SÊ½çã®ÊÄ We use Theorem 86 to find the angle between u⃗ and v⃗.

θ = cos−1
(

u⃗ · v⃗
|| u⃗ || || v⃗ ||

)
= cos−1

(
11√
46

√
6

)
≈ 0.8471 = 48.54◦.

Ourwork in Example 336 showed that u⃗×v⃗ = ⟨−9,−7, 5⟩, hence || u⃗×v⃗ || =√
155. Is || u⃗× v⃗ || = || u⃗ || || v⃗ || sin θ? Using numerical approximaƟons, we find:

|| u⃗× v⃗ || =
√
155 || u⃗ || || v⃗ || sin θ =

√
46

√
6 sin 0.8471

≈ 12.45. ≈ 12.45.

Numerically, they seem equal. Using a right triangle, one can show that

sin
(
cos−1

(
11√
46

√
6

))
=

√
155√
46

√
6
,

which allows us to verify the theorem exactly. ...

Right Hand Rule

The anƟcommutaƟve property of the cross product demonstrates that u⃗× v⃗
and v⃗×u⃗ differ only by a sign – these vectors have the samemagnitude but point
in the opposite direcƟon. When seeking a vector perpendicular to u⃗ and v⃗, we
essenƟally have two direcƟons to choose from, one in the direcƟon of u⃗× v⃗ and
one in the direcƟon of v⃗× u⃗. Does it maƩer which we choose? How can we tell
which one we will get without graphing, etc.?

Another wonderful property of the cross product, as defined, is that it fol-
lows the right hand rule. Given u⃗ and v⃗ in R3 with the same iniƟal point, point
the index finger of your right hand in the direcƟon of u⃗ and let yourmiddle finger
point in the direcƟon of v⃗ (much as we did when establishing the right hand rule
for the 3-dimensional coordinate system). Your thumb will naturally extend in
the direcƟon of u⃗× v⃗. One can “pracƟce” this using Figure 10.39. If you switch,
and point the index finder in the direcƟon of v⃗ and the middle finger in the di-
recƟon of u⃗, your thumb will now point in the opposite direcƟon, allowing you
to “visualize” the anƟcommutaƟve property of the cross product.

ApplicaƟons of the Cross Product

There are a number of ways in which the cross product is useful in mathe-
maƟcs, physics and other areas of science beyond “just” finding a vector per-
pendicular to two others. We highlight a few here.

Notes:
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Figure 10.40: Using the cross product to
find the area of a parallelogram.
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(b)

Figure 10.41: Sketching the parallelo-
grams in Example 338.

10.4 The Cross Product

Area of a Parallelogram

It is a standard geometry fact that the area of a parallelogram is A = bh,
where b is the length of the base and h is the height of the parallelogram, as
illustrated in Figure 10.40 (a). As shown when defining the Parallelogram Law of
vector addiƟon, two vectors u⃗ and v⃗ define a parallelogram when drawn from
the same iniƟal point, as illustrated in Figure 10.40 (b). Trigonometry tells us
that h = || u⃗ || sin θ, hence the area of the parallelogram is

A = || u⃗ || || v⃗ || sin θ = || u⃗× v⃗ ||, (10.4)

where the second equality comes from Theorem 88. We illustrate using Equa-
Ɵon (10.4) in the following example.

.. Example 338 Finding the area of a parallelogram

1. Find the area of the parallelogram defined by the vectors u⃗ = ⟨2, 1⟩ and
v⃗ = ⟨1, 3⟩.

2. Verify that the points A = (1, 1, 1), B = (2, 3, 2), C = (4, 5, 3) and
D = (3, 3, 2) are the verƟces of a parallelogram. Find the area of the
parallelogram.

SÊ½çã®ÊÄ

1. Figure 10.41 (a) sketches the parallelogram defined by the vectors u⃗ and
v⃗. We have a slight problem in that our vectors exist in R2, not R3, and
the cross product is only defined on vectors in R3. We skirt this issue by
viewing u⃗ and v⃗ as vectors in the x−y plane ofR3, and rewrite themas u⃗ =
⟨2, 1, 0⟩ and v⃗ = ⟨1, 3, 0⟩. We can now compute the cross product. It is
easy to show that u⃗×v⃗ = ⟨0, 0, 5⟩; therefore the area of the parallelogram
is A = || u⃗× v⃗ || = 5.

2. To show that the quadrilateral ABCD is a parallelogram (shown in Figure
10.41 (b)), we need to show that the opposite sides are parallel. We can
quickly show that # ‰AB =

# ‰DC = ⟨1, 2, 1⟩ and # ‰BC =
#  ‰AD = ⟨2, 2, 1⟩. We find

the area by compuƟng the magnitude of the cross product of # ‰AB and # ‰BC:
# ‰AB× # ‰BC = ⟨0, 1,−2⟩ ⇒ || # ‰AB× # ‰BC || =

√
5 ≈ 2.236.

..

This applicaƟon is perhaps more useful in finding the area of a triangle (in
short, triangles are used more oŌen than parallelograms). We illustrate this in
the following example.

Notes:
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Figure 10.42: Finding the area of a trian-
gle in Example 339.

Note: The word “parallelepiped” is pro-
nounced “parallel–eh–pipe-ed.”

...
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Figure 10.43: A parallelepiped is the three
dimensional analogue to the parallelo-
gram.
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Figure 10.44: A parallelepiped in Example
340.
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.. Example 339 Area of a triangle
Find the area of the triangle with verƟces A = (1, 2), B = (2, 3) and C = (3, 1),
as pictured in Figure 10.42.

SÊ½çã®ÊÄ We found the area of this triangle in Example 200 to be 1.5
using integraƟon. There we discussed the fact that finding the area of a triangle
can be inconvenient using the “ 12bh” formula as one has to compute the height,
which generally involves finding angles, etc. Using a cross product is muchmore
direct.

We can choose any two sides of the triangle to use to form vectors; we
choose # ‰AB = ⟨1, 1⟩ and # ‰AC = ⟨2,−1⟩. As in the previous example, we will
rewrite these vectors with a third component of 0 so that we can apply the cross
product. The area of the triangle is

1
2
|| # ‰AB× # ‰AC || = 1

2
|| ⟨1, 1, 0⟩ × ⟨2,−1, 0⟩ || = 1

2
|| ⟨0, 0,−3⟩ || = 3

2
.

We arrive at the same answer as before with less work. ..

Volume of a Parallelepiped
The three dimensional analogue to the parallelogram is the parallelepiped.

Each face is parallel to the face opposite face, as illustrated in Figure 10.43. By
crossing v⃗ and w⃗, one gets a vector whose magnitude is the area of the base.
Doƫng this vector with u⃗ computes the volume of parallelepiped! (Up to a sign;
take the absolute value.)

Thus the volume of a parallelepiped defined by vectors u⃗, v⃗ and w⃗ is

V = |⃗u · (⃗v× w⃗)|. (10.5)

Note how this is the Triple Scalar Product, first seen in Theorem 87. Applying
the idenƟƟes given in the theorem shows that we can apply the Triple Scalar
Product in any “order” we choose to find the volume. That is,

V = |⃗u · (⃗v× w⃗)| = |⃗u · (w⃗× v⃗)| = |(⃗u× v⃗) · w⃗|, etc.

.. Example 340 Finding the volume of parallelepiped
Find the volume of the parallepiped defined by the vectors u⃗ = ⟨1, 1, 0⟩, v⃗ =
⟨−1, 1, 0⟩ and w⃗ = ⟨0, 1, 1⟩.

SÊ½çã®ÊÄ We apply EquaƟon (10.5). We first find v⃗× w⃗ = ⟨1, 1,−1⟩.
Then

|⃗u · (⃗v× w⃗)| = | ⟨1, 1, 0⟩ · ⟨1, 1,−1⟩ | = 2.

So the volume of the parallelepiped is 2 cubic units. ..

Notes:
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Figure 10.45: Showing a force being ap-
plied to a lever in Example 341.

10.4 The Cross Product

While this applicaƟon of the Triple Scalar Product is interesƟng, it is not used
all that oŌen: parallelepipeds are not a common shape in physics and engineer-
ing. The last applicaƟon of the cross product is very applicable in engineering.

Torque

Torque is a measure of the turning force applied to an object. A classic sce-
nario involving torque is the applicaƟon of a wrench to a bolt. When a force is
applied to the wrench, the bolt turns. When we represent the force and wrench
with vectors F⃗ and ℓ⃗, we see that the bolt moves (because of the threads) in a di-
recƟon orthogonal to F⃗ and ℓ⃗. Torque is usually represented by the Greek leƩer
τ, or tau, and has units of N·m, a Newton–meter, or Ō·lb, a foot–pound.

While a full understanding of torque is beyond the purposes of this book,
when a force F⃗ is applied to a lever arm ℓ⃗, the resulƟng torque is

τ⃗ = ℓ⃗× F⃗. (10.6)

.. Example 341 ..CompuƟng torque
A lever of length 2Ōmakes an anglewith the horizontal of 45◦. Find the resulƟng
torque when a force of 10lb is applied to the end of the level where:

1. the force is perpendicular to the lever, and

2. the force makes an angle of 60◦ with the lever, as shown in Figure 10.45.

SÊ½çã®ÊÄ

1. We start by determining vectors for the force and lever arm. Since the
lever arm makes a 45◦ angle with the horizontal and is 2Ō long, we can
state that ℓ⃗ = 2 ⟨cos 45◦, sin 45◦⟩ =

⟨√
2,
√
2
⟩
.

Since the force vector is perpendicular to the lever arm (as seen in the
leŌ hand side of Figure 10.45), we can conclude it is making an angle of
−45◦ with the horizontal. As it has a magnitude of 10lb, we can state
F⃗ = 10 ⟨cos−45◦, sin−45◦⟩ =

⟨
5
√
2,−5

√
2
⟩
.

Using EquaƟon (10.6) to find the torque requires a cross product. We
again let the third component of each vector be 0 and compute the cross
product:

τ⃗ = ℓ⃗× F⃗

=
⟨√

2,
√
2, 0
⟩
×
⟨
5
√
2,−5

√
2, 0
⟩

= ⟨0, 0,−20⟩

Notes:
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This clearly has a magnitude of 20 Ō-lb.

We can view the force and lever arm vectors as lying “on the page”; our
computaƟon of τ⃗ shows that the torque goes “into the page.” This follows
the Right Hand Rule of the cross product, and it alsomatcheswell with the
example of the wrench turning the bolt. Turning a bolt clockwise moves
it in.

2. Our lever arm can sƟll be represented by ℓ⃗ =
⟨√

2,
√
2
⟩
. As our force

vector makes a 60◦ angle with ℓ⃗, we can see (referencing the right hand
side of the figure) that F⃗makes a−15◦ angle with the horizontal. Thus

F⃗ = 10 ⟨cos−15◦, sin−15◦⟩ =
⟨
5(1+

√
3)√

2
,−5(1+

√
3)√

2

⟩
≈ ⟨9.659,−2.588⟩ .

We again make the third component 0 and take the cross product to find
the torque:

τ⃗ = ℓ⃗× F⃗

=
⟨√

2,
√
2, 0
⟩
×
⟨
5(1+

√
3)√

2
,−5(1+

√
3)√

2
, 0
⟩

=
⟨
0, 0,−10

√
3
⟩

≈ ⟨0, 0,−17.321⟩ .

As one might expect, when the force and lever arm vectors are orthogo-
nal, the magnitude of force is greater than when the vectors are not or-
thogonal.

...

While the cross product has a variety of applicaƟons (as noted in this chap-
ter), its fundamental use is finding a vector perpendicular to two others. Know-
ing a vector orthogonal to two others is of incredible importance, as it allows
us to find the equaƟons of lines and planes in a variety of contexts. The impor-
tance of the cross product, in some sense, relies on the importance of lines and
planes, which see widespread use throughout engineering, physics and mathe-
maƟcs. We study lines and planes in the next two secƟons.

Notes:
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Exercises 10.4
Terms and Concepts
1. The cross product of two vectors is a , not a

scalar.

2. One can visualize the direcƟon of u⃗× v⃗ using the
.

3. Give a synonym for “orthogonal.”

4. T/F: A fundamental principle of the cross product is that
u⃗× v⃗ is orthogonal to u⃗ and v⃗.

5. is a measure of the turning force applied to an
object.

Problems
In Exercises 6 – 14, vectors u⃗ and v⃗ are given. Compute u⃗× v⃗
and show this is orthogonal to both u⃗ and v⃗.

6. u⃗ = ⟨3, 2,−2⟩, v⃗ = ⟨0, 1, 5⟩

7. u⃗ = ⟨5,−4, 3⟩, v⃗ = ⟨2,−5, 1⟩

8. u⃗ = ⟨4,−5,−5⟩, v⃗ = ⟨3, 3, 4⟩

9. u⃗ = ⟨−4, 7,−10⟩, v⃗ = ⟨4, 4, 1⟩

10. u⃗ = ⟨1, 0, 1⟩, v⃗ = ⟨5, 0, 7⟩

11. u⃗ = ⟨1, 5,−4⟩, v⃗ = ⟨−2,−10, 8⟩

12. u⃗ = i⃗, v⃗ = j⃗

13. u⃗ = i⃗, v⃗ = k⃗

14. u⃗ = j⃗, v⃗ = k⃗

15. Pick any vectors u⃗, v⃗ and w⃗ inR3 and show that u⃗×(⃗v+w⃗) =
u⃗× v⃗+ u⃗× w⃗.

16. Pick any vectors u⃗, v⃗ and w⃗ inR3 and show that u⃗· (⃗v×w⃗) =
(⃗u× v⃗) · w⃗.

In Exercises 17 – 20, the magnitudes of vectors u⃗ and v⃗ in R3

are given, along with the angle θ between them. Use this in-
formaƟon to find the magnitude of u⃗× v⃗.

17. || u⃗ || = 2, || v⃗ || = 5, θ = 30◦

18. || u⃗ || = 3, || v⃗ || = 7, θ = π/2

19. || u⃗ || = 3, || v⃗ || = 4, θ = π

20. || u⃗ || = 2, || v⃗ || = 5, θ = 5π/6

In Exercises 21 – 24, find the area of the parallelogram de-
fined by the given vectors.

21. u⃗ = ⟨1, 1, 2⟩, v⃗ = ⟨2, 0, 3⟩

22. u⃗ = ⟨−2, 1, 5⟩, v⃗ = ⟨−1, 3, 1⟩

23. u⃗ = ⟨1, 2⟩, v⃗ = ⟨2, 1⟩

24. u⃗ = ⟨2, 0⟩, v⃗ = ⟨0, 3⟩

In Exercises 25 – 28, find the area of the triangle with the
given verƟces.

25. VerƟces: (0, 0, 0), (1, 3,−1) and (2, 1, 1).

26. VerƟces: (5, 2,−1), (3, 6, 2) and (1, 0, 4).

27. VerƟces: (1, 1), (1, 3) and (2, 2).

28. VerƟces: (3, 1), (1, 2) and (4, 3).

In Exercises 29 – 30, find the area of the quadrilateral with
the given verƟces. (Hint: break the quadrilateral into 2 trian-
gles.)

29. VerƟces: (0, 0), (1, 2), (3, 0) and (4, 3).

30. VerƟces: (0, 0, 0), (2, 1, 1), (−1, 2,−8) and (1,−1, 5).

In Exercises 31 – 32, find the volume of the parallelepiped
defined by the given vectors.

31. u⃗ = ⟨1, 1, 1⟩, v⃗ = ⟨1, 2, 3⟩, w⃗ = ⟨1, 0, 1⟩

32. u⃗ = ⟨−1, 2, 1⟩, v⃗ = ⟨2, 2, 1⟩, w⃗ = ⟨3, 1, 3⟩

In Exercises 33 – 36, find a unit vector orthogonal to both u⃗
and v⃗.

33. u⃗ = ⟨1, 1, 1⟩, v⃗ = ⟨2, 0, 1⟩

34. u⃗ = ⟨1,−2, 1⟩, v⃗ = ⟨3, 2, 1⟩

35. u⃗ = ⟨5, 0, 2⟩, v⃗ = ⟨−3, 0, 7⟩

36. u⃗ = ⟨1,−2, 1⟩, v⃗ = ⟨−2, 4,−2⟩

37. A bicycle rider applies 150lb of force, straight down,
onto a pedal that extends 7in horizontally from the
crankshaŌ. Find the magnitude of the torque applied to
the crankshaŌ.

38. A bicycle rider applies 150lb of force, straight down, onto
a pedal that extends 7in from the crankshaŌ, making a 30◦

anglewith the horizontal. Find themagnitude of the torque
applied to the crankshaŌ.

39. To turn a stubborn bolt, 80lb of force is applied to a 10in
wrench. What is the maximum amount of torque that can
be applied to the bolt?

40. To turn a stubborn bolt, 80lb of force is applied to a 10in
wrench in a confined space, where the direcƟon of ap-
plied force makes a 10◦ angle with the wrench. How much
torque is subsequently applied to the wrench?

41. Show, using the definiƟon of the Cross Product, that u⃗ · (⃗u×
v⃗) = 0; that is, that u⃗ is orthogonal to the cross product of
u⃗ and v⃗.

42. Show, using the definiƟon of the Cross Product, that u⃗×u⃗ =
0⃗.
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Figure 10.47: Defining a line in space.

Chapter 10 Vectors

10.5 Lines
To find the equaƟon of a line in the x− y plane, we need two pieces of informa-
Ɵon: a point and the slope. The slope conveys direcƟon informaƟon. As verƟcal
lines have an undefined slope, the following statement is more accurate:

To define a line, one needs a point on the line and the direcƟon of
the line.

This holds true for lines in space.

Let P be a point in space, let p⃗ be the vector with iniƟal point at the origin
and terminal point at P (i.e., p⃗ “points” to P), and let d⃗ be a vector. Consider the
points on the line through P in the direcƟon of d⃗.

Clearly one point on the line is P; we can say that the vector p⃗ lies at this
point on the line. To find another point on the line, we can start at p⃗ and move
in a direcƟon parallel to d⃗. For instance, starƟng at p⃗ and traveling one length of
d⃗ places one at another point on the line. Consider Figure 10.47 where certain
points along the line are indicated.

The figure illustrates how every point on the line can be obtained by starƟng
with p⃗ and moving a certain distance in the direcƟon of d⃗. That is, we can define
the line as a funcƟon of t:

ℓ⃗(t) = p⃗+ t d⃗. (10.7)

In many ways, this is not a new concept. Compare EquaƟon (10.7) to the
familiar “y = mx+ b” equaƟon of a line:

..y = b + mx. ℓ⃗(t) = p⃗ + t d⃗.

StarƟng
Point

.

DirecƟon

.

How Far To
Go In That
DirecƟon

Figure 10.46: Understanding the vector equaƟon of a line.

The equaƟons exhibit the same structure: they give a starƟng point, define
a direcƟon, and state how far in that direcƟon to travel.

EquaƟon (10.7) is an example of a vector–valued funcƟon; the input of the
funcƟon is a real number and the output is a vector. Wewill cover vector–valued
funcƟons extensively in the next chapter.

Notes:
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10.5 Lines

There are other ways to represent a line. Let p⃗ = ⟨x0, y0, z0⟩ and let d⃗ =

⟨a, b, c⟩. Then the equaƟon of the line through p⃗ in the direcƟon of d⃗ is:

ℓ⃗(t) = p⃗+ t⃗d
= ⟨x0, y0, z0⟩+ t ⟨a, b, c⟩
= ⟨x0 + at, y0 + bt, z0 + ct⟩

The last line states the the x values of the line are given by x = x0 + at, the
y values are given by y = y0 + bt, and the z values are given by z = z0 + ct.
These three equaƟons, taken together, are the parametric equaƟons of the line
through p⃗ in the direcƟon of d⃗.

Finally, each of the equaƟons for x, y and z above contain the variable t. We
can solve for t in each equaƟon:

x = x0 + at ⇒ t =
x− x0

a
,

y = y0 + bt ⇒ t =
y− y0

b
,

z = z0 + ct ⇒ t =
z− z0

c
,

assuming a, b, c ̸= 0. Since t is equal to each expression on the right, we can set
these equal to each other, forming the symmetric equaƟons of the line through
p⃗ in the direcƟon of d⃗:

x− x0
a

=
y− y0

b
=

z− z0
c

.

Each representaƟon has its own advantages, depending on the context. We
summarize these three forms in the following definiƟon, then give examples of
their use.

Notes:
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Figure 10.48: Graphing a line in Example
342.

Chapter 10 Vectors

..
DefiniƟon 62 EquaƟons of Lines in Space

Consider the line in space that passes through p⃗ = ⟨x0, y0, z0⟩ in the
direcƟon of d⃗ = ⟨a, b, c⟩ .

1. The vector equaƟon of the line is

ℓ⃗(t) = p⃗+ t⃗d.

2. The parametric equaƟons of the line are

x = x0 + at, y = y0 + bt, z = z0 + ct.

3. The symmetric equaƟons of the line are

x− x0
a

=
y− y0

b
=

z− z0
c

.

.. Example 342 ..Finding the equaƟon of a line
Give all three equaƟons, as given inDefiniƟon 62, of the line throughP = (2, 3, 1)
in the direcƟon of d⃗ = ⟨−1, 1, 2⟩. Does the pointQ = (−1, 6, 6) lie on this line?

SÊ½çã®ÊÄ We idenƟfy the point P = (2, 3, 1) with the vector p⃗ =
⟨2, 3, 1⟩. Following the definiƟon, we have

• the vector equaƟon of the line is ℓ⃗(t) = ⟨2, 3, 1⟩+ t ⟨−1, 1, 2⟩;

• the parametric equaƟons of the line are

x = 2− t, y = 3+ t z = 1+ 2t; and

• the symmetric equaƟons of the line are

x− 2
−1

=
y− 3
1

=
z− 1
2

.

The first two equaƟons of the line are useful when a t value is given: one
can immediately find the corresponding point on the line. These forms are good
when calculaƟng with a computer; most soŌware programs easily handle equa-
Ɵons in these formats. (For instance, to make Figure 10.48, a certain graphics
program was given the input (2-x,3+x,1+2*x). This parƟcular program re-
quires the variable always be “x” instead of “t”).

Notes:
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Figure 10.49: A graph of the line in Exam-
ple 343.

10.5 Lines

Does the point Q = (−1, 6, 6) lie on the line? The graph in Figure 10.48
makes it clear that it does not. We can answer this quesƟon without the graph
using any of the three equaƟon forms. Of the three, the symmetric equaƟons
are probably best suited for this task. Simply plug in the values of x, y and z and
see if equality is maintained:

−1− 2
−1

?
=

6− 3
1

?
=

6− 1
2

⇒ 3 = 3 ̸= 2.5.

We see that Q does not lie on the line as it did not saƟsfy the symmetric equa-
Ɵons. ...

.. Example 343 Finding the equaƟon of a line through two points
Find the parametric equaƟons of the line through the points P = (2,−1, 2) and
Q = (1, 3,−1).

SÊ½çã®ÊÄ Recall the statement made at the beginning of this secƟon:
to find the equaƟon of a line, we need a point and a direcƟon. We have two
points; either one will suffice. The direcƟon of the line can be found by the
vector with iniƟal point P and terminal point Q: #  ‰PQ = ⟨−1, 4,−3⟩.

The parametric equaƟons of the line ℓ through P in the direcƟon of #  ‰PQ are:

ℓ : x = 2− t y = −1+ 4t z = 2− 3t.

A graph of the points and line are given in Figure 10.49. Note how in the
given parametrizaƟon of the line, t = 0 corresponds to the point P, and t = 1
corresponds to the pointQ. This relates to the understanding of the vector equa-
Ɵon of a line described in Figure 10.46. The parametric equaƟons “start” at the
point P, and t determines how far in the direcƟon of #  ‰PQ to travel. When t = 0,
we travel 0 lengths of #  ‰PQ; when t = 1, we travel one length of #  ‰PQ, resulƟng in
the point Q. ..

Parallel, IntersecƟng and Skew Lines

In the plane, two disƟnct lines can either be parallel or they will intersect
at exactly one point. In space, given equaƟons of two lines, it can someƟmes
be difficult to tell whether the lines are disƟnct or not (i.e., the same line can be
represented in different ways). Given lines ℓ⃗1(t) = p⃗1+ t⃗d1 and ℓ⃗2(t) = p⃗2+ t⃗d2,
we have four possibiliƟes: ℓ⃗1 and ℓ⃗2 are

the same line they share all points;
intersecƟng lines share only 1 point;
parallel lines d⃗1 ∥ d⃗2, no points in common; or
skew lines d⃗1 ∦ d⃗2, no points in common.

Notes:
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Figure 10.50: Sketching the lines from Ex-
ample 344.

Chapter 10 Vectors

The next two examples invesƟgate these possibiliƟes.

.. Example 344 Comparing lines
Consider lines ℓ1 and ℓ2, given in parametric equaƟon form:

ℓ1 :
x = 1+ 3t
y = 2− t
z = t

ℓ2 :
x = −2+ 4s
y = 3+ s
z = 5+ 2s.

Determine whether ℓ1 and ℓ2 are the same line, intersect, are parallel, or skew.

SÊ½çã®ÊÄ We start by looking at the direcƟons of each line. Line ℓ1
has the direcƟon given by d⃗1 = ⟨3,−1, 1⟩ and line ℓ2 has the direcƟon given by
d⃗2 = ⟨4, 1, 2⟩. It should be clear that d⃗1 and d⃗2 are not parallel, hence ℓ1 and ℓ2
are not the same line, nor are they parallel. Figure 10.50 verifies this fact (where
the points and direcƟons indicated by the equaƟons of each line are idenƟfied).

We next check to see if they intersect (if they do not, they are skew lines).
To find if they intersect, we look for t and s values such that the respecƟve x, y
and z values are the same. That is, we want s and t such that:

1+ 3t = −2+ 4s
2− t = 3+ s
t = 5+ 2s.

This is a relaƟvely simple system of linear equaƟons. Since the last equaƟon is
already solved for t, subsƟtute that value of t into the equaƟon above it:

2− (5+ 2s) = 3+ s ⇒ s = −2, t = 1.

A key to remember is that we have three equaƟons; we need to check if s =
−2, t = 1 saƟsfies the first equaƟon as well:

1+ 3(1) ̸= −2+ 4(−2).

It does not. Therefore, we conclude that the lines ℓ1 and ℓ2 are skew. ..

.. Example 345 ..Comparing lines
Consider lines ℓ1 and ℓ2, given in parametric equaƟon form:

ℓ1 :
x = −0.7+ 1.6t
y = 4.2+ 2.72t
z = 2.3− 3.36t

ℓ2 :
x = 2.8− 2.9s
y = 10.15− 4.93s
z = −5.05+ 6.09s.

Determine whether ℓ1 and ℓ2 are the same line, intersect, are parallel, or skew.

Notes:
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Figure 10.51: Graphing the lines in Exam-
ple 345.

10.5 Lines

SÊ½çã®ÊÄ It is obviously very difficult to simply look at these equaƟons
and discern anything. This is done intenƟonally. In the “real world,” most equa-
Ɵons that are used do not have nice, integer coefficients. Rather, there are lots
of digits aŌer the decimal and the equaƟons can look “messy.”

We again start by deciding whether or not each line has the same direcƟon.
The direcƟon of ℓ1 is given by d⃗1 = ⟨1.6, 2.72,−3.36⟩ and the direcƟon of ℓ2
is given by d⃗2 = ⟨−2.9,−4.93, 6.09⟩. When it is not clear through observaƟon
whether two vectors are parallel or not, the standard way of determining this is
by comparing their respecƟve unit vectors. Using a calculator, we find:

u⃗1 =
d⃗1

|| d⃗1 ||
= ⟨0.3471, 0.5901,−0.7289⟩

u⃗2 =
d⃗2

|| d⃗2 ||
= ⟨−0.3471,−0.5901, 0.7289⟩ .

The two vectors seem to be parallel (at least, their components are equal to
4 decimal places). In most situaƟons, it would suffice to conclude that the lines
are at least parallel, if not the same. One way to be sure is to rewrite d⃗1 and d⃗2
in terms of fracƟons, not decimals. We have

d⃗1 =
⟨
16
10

,
272
100

,−336
100

⟩
d⃗2 =

⟨
−29
10

,−493
100

,
609
100

⟩
.

One can then find the magnitudes of each vector in terms of fracƟons, then
compute the unit vectors likewise. AŌer a lot of manual arithmeƟc (or aŌer
briefly using a computer algebra system), one finds that

u⃗1 =

⟨√
10
83

,
17√
830

,− 21√
830

⟩
u⃗2 =

⟨
−
√

10
83

,− 17√
830

,
21√
830

⟩
.

We can now say without equivocaƟon that these lines are parallel.
Are they the same line? The parametric equaƟons for a line describe one

point that lies on the line, so we know that the point P1 = (−0.7, 4.2, 2.3) lies
on ℓ1. To determine if this point also lies on ℓ2, plug in the x, y and z values of P1
into the symmetric equaƟons for ℓ2:

(−0.7)− 2.8
−2.9

?
=

(4.2)− 10.15
−4.93

?
=

(2.3)− (−5.05)
6.09

⇒ 1.2069 = 1.2069 = 1.2069.

The point P1 lies on both lines, so we conclude they are the same line, just
parametrized differently. Figure 10.51 graphs this line along with the points and
vectors described by the parametric equaƟons. Note how d⃗1 and d⃗2 are parallel,
though point in opposite direcƟons (as indicated by their unit vectors above). ...

Notes:
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Distances

Given a point Q and a line ℓ⃗(t) = p⃗ + t⃗d in space, it is oŌen useful to know
the distance from the point to the line. (Here we use the standard definiƟon
of “distance,” i.e., the length of the shortest line segment from the point to the
line.) IdenƟfying p⃗ with the point P, Figure 10.52 will help establish a general
method of compuƟng this distance h.

From trigonometry, we know h = || #  ‰PQ || sin θ. We have a similar idenƟty
involving the cross product: || #  ‰PQ × d⃗ || = || #  ‰PQ || || d⃗ || sin θ. Divide both sides
of this laƩer equaƟon by || d⃗ || to obtain h:

h =
|| #  ‰PQ× d⃗ ||

|| d⃗ ||
. (10.8)

It is also useful to determine the distance between lines, which we define as
the length of the shortest line segment that connects the two lines (an argument
from geometry shows that this line segments is perpendicular to both lines). Let
lines ℓ⃗1(t) = p⃗1 + t⃗d1 and ℓ⃗2(t) = p⃗2 + t⃗d2 be given, as shown in Figure 10.53.
To find the direcƟon orthogonal to both d⃗1 and d⃗2, we take the cross product:
c⃗ = d⃗1 × d⃗2. The magnitude of the orthogonal projecƟon of #      ‰P1P2 onto c⃗ is the
distance h we seek:

h = || proj c⃗
#      ‰P1P2 ||

=

∣∣∣∣∣∣∣∣ #      ‰P1P2 · c⃗
c⃗ · c⃗

c⃗
∣∣∣∣∣∣∣∣

=
| #      ‰P1P2 · c⃗|
|| c⃗ ||2

|| c⃗ ||

=
| #      ‰P1P2 · c⃗|
|| c⃗ ||

.

A problem in the Exercise secƟon is to show that this distance is 0 when the lines
intersect. Note the use of the Triple Scalar Product: #      ‰P1P2 · c =

#      ‰P1P2 · (⃗d1 × d⃗2).

The following Key Idea restates these two distance formulas.

Notes:
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10.5 Lines

..
Key Idea 51 Distances to Lines

1. Let P be a point on a line ℓ that is parallel to d⃗. The distance h from
a point Q to the line ℓ is:

h =
|| #  ‰PQ× d⃗ ||

|| d⃗ ||
.

2. Let P1 be a point on line ℓ1 that is parallel to d⃗1, and let P2 be a
point on line ℓ2 parallel to d⃗2, and let c⃗ = d⃗1 × d⃗2, where lines ℓ1
and ℓ2 are not parallel. The distance h between the two lines is:

h =
| #      ‰P1P2 · c⃗|
|| c⃗ ||

.

.. Example 346 Finding the distance from a point to a line
Find the distance from the point Q = (1, 1, 3) to the line ℓ⃗(t) = ⟨1,−1, 1⟩ +
t ⟨2, 3, 1⟩ .

SÊ½çã®ÊÄ TheequaƟonof the line line gives us the pointP = (1,−1, 1)
that lies on the line, hence #  ‰PQ = ⟨0, 2, 2⟩. The equaƟon also gives d⃗ = ⟨2, 3, 1⟩.
Following Key Idea 51, we have the distance as

h =
|| #  ‰PQ× d⃗ ||

|| d⃗ ||

=
|| ⟨−4, 4,−4⟩ ||√

14
4
√
3√

14
≈ 1.852.

The point Q is approximately 1.852 units from the line ℓ⃗(t). ..

.. Example 347 ..Finding the distance between lines
Find the distance between the lines

ℓ1 :
x = 1+ 3t
y = 2− t
z = t

ℓ2 :
x = −2+ 4s
y = 3+ s
z = 5+ 2s.

Notes:
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SÊ½çã®ÊÄ These are the sames lines as given in Example 344, where
we showed them to be skew. The equaƟons allow us to idenƟfy the following
points and vectors:

P1 = (1, 2, 0) P2 = (−2, 3, 5) ⇒ #      ‰P1P2 = ⟨−3, 1, 5⟩ .

d⃗1 = ⟨3,−1, 1⟩ d⃗2 = ⟨4, 1, 2⟩ ⇒ c⃗ = d⃗1 × d⃗2 = ⟨−3,−2, 7⟩ .

From Key Idea 51 we have the distance h between the two lines is

h =
| #      ‰P1P2 · c⃗|
|| c⃗ ||

=
42√
62

≈ 5.334.

The lines are approximately 5.334 units apart. ...

One of the key points to understand from this secƟon is this: to describe a
line, we need a point and a direcƟon. Whenever a problem is posed concern-
ing a line, one needs to take whatever informaƟon is offered and glean point
and direcƟon informaƟon. Many quesƟons can be asked (and are asked in the
Exercise secƟon) whose answer immediately follows from this understanding.

Notes:
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Exercises 10.5
Terms and Concepts
1. To find an equaƟon of a line, what two pieces of informa-

Ɵon are needed?

2. Two disƟnct lines in the plane can intersect or be
.

3. Two disƟnct lines in space can intersect, be or be
.

4. Use your ownwords to describewhat it means for two lines
in space to be skew.

Problems
In Exercises 5 – 14, write the vector, parametric and symmet-
ric equaƟons of the lines described.

5. Passes through P = (2,−4, 1), parallel to d⃗ = ⟨9, 2, 5⟩.

6. Passes through P = (6, 1, 7), parallel to d⃗ = ⟨−3, 2, 5⟩.

7. Passes through P = (2, 1, 5) and Q = (7,−2, 4).

8. Passes through P = (1,−2, 3) and Q = (5, 5, 5).

9. Passes through P = (0, 1, 2) and orthogonal to both
d⃗1 = ⟨2,−1, 7⟩ and d⃗2 = ⟨7, 1, 3⟩.

10. Passes through P = (5, 1, 9) and orthogonal to both
d⃗1 = ⟨1, 0, 1⟩ and d⃗2 = ⟨2, 0, 3⟩.

11. Passes through the point of intersecƟon of ℓ1(t) and ℓ2(t)
and orthogonal to both lines, where
ℓ1(t) = ⟨2, 1, 1⟩+ t ⟨5, 1,−2⟩ and
ℓ2(t) = ⟨−2,−1, 2⟩+ t ⟨3, 1,−1⟩.

12. Passes through the point of intersecƟon of ℓ1(t) and ℓ2(t)
and orthogonal to both lines, where

ℓ1 =


x = t
y = −2+ 2t
z = 1+ t

and ℓ2 =


x = 2+ t
y = 2− t
z = 3+ 2t

.

13. Passes through P = (1, 1), parallel to d⃗ = ⟨2, 3⟩.

14. Passes through P = (−2, 5), parallel to d⃗ = ⟨0, 1⟩.

In Exercises 15 – 22, determine if the described lines are the
same line, parallel lines, intersecƟng or skew lines. If inter-
secƟng, give the point of intersecƟon.

15. ℓ1(t) = ⟨1, 2, 1⟩+ t ⟨2,−1, 1⟩,
ℓ2(t) = ⟨3, 3, 3⟩+ t ⟨−4, 2,−2⟩.

16. ℓ1(t) = ⟨2, 1, 1⟩+ t ⟨5, 1, 3⟩,
ℓ2(t) = ⟨14, 5, 9⟩+ t ⟨1, 1, 1⟩.

17. ℓ1(t) = ⟨3, 4, 1⟩+ t ⟨2,−3, 4⟩,
ℓ2(t) = ⟨−3, 3,−3⟩+ t ⟨3,−2, 4⟩.

18. ℓ1(t) = ⟨1, 1, 1⟩+ t ⟨3, 1, 3⟩,
ℓ2(t) = ⟨7, 3, 7⟩+ t ⟨6, 2, 6⟩.

19. ℓ1 =


x = 1+ 2t
y = 3− 2t
z = t

and ℓ2 =


x = 3− t
y = 3+ 5t
z = 2+ 7t

20. ℓ1 =


x = 1.1+ 0.6t
y = 3.77+ 0.9t
z = −2.3+ 1.5t

and ℓ2 =


x = 3.11+ 3.4t
y = 2+ 5.1t
z = 2.5+ 8.5t

21. ℓ1 =


x = 0.2+ 0.6t
y = 1.33− 0.45t
z = −4.2+ 1.05t

and ℓ2 =


x = 0.86+ 9.2t
y = 0.835− 6.9t
z = −3.045+ 16.1t

22. ℓ1 =


x = 0.1+ 1.1t
y = 2.9− 1.5t
z = 3.2+ 1.6t

and ℓ2 =


x = 4− 2.1t
y = 1.8+ 7.2t
z = 3.1+ 1.1t

In Exercises 23 – 26, find the distance from the point to the
line.

23. P = (1, 1, 1), ℓ(t) = ⟨2, 1, 3⟩+ t ⟨2, 1,−2⟩

24. P = (2, 5, 6), ℓ(t) = ⟨−1, 1, 1⟩+ t ⟨1, 0, 1⟩

25. P = (0, 3), ℓ(t) = ⟨2, 0⟩+ t ⟨1, 1⟩

26. P = (1, 1), ℓ(t) = ⟨4, 5⟩+ t ⟨−4, 3⟩

In Exercises 27 – 28, find the distance between the two lines.

27. ℓ1(t) = ⟨1, 2, 1⟩+ t ⟨2,−1, 1⟩,
ℓ2(t) = ⟨3, 3, 3⟩+ t ⟨4, 2,−2⟩.

28. ℓ1(t) = ⟨0, 0, 1⟩+ t ⟨1, 0, 0⟩,
ℓ2(t) = ⟨0, 0, 3⟩+ t ⟨0, 1, 0⟩.

Exercises 29 – 31 explore special cases of the distance formu-
las found in Key Idea 51.

29. Let Q be a point on the line ℓ(t). Show why the distance
formula correctly gives the distance from the point to the
line as 0.

30. Let lines ℓ1(t) and ℓ2(t) be intersecƟng lines. Show why
the distance formula correctly gives the distance between
these lines as 0.

31. Let lines ℓ1(t) and ℓ2(t) be parallel. Show why the distance
formula cannot be used as stated to find the distance be-
tween the lines, then showwhy leƫng c = (

#     ‰P1P2× d⃗2)× d⃗2
allows one to the use the given formula.
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Figure 10.54: IllustraƟng defining a plane
with a sheet of cardboard and a nail.

Chapter 10 Vectors

10.6 Planes
Any flat surface, such as a wall, table top or sƟff piece of cardboard can be
thought of as represenƟng part of a plane. Consider a piece of cardboard with
a point P marked on it. One can take a nail and sƟck it into the cardboard at P
such that the nail is perpendicular to the cardboard; see Figure 10.54

This nail provides a “handle” for the cardboard. Moving the cardboard around
moves P to different locaƟons in space. TilƟng the nail (but keeping P fixed) Ɵlts
the cardboard. Both moving and ƟlƟng the cardboard defines a different plane
in space. In fact, we can define a plane by: 1) the locaƟon of P in space, and 2)
the direcƟon of the nail.

The previous secƟon showed that one can define a line given a point on the
line and the direcƟon of the line (usually given by a vector). One can make a
similar statement about planes: we can define a plane in space given a point on
the plane and the direcƟon the plane “faces” (using the descripƟon above, the
direcƟon of the nail). Once again, the direcƟon informaƟon will be supplied by
a vector, called a normal vector, that is orthogonal to the plane.

What exactly does “orthogonal to the plane”mean? Choose any twopoints P
and Q in the plane, and consider the vector #  ‰PQ. We say a vector n⃗ is orthogonal
to the plane if n⃗ is perpendicular to #  ‰PQ for all choices of P and Q; that is, if
n⃗ · #  ‰PQ = 0 for all P and Q.

This gives us way of wriƟng an equaƟon describing the plane. Let P =
(x0, y0, z0) be a point in the plane and let n⃗ = ⟨a, b, c⟩ be a normal vector to
the plane. A point Q = (x, y, z) lies in the plane defined by P and n⃗ if, and only
if, #  ‰PQ is orthogonal to n⃗. Knowing #  ‰PQ = ⟨x− x0, y− y0, z− z0⟩, consider:

#  ‰PQ · n⃗ = 0
⟨x− x0, y− y0, z− z0⟩ · ⟨a, b, c⟩ = 0

a(x− x0) + b(y− y0) + c(z− z0) = 0 (10.9)

EquaƟon (10.9) defines an implicit funcƟon describing the plane. More algebra
produces:

ax+ by+ cz = ax0 + by0 + cz0.

The right hand side is just a number, so we replace it with d:

ax+ by+ cz = d. (10.10)

As long as c ̸= 0, we can solve for z:

z =
1
c
(d− ax− by). (10.11)

Notes:
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Figure 10.55: Sketching the plane in Ex-
ample 348.

10.6 Planes

EquaƟon (10.11) is especially useful asmany computer programs can graph func-
Ɵons in this form. EquaƟons (10.9) and (10.10) have specific names, given next.

..
DefiniƟon 63 EquaƟons of a Plane in Standard and General Forms

The plane passing through the point P = (x0, y0, z0) with normal vector
n⃗ = ⟨a, b, c⟩ can be described by an equaƟon with standard form

a(x− x0) + b(y− y0) + c(z− z0) = 0;

the equaƟon’s general form is

ax+ by+ cz = d.

A key to remember throughout this secƟon is this: to find the equaƟon of a
plane, we need a point and a normal vector. We will give several examples of
finding the equaƟon of a plane, and in each one different types of informaƟon
are given. In each case, we need to use the given informaƟon to find a point on
the plane and a normal vector.

.. Example 348 Finding the equaƟon of a plane.
Write the equaƟon of the plane that passes through the points P = (1, 1, 0),
Q = (1, 2,−1) and R = (0, 1, 2) in standard form.

SÊ½çã®ÊÄ We need a vector n⃗ that is orthogonal to the plane. Since P,
Q and R are in the plane, so are the vectors #  ‰PQ and # ‰PR; #  ‰PQ × # ‰PR is orthogonal
to #  ‰PQ and # ‰PR and hence the plane itself.

It is straighƞorward to compute n⃗ =
#  ‰PQ × # ‰PR = ⟨2, 1, 1⟩. We can use any

point we wish in the plane (any of P, Q or R will do) and we arbitrarily choose P.
Following DefiniƟon 63, the equaƟon of the plane in standard form is

2(x− 1) + (y− 1) + z = 0.

The plane is sketched in Figure 10.55. ..

We have just demonstrated the fact that any three non-collinear points de-
fine a plane. (This is why a three-legged stool does not “rock;” it’s three feet
always lie in a plane. A four-legged stool will rock unless all four feet lie in the
same plane.)

.. Example 349 ..Finding the equaƟon of a plane.
Verify that lines ℓ1 and ℓ2, whose parametric equaƟons are given below, inter-

Notes:
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Figure 10.56: Sketching the plane in Ex-
ample 349.
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Figure 10.57: The line and plane in Exam-
ple 350.
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sect, then give the equaƟon of the plane that contains these two lines in general
form.

ℓ1 :
x = −5+ 2s
y = 1+ s
z = −4+ 2s

ℓ2 :
x = 2+ 3t
y = 1− 2t
z = 1+ t

SÊ½çã®ÊÄ The lines clearly are not parallel. If they do not intersect,
they are skew, meaning there is not a plane that contains them both. If they do
intersect, there is such a plane.

To find their point of intersecƟon, we set the x, y and z equaƟons equal to
each other and solve for s and t:

−5+ 2s = 2+ 3t
1+ s = 1− 2t

−4+ 2s = 1+ t
⇒ s = 2, t = −1.

When s = 2 and t = −1, the lines intersect at the point P = (−1, 3, 0).
Let d⃗1 = ⟨2, 1, 2⟩ and d⃗2 = ⟨3,−2, 1⟩ be the direcƟons of lines ℓ1 and ℓ2,

respecƟvely. A normal vector to the plane containing these the two lines will
also be orthogonal to d⃗1 and d⃗2. Thus we find a normal vector n⃗ by compuƟng
n⃗ = d⃗1 × d⃗2 = ⟨5, 4− 7⟩.

We can pick any point in the plane with which to write our equaƟon; each
line gives us infinite choices of points. We choose P, the point of intersecƟon.
We follow DefiniƟon 63 to write the plane’s equaƟon in general form:

5(x+ 1) + 4(y− 3)− 7z = 0
5x+ 5+ 4y− 12− 7z = 0

5x+ 4y− 7z = 7.

The plane’s equaƟon in general form is 5x+ 4y− 7z = 7; it is sketched in Figure
10.56. ...

.. Example 350 ..Finding the equaƟon of a plane
Give the equaƟon, in standard form, of the plane that passes through the point
P = (−1, 0, 1) and is orthogonal to the linewith vector equaƟon ℓ⃗(t) = ⟨−1, 0, 1⟩+
t ⟨1, 2, 2⟩.

SÊ½çã®ÊÄ As the plane is to be orthogonal to the line, the plane must
be orthogonal to the direcƟon of the line given by d⃗ = ⟨1, 2, 2⟩. We use this as
our normal vector. Thus the plane’s equaƟon, in standard form, is

(x+ 1) + 2y+ 2(z− 1) = 0.

Notes:
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Figure 10.58: Graphing the planes and
their line of intersecƟon in Example 351.

10.6 Planes

The line and plane are sketched in Figure 10.57. ...

.. Example 351 Finding the intersecƟon of two planes
Give the parametric equaƟons of the line that is the intersecƟon of the planes
p1 and p2, where:

p1 : x− (y− 2) + (z− 1) = 0
p2 : −2(x− 2) + (y+ 1) + (z− 3) = 0

SÊ½çã®ÊÄ To find an equaƟon of a line, we need a point on the line and
the direcƟon of the line.

We can find a point on the line by solving each equaƟon of the planes for z:

p1 : z = −x+ y− 1
p2 : z = 2x− y− 2

We can now set these two equaƟons equal to each other (i.e., we are finding
values of x and y where the planes have the same z value:

−x+ y− 1 = 2x− y− 2
2y = 3x− 1

y =
1
2
(3x− 1)

We can choose any value for x; we choose x = 1. This determines that y = 1.
We can now use the equaƟons of either plane to find z: when x = 1 and y = 1,
z = −1 on both planes. We have found a point P on the line: P = (1, 1,−1).

We now need the direcƟon of the line. Since the line lies in each plane,
its direcƟon is orthogonal to a normal vector for each plane. Considering the
equaƟons for p1 and p2, we can quickly determine a normal vector. For p1, n⃗1 =
⟨1,−1, 1⟩ and for p2, n⃗2 = ⟨−2, 1, 1⟩ . A direcƟon orthogonal to both of these
direcƟons is their cross product: d⃗ = n⃗1 × n⃗2 = ⟨−2,−3,−1⟩ .

The parametric equaƟons of the line through P = (1, 1,−1) in the direcƟon
of d = ⟨−2,−3,−1⟩ is:

ℓ : x = −2t+ 1 y = −3t+ 1 z = −t− 1.

The planes and line are graphed in Figure 10.58. ..

.. Example 352 ..Finding the intersecƟon of a plane and a line
Find the point of intersecƟon, if any, of the line ℓ(t) = ⟨3,−3,−1⟩+ t ⟨−1, 2, 1⟩
and the plane with equaƟon in general form 2x+ y+ z = 4.

Notes:
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SÊ½çã®ÊÄ TheequaƟonof the plane shows that the vector n⃗ = ⟨2, 1, 1⟩
is a normal vector to the plane, and the equaƟon of the line shows that the line
moves parallel to d⃗ = ⟨−1, 2, 1⟩. Since these are not orthogonal, we know
there is a point of intersecƟon. (If there were orthogonal, it would mean that
the plane and line were parallel to each other, either never intersecƟng or the
line was in the plane itself.)

To find the point of intersecƟon, we need to find a t value such that ℓ(t)
saƟsfies the equaƟon of the plane. RewriƟng the equaƟon of the line with para-
metric equaƟons will help:

ℓ(t) =


x = 3− t
y = −3+ 2t
z = −1+ t

.

Replacing x, y and z in the equaƟon of the plane with the expressions containing
t found in the equaƟon of the line allows us to determine a t value that indicates
the point of intersecƟon:

2x+ y+ z = 4
2(3− t) + (−3+ 2t) + (−1+ t) = 4

t = 2.

When t = 2, the point on the line saƟsfies the equaƟon of the plane; that point
is ℓ(2) = ⟨1, 1, 1⟩. Thus the point (1, 1, 1) is the point of intersecƟon between
the plane and the line, illustrated in Figure 10.59. ...

Distances

Just as itwas useful to finddistances betweenpoints and lines in the previous
secƟon, it is also oŌen necessary to find the distance from a point to a plane.

Consider Figure 10.60, where a plane with normal vector n⃗ is sketched con-
taining a point P and a point Q, not on the plane, is given. We measure the
distance from Q to the plane by measuring the length of the projecƟon of #  ‰PQ
onto n⃗. That is, we want:

|| proj n⃗
#  ‰PQ || =

∣∣∣∣∣
∣∣∣∣∣ n⃗ ·

#  ‰PQ
|| n⃗ ||2

n⃗

∣∣∣∣∣
∣∣∣∣∣ = |⃗n · #  ‰PQ|

|| n⃗ ||
(10.12)

EquaƟon (10.12) is important as it doesmore than just give the distance between
a point and a plane. We will see how it allows us to find several other distances
as well: the distance between parallel planes and the distance from a line and a
plane. Because EquaƟon (10.12) is important, we restate it as a Key Idea.

Notes:
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10.6 Planes

..
Key Idea 52 Distance from a Point to a Plane

Let a plane with normal vector n⃗ be given, and let Q be a point. The
distance h from Q to the plane is

h =
|⃗n · #  ‰PQ|
|| n⃗ ||

,

where P is any point in the plane.

.. Example 353 Distance between a point and a plane
Find the distance bewteen the point Q = (2, 1, 4) and the plane with equaƟon
2x− 5y+ 6z = 9.

SÊ½çã®ÊÄ Using the equaƟon of the plane, we find the normal vector
n⃗ = ⟨2,−5, 6⟩. To find a point on the plane, we can let x and y be anything we
choose, then let z be whatever saƟsfies the equaƟon. Leƫng x and y be 0 seems
simple; this makes z = 1.5. Thus we let P = ⟨0, 0, 1.5⟩, and #  ‰PQ = ⟨2, 1, 2.5⟩ .

The distance h from Q to the plane is given by Key Idea 52:

h =
|⃗n · #  ‰PQ|
|| n⃗ ||

=
| ⟨2,−5,−6⟩ · ⟨2, 1, 2.5⟩ |

|| ⟨2,−5,−6⟩ ||

=
| − 16|√

65
≈ 1.98...

We can use Key Idea 52 to find other distances. Given two parallel planes,
we can find the distance between these planes by leƫng P be a point on one
plane and Q a point on the other. If ℓ is a line parallel to a plane, we can use
the Key Idea to find the distance between them as well: again, let P be a point
in the plane and let Q be any point on the line. (One can also use Key Idea 51.)
The Exercise secƟon contains problems of these types.

These past two secƟons have not explored lines and planes in space as an
exercise of mathemaƟcal curiosity. Rather, there are many, many applicaƟons
of these fundamental concepts. Complex shapes can be modeled (or, approxi-
mated) using planes. For instance, part of the exterior of an aircraŌ may have
a complex, yet smooth, shape, and engineers will want to know how air flows
across this piece as well as how heat might build up due to air fricƟon. Many

Notes:
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equaƟons that help determine air flow and heat dissipaƟon are difficult to apply
to arbitrary surfaces, but simple to apply to planes. By approximaƟng a surface
with millions of small planes one can more readily model the needed behavior.

Notes:
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Exercises 10.6
Terms and Concepts
1. In order to find the equaƟon of a plane, what two pieces of

informaƟon must one have?

2. What is the relaƟonship between a plane and one of its nor-
mal vectors?

Problems
In Exercises 3 – 6, give any two points in the given plane.

3. 2x− 4y+ 7z = 2

4. 3(x+ 2) + 5(y− 9)− 4z = 0

5. x = 2

6. 4(y+ 2)− (z− 6) = 0

In Exercises 7 – 20, give the equaƟon of the described plane
in standard and general forms.

7. Passes through (2, 3, 4) and has normal vector
n⃗ = ⟨3,−1, 7⟩.

8. Passes through (1, 3, 5) and has normal vector
n⃗ = ⟨0, 2, 4⟩.

9. Passes through the points (1, 2, 3), (3,−1, 4) and (1, 0, 1).

10. Passes through the points (5, 3, 8), (6, 4, 9) and (3, 3, 3).

11. Contains the intersecƟng lines
ℓ1(t) = ⟨2, 1, 2⟩+ t ⟨1, 2, 3⟩ and
ℓ2(t) = ⟨2, 1, 2⟩+ t ⟨2, 5, 4⟩.

12. Contains the intersecƟng lines
ℓ1(t) = ⟨5, 0, 3⟩+ t ⟨−1, 1, 1⟩ and
ℓ2(t) = ⟨1, 4, 7⟩+ t ⟨3, 0,−3⟩.

13. Contains the parallel lines
ℓ1(t) = ⟨1, 1, 1⟩+ t ⟨1, 2, 3⟩ and
ℓ2(t) = ⟨1, 1, 2⟩+ t ⟨1, 2, 3⟩.

14. Contains the parallel lines
ℓ1(t) = ⟨1, 1, 1⟩+ t ⟨4, 1, 3⟩ and
ℓ2(t) = ⟨2, 2, 2⟩+ t ⟨4, 1, 3⟩.

15. Contains the point (2,−6, 1) and the line

ℓ(t) =


x = 2+ 5t
y = 2+ 2t
z = −1+ 2t

16. Contains the point (5, 7, 3) and the line

ℓ(t) =


x = t
y = t
z = t

17. Contains the point (5, 7, 3) and is orthogonal to the line
ℓ(t) = ⟨4, 5, 6⟩+ t ⟨1, 1, 1⟩.

18. Contains the point (4, 1, 1) and is orthogonal to the line

ℓ(t) =


x = 4+ 4t
y = 1+ 1t
z = 1+ 1t

19. Contains the point (−4, 7, 2) and is parallel to the plane
3(x− 2) + 8(y+ 1)− 10z = 0.

20. Contains the point (1, 2, 3) and is parallel to the plane
x = 5.

In Exercises 21 – 22, give the equaƟon of the line that is the
intersecƟon of the given planes.

21. p1 : 3(x− 2) + (y− 1) + 4z = 0, and
p2 : 2(x− 1)− 2(y+ 3) + 6(z− 1) = 0.

22. p1 : 5(x− 5) + 2(y+ 2) + 4(z− 1) = 0, and
p2 : 3x− 4(y− 1) + 2(z− 1) = 0.

In Exercises 23 – 26, find the point of intersecƟon between
the line and the plane.

23. line: ⟨5, 1,−1⟩+ t ⟨2, 2, 1⟩,
plane: 5x− y− z = −3

24. line: ⟨4, 1, 0⟩+ t ⟨1, 0,−1⟩,
plane: 3x+ y− 2z = 8

25. line: ⟨1, 2, 3⟩+ t ⟨3, 5,−1⟩,
plane: 3x− 2y− z = 4

26. line: ⟨1, 2, 3⟩+ t ⟨3, 5,−1⟩,
plane: 3x− 2y− z = −4

In Exercises 27 – 30, find the given distances.

27. The distance from the point (1, 2, 3) to the plane
3(x− 1) + (y− 2) + 5(z− 2) = 0.

28. The distance from the point (2, 6, 2) to the plane
2(x− 1)− y+ 4(z+ 1) = 0.

29. The distance between the parallel planes
x+ y+ z = 0 and
(x− 2) + (y− 3) + (z+ 4) = 0

30. The distance between the parallel planes
2(x− 1) + 2(y+ 1) + (z− 2) = 0 and
2(x− 3) + 2(y− 1) + (z− 3) = 0

31. Show why if the point Q lies in a plane, then the distance
formula correctly gives the distance from the point to the
plane as 0.

32. How is Exercise 30 in SecƟon 10.5 easier to answer once we
have an understanding of planes?
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Figure 11.1: Sketching the graph of a
vector–valued funcƟon.

11: V��ãÊÙ V�½ç�� FçÄ�ã®ÊÄÝ

11.1 Vector–Valued FuncƟons
We are very familiar with real valued funcƟons, that is, funcƟons whose output
is a real number. This secƟon introduces vector–valued funcƟons – funcƟons
whose output is a vector.

..
DefiniƟon 64 Vector–Valued FuncƟons

A vector–valued funcƟon is a funcƟon of the form

r⃗(t) = ⟨ f(t), g(t) ⟩ or r⃗(t) = ⟨ f(t), g(t), h(t) ⟩ ,

where f, g and h are real valued funcƟons.

The domain of r⃗ is the set of all values of t for which r⃗(t) is defined. The
range of r⃗ is the set of all possible output vectors r⃗(t).

EvaluaƟng and Graphing Vector–Valued FuncƟons

EvaluaƟng a vector–valued funcƟon at a specific value of t is straighƞorward;
simply evaluate each component funcƟon at that value of t. For instance, if
r⃗(t) =

⟨
t2, t2 + t− 1

⟩
, then r⃗(−2) = ⟨4, 1⟩. We can sketch this vector, as is

done in Figure 11.1 (a). Ploƫng lots of vectors is cumbersome, though, so gen-
erally we do not sketch the whole vector but just the terminal point. The graph
of a vector–valued funcƟon is the set of all terminal points of r⃗(t), where the
iniƟal point of each vector is always the origin. In Figure 11.1 (b) we sketch the
graph of r⃗ ; we can indicate individual points on the graph with their respecƟve
vector, as shown.

Vector–valued funcƟons are closely related to parametric equaƟons of graphs.
While in bothmethods we plot points

(
x(t), y(t)

)
or
(
x(t), y(t), z(t)

)
to produce

a graph, in the context of vector–valued funcƟons each such point represents a
vector. The implicaƟons of this will be more fully realized in the next secƟon as
we apply calculus ideas to these funcƟons.
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Chapter 11 Vector Valued FuncƟons

.. Example 354 Graphing vector–valued funcƟons

Graph r⃗(t) =
⟨
t3 − t,

1
t2 + 1

⟩
, for−2 ≤ t ≤ 2. Sketch r⃗(−1) and r⃗(2).

SÊ½çã®ÊÄ We start by making a table of t, x and y values as shown in
Figure 11.2 (a). Ploƫng these points gives an indicaƟon of what the graph looks
like. In Figure 11.2 (b), we indicate these points and sketch the full graph. We
also highlight r⃗(−1) and r⃗(2) on the graph. ..

.. Example 355 Graphing vector–valued funcƟons.
Graph r⃗(t) = ⟨cos t, sin t, t⟩ for 0 ≤ t ≤ 4π.

SÊ½çã®ÊÄ We can again plot points, but careful consideraƟon of this
funcƟon is very revealing. Momentarily ignoring the third component, we see
the x and y components trace out a circle of radius 1 centered at the origin.
NoƟcing that the z component is t, we see that as the graph winds around the
z-axis, it is also increasing at a constant rate in the posiƟve z direcƟon, forming a
spiral. This is graphed in Figure 11.3. In the graph r⃗(7π/4) ≈ (0.707,−0.707, 5.498)
is highlighted to help us understand the graph. ..

Algebra of Vector–Valued FuncƟons

..
DefiniƟon 65 OperaƟons on Vector–Valued FuncƟons

Let r⃗1(t) = ⟨f1(t), g1(t)⟩ and r⃗2(t) = ⟨f2(t), g2(t)⟩ be vector–valued
funcƟons in R2 and let c be a scalar. Then:

1. r⃗1(t)± r⃗2(t) = ⟨ f1(t)± f2(t), g1(t)± g2(t) ⟩.

2. c⃗r1(t) = ⟨ cf1(t), cg1(t) ⟩.

A similar definiƟon holds for vector–valued funcƟons in R3.

This definiƟon states that we add, subtract and scale vector-valued funcƟons
component–wise. Combining vector–valued funcƟons in this way can be very
useful (as well as create interesƟng graphs).

.. Example 356 ..Adding and scaling vector–valued funcƟons.
Let r⃗1(t) = ⟨ 0.2t, 0.3t ⟩, r⃗2(t) = ⟨ cos t, sin t ⟩ and r⃗(t) = r⃗1(t) + r⃗2(t). Graph
r⃗1(t), r⃗2(t), r⃗(t) and 5⃗r(t) on−10 ≤ t ≤ 10.

Notes:
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Figure 11.5: Graphing the funcƟons in Ex-
ample 356.

11.1 Vector–Valued FuncƟons

SÊ½çã®ÊÄ We can graph r⃗1 and r⃗2 easily by ploƫng points (or just using
technology). Let’s think about each for a moment to beƩer understand how
vector–valued funcƟons work.

We can rewrite r⃗1(t) = ⟨ 0.2t, 0.3t ⟩ as r⃗1(t) = t ⟨0.2, 0.3⟩. That is, the
funcƟon r⃗1 scales the vector ⟨0.2, 0.3⟩ by t. This scaling of a vector produces a
line in the direcƟon of ⟨0.2, 0.3⟩.

We are familiar with r⃗2(t) = ⟨ cos t, sin t ⟩; it traces out a circle, centered at
the origin, of radius 1. Figure 11.5 (a) graphs r⃗1(t) and r⃗2(t).

Adding r⃗1(t) to r⃗2(t) produces r⃗(t) = ⟨ cos t+ 0.2t, sin t+ 0.3t ⟩, graphed
in Figure 11.5 (b). The linear movement of the line combines with the circle to
create loops that move in the direcƟon of ⟨0.2, 0.3⟩. (We encourage the reader
to experiment by changing r⃗1(t) to ⟨2t, 3t⟩, etc., and observe the effects on the
loops.)

MulƟplying r⃗(t) by 5 scales the funcƟon by 5, producing 5⃗r(t) = ⟨5 cos t +
1, 5 sin t + 1.5⟩, which is graphed in Figure 11.5 (c) along with r⃗(t). The new
funcƟon is “5 Ɵmes bigger” than r⃗(t). Note how the graph of 5⃗r(t) in (c) looks
idenƟcal to the graph of r⃗(t) in (b). This is due to the fact that the x and y bounds
of the plot in (c) are exactly 5 Ɵmes larger than the bounds in (b). ...

.. Example 357 ..Adding and scaling vector–valued funcƟons.
A cycloid is a graph traced by a point p on a rolling circle, as shown in Figure
11.4. Find an equaƟon describing the cycloid, where the circle has radius 1.

..
p

Figure 11.4: Tracing a cycloid.

SÊ½çã®ÊÄ This problem is not very difficult if we approach it in a clever
way. We start by leƫng p⃗(t) describe the posiƟon of the point p on the circle,
where the circle is centered at the origin and only rotates clockwise (i.e., it does
not roll). This is relaƟvely simple given our previous experienceswith parametric
equaƟons; p⃗(t) = ⟨cos t,− sin t⟩.

We now want the circle to roll. We represent this by leƫng c⃗(t) represent
the locaƟon of the center of the circle. It should be clear that the y component
of c⃗(t) should be 1; the center of the circle is always going to be 1 if it rolls on a
horizontal surface.

The x component of c⃗(t) is a linear funcƟon of t: f(t) = mt for some scalarm.
When t = 0, f(t) = 0 (the circle starts centered on the y-axis). When t = 2π,
the circle has made one complete revoluƟon, traveling a distance equal to its

Notes:
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Chapter 11 Vector Valued FuncƟons

circumference, which is also 2π. This gives us a point on our line f(t) = mt, the
point (2π, 2π). It should be clear thatm = 1 and f(t) = t. So c⃗(t) = ⟨t, 1⟩.

Wenow combine p⃗ and c⃗ together to form the equaƟon of the cycloid: r⃗(t) =
p⃗(t) + c⃗(t) = ⟨cos t+ t,− sin t+ 1⟩, which is graphed in Figure 11.6. ...

Displacement

A vector–valued funcƟon r⃗(t) is oŌen used to describe the posiƟon of amov-
ing object at Ɵme t. At t = t0, the object is at r⃗(t0); at t = t1, the object is at
r⃗(t1). Knowing the locaƟons r⃗(t0) and r⃗(t1) give no indicaƟon of the path taken
between them, but oŌen we only care about the difference of the locaƟons,
r⃗(t1)− r⃗(t0), the displacement.

..
DefiniƟon 66 Displacement

Let r⃗(t) be a vector–valued funcƟon and let t0 < t1 be values in the
domain. The displacement d⃗ of r⃗, from t = t0 to t = t1, is

d⃗ = r⃗(t1)− r⃗(t0).

When the displacement vector is drawnwith iniƟal point at r⃗(t0), its terminal
point is r⃗(t1). We think of it as the vector which points from a starƟng posiƟon
to an ending posiƟon.

.. Example 358 Finding and graphing displacement vectors
Let r⃗(t) =

⟨
cos( π2 t), sin(

π
2 t)
⟩
. Graph r⃗(t) on−1 ≤ t ≤ 1, and find the displace-

ment of r⃗(t) on this interval.

SÊ½çã®ÊÄ The funcƟon r⃗(t) traces out the unit circle, though at a dif-
ferent rate than the “usual” ⟨cos t, sin t⟩ parametrizaƟon. At t0 = −1, we have
r⃗(t0) = ⟨0,−1⟩; at t1 = 1, we have r⃗(t1) = ⟨0, 1⟩. The displacement of r⃗(t) on
[−1, 1] is thus d⃗ = ⟨0, 1⟩ − ⟨0,−1⟩ = ⟨0, 2⟩ .

A graph of r⃗(t) on [−1, 1] is given in Figure 11.7, along with the displacement
vector d⃗ on this interval. ..

Measuring displacement makes us contemplate related, yet very different,
concepts. Considering the semi–circular path the object in Example 358 took,
we can quickly verify that the object ended up a distance of 2 units from its iniƟal
locaƟon. That is, we can compute || d⃗ || = 2. However, measuring distance from
the starƟng point is different from measuring distance traveled. Being a semi–

Notes:
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circle, we can measure the distance traveled by this object as π ≈ 3.14 units.
Knowing distance from the starƟng point allows us to compute average rate of
change.

..
DefiniƟon 67 Average Rate of Change

Let r⃗(t) be a vector–valued funcƟon, where each of its component func-
Ɵons is conƟnuous on its domain, and let t0 < t1. The average rate of
change of r⃗(t) on [t0, t1] is

average rate of change =
r⃗(t1)− r⃗(t0)

t1 − t0
.

.. Example 359 Average rate of change
Let r⃗(t) =

⟨
cos( π2 t), sin(

π
2 t)
⟩
as in Example 358. Find the average rate of change

of r⃗(t) on [−1, 1] and on [−1, 5].

SÊ½çã®ÊÄ We computed in Example 358 that the displacement of r⃗(t)
on [−1, 1] was d⃗ = ⟨0, 2⟩. Thus the average rate of change of r⃗(t) on [−1, 1] is:

r⃗(1)− r⃗(−1)
1− (−1)

=
⟨0, 2⟩
2

= ⟨0, 1⟩ .

We interpret this as follows: the object followed a semi–circular path, meaning
it moved towards the right then moved back to the leŌ, while climbing slowly,
then quickly, then slowly again. On average, however, it progressed straight up
at a constant rate of ⟨0, 1⟩ per unit of Ɵme.

We canquickly see that the displacement on [−1, 5] is the sameas on [−1, 1],
so d⃗ = ⟨0, 2⟩. The average rate of change is different, though:

r⃗(5)− r⃗(−1)
5− (−1)

=
⟨0, 2⟩
6

= ⟨0, 1/3⟩ .

As it took “3 Ɵmes as long” to arrive at the same place, this average rate of
change on [−1, 5] is 1/3 the average rate of change on [−1, 1]. ..

We considered average rates of change in SecƟons 1.1 and 2.1 as we studied
limits and derivaƟves. The same is true here; in the following secƟon we apply
calculus concepts to vector–valued funcƟons as we find limits, derivaƟves, and
integrals. Understanding the average rate of change will give us an understand-
ing of the derivaƟve; displacement gives us an understanding of integraƟon.

Notes:
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Exercises 11.1
Terms and Concepts
1. Vector–valued funcƟons are closely related to

of graphs.

2. When sketching vector–valued funcƟons, technically one
isn’t graphing points, but rather .

3. It can be useful to think of as a vector that points
from a starƟng posiƟon to an ending posiƟon.

Problems
In Exercises 4 – 11, sketch the vector–valued funcƟon on the
given interval.

4. r⃗(t) =
⟨
t2, t2 − 1

⟩
, for−2 ≤ t ≤ 2.

5. r⃗(t) =
⟨
t2, t3

⟩
, for−2 ≤ t ≤ 2.

6. r⃗(t) =
⟨
1/t, 1/t2

⟩
, for−2 ≤ t ≤ 2.

7. r⃗(t) =
⟨ 1
10 t

2, sin t
⟩
, for−2π ≤ t ≤ 2π.

8. r⃗(t) =
⟨ 1
10 t

2, sin t
⟩
, for−2π ≤ t ≤ 2π.

9. r⃗(t) = ⟨3 sin(πt), 2 cos(πt)⟩, on [0, 2].

10. r⃗(t) = ⟨3 cos t, 2 sin(2t)⟩, on [0, 2π].

11. r⃗(t) = ⟨2 sec t, tan t⟩, on [−π, π].

In Exercises 12 – 15, sketch the vector–valued funcƟon on the
given interval inR3. Technologymay be useful in creaƟng the
sketch.

12. r⃗(t) = ⟨2 cos t, t, 2 sin t⟩, on [0, 2π].

13. r⃗(t) = ⟨3 cos t, sin t, t/π⟩ on [0, 2π].

14. r⃗(t) = ⟨cos t, sin t, sin t⟩ on [0, 2π].

15. r⃗(t) = ⟨cos t, sin t, sin(2t)⟩ on [0, 2π].

In Exercises 16 – 19, find || r⃗(t) ||.

16. r⃗(t) =
⟨
t, t2
⟩
.

17. r⃗(t) = ⟨5 cos t, 3 sin t⟩.

18. r⃗(t) = ⟨2 cos t, 2 sin t, t⟩.

19. r⃗(t) =
⟨
cos t, t, t2

⟩
.

In Exercises 20 – 27, create a vector–valued funcƟon whose
graph matches the given descripƟon.

20. A circle of radius 2, centered at (1, 2), traced counter–
clockwise once on [0, 2π].

21. A circle of radius 3, centered at (5, 5), traced clockwise
once on [0, 2π].

22. An ellipse, centered at (0, 0) with verƟcal major axis of
length 10 and minor axis of length 3, traced once counter–
clockwise on [0, 2π].

23. An ellipse, centered at (3,−2)with horizontal major axis of
length 6 and minor axis of length 4, traced once clockwise
on [0, 2π].

24. A line through (2, 3) with a slope of 5.

25. A line through (1, 5) with a slope of−1/2.

26. A verƟcally oriented helix with radius of 2 that starts at
(2, 0, 0) and ends at (2, 0, 4π) aŌer 1 revoluƟon on [0, 2π].

27. A verƟcally oriented helix with radius of 3 that starts at
(3, 0, 0) and ends at (3, 0, 3) aŌer 2 revoluƟons on [0, 1].

In Exercises 28 – 31, find the average rate of change of r⃗(t) on
the given interval.

28. r⃗(t) =
⟨
t, t2
⟩
on [−2, 2].

29. r⃗(t) = ⟨t, t+ sin t⟩ on [0, 2π].

30. r⃗(t) = ⟨3 cos t, 2 sin t, t⟩ on [0, 2π].

31. r⃗(t) =
⟨
t, t2, t3

⟩
on [−1, 3].
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11.2 Calculus and Vector–Valued FuncƟons

The previous secƟon introduced us to a new mathemaƟcal object, the vector–
valued funcƟon. We now apply calculus concepts to these funcƟons. We start
with the limit, then work our way through derivaƟves to integrals.

Limits of Vector–Valued FuncƟons

The iniƟal definiƟon of the limit of a vector–valued funcƟon is a bit inƟmi-
daƟng, as was the definiƟon of the limit in DefiniƟon 1. The theorem following
the definiƟon shows that in pracƟce, taking limits of vector–valued funcƟons is
no more difficult than taking limits of real–valued funcƟons.

..
DefiniƟon 68 Limits of Vector–Valued FuncƟons

Let a vector–valued funcƟon r⃗(t) be given, defined on an open interval I
containing c. The limit of r⃗(t), as t approaches c is L⃗, expressed as

lim
t→c

r⃗(t) = L⃗,

means that given any ε > 0, there exists a δ > 0 such that whenever
|t− c| < δ, we have || r⃗(t)− L⃗ || < ε.

Note how the measurement of distance between real numbers is the abso-
lute value of their difference; the measure of distance between vectors is the
vector norm, or magnitude, of their difference.

..
Theorem 89 Limits of Vector–Valued FuncƟons

1. Let r⃗(t) = ⟨ f(t), g(t) ⟩ be a vector–valued funcƟon in R2 defined
on an open interval I containing c. Then

lim
t→c

r⃗(t) =
⟨
lim
t→c

f(t) , lim
t→c

g(t)
⟩
.

2. Let r⃗(t) = ⟨ f(t), g(t), h(t) ⟩ be a vector–valued funcƟon in R3 de-
fined on an open interval I containing c. Then

lim
t→c

r⃗(t) =
⟨
lim
t→c

f(t) , lim
t→c

g(t) , lim
t→c

h(t)
⟩

Notes:
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Theorem 89 states that we compute limits component–wise.

.. Example 360 Finding limits of vector–valued funcƟons

Let r⃗(t) =
⟨
sin t
t

, t2 − 3t+ 3, cos t
⟩
. Find lim

t→0
r⃗(t).

SÊ½çã®ÊÄ Weapply the theoremand compute limits component–wise.

lim
t→0

r⃗(t) =
⟨
lim
t→0

sin t
t

, lim
t→0

t2 − 3t+ 3 , lim
t→0

cos t
⟩

= ⟨1, 3, 1⟩ ...

ConƟnuity

..
DefiniƟon 69 ConƟnuity of Vector–Valued FuncƟons

Let r⃗(t) be a vector–valued funcƟon defined on an open interval I con-
taining c.

1. r⃗(t) is conƟnuous at c if lim
t→c

r⃗(t) = r(c).

2. If r⃗(t) is conƟnuous at all c in I, then r⃗(t) is conƟnuous on I.

We again have a theorem that lets us evaluate conƟnuity component–wise.

..
Theorem 90 ConƟnuity of Vector–Valued FuncƟons

Let r⃗(t) be a vector–valued funcƟon defined on an open interval I con-
taining c. r⃗(t) is conƟnuous at c if, and only if, each of its component
funcƟons is conƟnuous at c.

.. Example 361 ..EvaluaƟng conƟnuity of vector–valued funcƟons

Let r⃗(t) =

⟨
sin t
t

, t2 − 3t+ 3, cos t
⟩
. Determine whether r⃗ is conƟnuous at

t = 0 and t = 1.

SÊ½çã®ÊÄ While the second and third components of r⃗(t) are defined
at t = 0, the first component, (sin t)/t, is not. Since the first component is not
even defined at t = 0, r⃗(t) is not defined at t = 0, and hence it is not conƟnuous
at t = 0.

Notes:
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Alternate notaƟons for the derivaƟve of r⃗
include:

r⃗ ′(t) =
d
dt
(
r⃗(t)

)
=

d⃗r
dt
.

11.2 Calculus and Vector–Valued FuncƟons

At t = 1 each of the component funcƟons is conƟnuous. Therefore r⃗(t) is
conƟnuous at t = 1. ...

DerivaƟves

Consider a vector–valued funcƟon r⃗ defined on an open interval I containing
t0 and t1. We can compute the displacement of r⃗ on [t0, t1], as shown in Figure
11.8 (a). Recall that dividing the displacement vector by t1−t0 gives the average
rate of change on [t0, t1], as shown in (b).

....

r⃗(t0)

.

r⃗(t1)

.

r⃗(t1) − r⃗(t0)

....

r⃗(t0)

.

r⃗(t1)

.

r⃗(t1) − r⃗(t0)

t1 − t0

.

r⃗ ′(t0)

(a) (b)

Figure 11.8: IllustraƟng displacement, leading to an understanding of the derivaƟve of vector–valued funcƟons.

The derivaƟve of a vector–valued funcƟon is ameasure of the instantaneous
rate of change, measured by taking the limit as the length of [t0, t1] goes to 0.
Instead of thinking of an interval as [t0, t1], we think of it as [c, c + h] for some
value of h (hence the interval has length h). The average rate of change is

r⃗(c+ h)− r⃗(c)
h

for any value of h ̸= 0. We take the limit as h → 0 tomeasure the instantaneous
rate of change; this is the derivaƟve of r⃗.

..
DefiniƟon 70 DerivaƟve of a Vector–Valued FuncƟon

Let r⃗(t) be conƟnuous on an open interval I containing c.

1. The derivaƟve of r⃗ at t = c is

r⃗ ′(c) = lim
h→0

r⃗(c+ h)− r⃗(c)
h

.

2. The derivaƟve of r⃗ is

r⃗ ′(t) = lim
h→0

r⃗(t+ h)− r⃗(t)
h

.

Notes:
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Figure 11.9: Graphing the derivaƟve of a
vector–valued funcƟon in Example 362.
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If a vector–valued funcƟon has a derivaƟve for all c in an open interval I, we
say that r⃗(t) is differenƟable on I.

Once again we might view this definiƟon as inƟmidaƟng, but recall that we
can evaluate limits component–wise. The following theorem verifies that this
means we can compute derivaƟves component–wise as well, making the task
not too difficult.

..
Theorem 91 DerivaƟves of Vector–Valued FuncƟons

1. Let r⃗(t) = ⟨ f(t), g(t) ⟩. Then

r⃗ ′(t) = ⟨ f ′(t), g′(t) ⟩ .

2. Let r⃗(t) = ⟨ f(t), g(t), h(t) ⟩. Then

r⃗ ′(t) = ⟨ f ′(t), g′(t), h′(t) ⟩ .

.. Example 362 DerivaƟves of vector–valued funcƟons
Let r⃗(t) =

⟨
t2, t
⟩
.

1. Sketch r⃗(t) and r⃗ ′(t) on the same axes.

2. Compute r⃗ ′(1) and sketch this vector with its iniƟal point at the origin and
at r⃗(1).

SÊ½çã®ÊÄ

1. Theorem 91 allows us to compute derivaƟves component–wise, so

r⃗ ′(t) = ⟨2t, 1⟩ .

r⃗(t) and r⃗ ′(t) are graphed together in Figure 11.9 (a). Note how ploƫng
the two of these together, in this way, is not very illuminaƟng. When
dealing with real–valued funcƟons, ploƫng f(x) with f ′(x) gave us useful
informaƟon as we were able to compare f and f ′ at the same x-values.
When dealing with vector–valued funcƟons, it is hard to tell which points
on the graph of r⃗ ′ correspond to which points on the graph of r⃗.

2. We easily compute r⃗ ′(1) = ⟨2, 1⟩, which is drawn in Figure 11.9 with its
iniƟal point at the origin, as well as at r⃗(1) = ⟨1, 1⟩ . These are sketched
in Figure 11.9 (b)...

Notes:
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Figure 11.10: Viewing a vector–valued
funcƟon, and its derivaƟve at one point,
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Figure 11.11: Graphing a curve in space
with its tangent line.
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.. Example 363 DerivaƟves of vector–valued funcƟons
Let r⃗(t) = ⟨cos t, sin t, t⟩. Compute r⃗ ′(t) and r⃗ ′(π/2). Sketch r⃗ ′(π/2) with its
iniƟal point at the origin and at r⃗(π/2).

SÊ½çã®ÊÄ We compute r⃗ ′ as r⃗ ′(t) = ⟨− sin t, cos t, 1⟩. At t = π/2, we
have r⃗ ′(π/2) = ⟨−1, 0, 1⟩. Figure 11.10 shows two graphs of r⃗(t), from differ-
ent perspecƟves, with r⃗ ′(π/2) ploƩed with its iniƟal point at the origin and at
r⃗(π/2). ..

In Examples 362 and 363, sketching a parƟcular derivaƟve with its iniƟal
point at the origin did not seem to reveal anything significant. However, when
we sketched the vector with its iniƟal point on the corresponding point on the
graph, we did see something significant: the vector appeared to be tangent to
the graph. We have not yet defined what “tangent” means in terms of curves in
space; in fact, we use the derivaƟve to define this term.

..
DefiniƟon 71 Tangent Vector, Tangent Line

Let r⃗(t) be a differenƟable vector–valued funcƟon on an open interval I
containing c, where r⃗ ′(c) ̸= 0⃗.

1. A vector v⃗ is tangent to the graph of r⃗(t) at t = c if v⃗ is parallel to
r⃗ ′(c).

2. The tangent line to the graph of r⃗(t) at t = c is the line through
r⃗(c) with direcƟon parallel to r⃗ ′(c). An equaƟon of the tangent
line is

ℓ⃗(t) = r⃗(c) + t r⃗ ′(c).

.. Example 364 Finding tangent lines to curves in space
Let r⃗(t) =

⟨
t, t2, t3

⟩
on [−1.5, 1.5]. Find the vector equaƟon of the line tangent

to the graph of r⃗ at t = −1.

SÊ½çã®ÊÄ To find the equaƟon of a line, we need a point on the line
and the line’s direcƟon. The point is given by r⃗(−1) = ⟨−1, 1,−1⟩. (To be clear,
⟨−1, 1,−1⟩ is a vector, not a point, but we use the point “pointed to” by this
vector.)

The direcƟon comes from r⃗ ′(−1). We compute, component–wise, r⃗ ′(t) =⟨
1, 2t, 3t2

⟩
. Thus r⃗ ′(−1) = ⟨1,−2, 3⟩.

The vector equaƟon of the line is ℓ(t) = ⟨−1, 1,−1⟩+ t ⟨1,−2, 3⟩. This line
and r⃗(t) are sketched, from two perspecƟves, in Figure 11.11 (a) and (b). ..

Notes:
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.. Example 365 Finding tangent lines to curves
Find the equaƟons of the lines tangent to r⃗(t) =

⟨
t3, t2

⟩
at t = −1 and t = 0.

SÊ½çã®ÊÄ We find that r⃗ ′(t) =
⟨
3t2, 2t

⟩
. At t = 1, we have

r⃗(−1) = ⟨−1, 1⟩ and r⃗ ′(1) = ⟨3,−2⟩ ,

so the equaƟon of the line tangent to the graph of r⃗(t) at t = −1 is

ℓ(t) = ⟨−1, 1⟩+ t ⟨3,−2⟩ .

This line is graphed with r⃗(t) in Figure 11.12.

At t = 0, we have r⃗ ′(0) = ⟨0, 0⟩ = 0⃗! This implies that the tangent line “has
no direcƟon.” We cannot apply DefiniƟon 71, hence cannot find the equaƟon of
the tangent line. ..

We were unable to compute the equaƟon of the tangent line to r⃗(t) =⟨
t3, t2

⟩
at t = 0 because r⃗ ′(0) = 0⃗. The graph in Figure 11.12 shows that there

is a cusp at this point. This leads us to another definiƟon of smooth, previously
defined by DefiniƟon 46 in SecƟon 9.2.

..
DefiniƟon 72 Smooth Vector–Valued FuncƟons

Let r⃗(t) be a differenƟable vector–valued funcƟon on an open interval I.
r⃗(t) is smooth on I if r⃗ ′(t) ̸= 0⃗ on I.

Having established derivaƟves of vector–valued funcƟons, we now explore
the relaƟonships between the derivaƟve and other vector operaƟons. The fol-
lowing theorem states how the derivaƟve interacts with vector addiƟon and the
various vector products.

Notes:
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..
Theorem 92 Properies of DerivaƟves of Vector–Valued FuncƟons

Let r⃗ and s⃗ be differenƟable vector–valued funcƟons, let f be a differen-
Ɵable real–valued funcƟon, and let c be a real number.

1.
d
dt

(⃗
r(t)± s⃗(t)

)
= r⃗ ′(t)± s⃗ ′(t)

2.
d
dt

(
c⃗r(t)

)
= c⃗r ′(t)

3. d
dt

(
f(t)⃗r(t)

)
= f ′(t)⃗r(t) + f(t)⃗r ′(t) Product Rule

4. d
dt

(⃗
r(t) · s⃗(t)

)
= r⃗ ′(t) · s⃗(t) + r⃗(t) · s⃗ ′(t) Product Rule

5. d
dt

(⃗
r(t)× s⃗(t)

)
= r⃗ ′(t)× s⃗(t) + r⃗(t)× s⃗ ′(t) Product Rule

6. d
dt

(⃗
r
(
f(t)
))

= r⃗ ′
(
f(t)
)
f ′(t) Chain Rule

.. Example 366 ..Using derivaƟve properƟes of vector–valued funcƟons
Let r⃗(t) =

⟨
t, t2 − 1

⟩
and let u⃗(t) be the unit vector that points in the direcƟon

of r⃗(t).

1. Graph r⃗(t) and u⃗(t) on the same axes, on [−2, 2].

2. Find u⃗ ′(t) and sketch u⃗ ′(−2), u⃗ ′(−1) and u⃗ ′(0). Sketch each with iniƟal
point the corresponding point on the graph of u⃗.

SÊ½çã®ÊÄ

1. To form the unit vector that points in the direcƟon of r⃗, we need to divide
r⃗(t) by its magnitude.

|| r⃗(t) || =
√

t2 + (t2 − 1)2 ⇒ u⃗(t) =
1√

t2 + (t2 − 1)2
⟨
t, t2 − 1

⟩
.

r⃗(t) and u⃗(t) are graphed in Figure 11.13. Note how the graph of u⃗(t)
forms part of a circle; this must be the case, as the length of u⃗(t) is 1 for
all t.

Notes:
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2. To compute u⃗ ′(t), we use Theorem 92, wriƟng

u⃗(t) = f(t)⃗r(t), where f(t) =
1√

t2 + (t2 − 1)2
=
(
t2+(t2−1)2

)−1/2
.

(We could write

u⃗(t) =

⟨
t√

t2 + (t2 − 1)2
,

t2 − 1√
t2 + (t2 − 1)2

⟩

and then take the derivaƟve. It is amaƩer of preference; this laƩermethod
requires two applicaƟons of theQuoƟent Rulewhere ourmethod uses the
Product and Chain Rules.)

We find f ′(t) using the Chain Rule:

f ′(t) = −1
2
(
t2 + (t2 − 1)2

)−3/2(2t+ 2(t2 − 1)(2t)
)

= − 2t(2t2 − 1)

2
(√

t2 + (t2 − 1)2
)3

We now find u⃗ ′(t) using part 3 of Theorem 92:

u⃗ ′(t) = f ′(t)⃗u(t) + f(t)⃗u ′(t)

= − 2t(2t2 − 1)

2
(√

t2 + (t2 − 1)2
)3 ⟨t, t2 − 1

⟩
+

1√
t2 + (t2 − 1)2

⟨1, 2t⟩ .

This is admiƩedly very “messy;” such is usually the case when we deal
with unit vectors. We can use this formula to compute u⃗ (−2), u⃗ (−1)
and u⃗ (0):

u⃗ (−2) =
⟨
− 15
13

√
13

,− 10
13

√
13

⟩
≈ ⟨−0.320,−0.213⟩

u⃗ (−1) = ⟨0,−2⟩
u⃗ (0) = ⟨1, 0⟩

Each of these is sketched in Figure 11.14. Note how the length of the
vector gives an indicaƟon of how quickly the circle is being traced at that
point. When t = −2, the circle is being drawn relaƟvely slow; when t =
−1, the circle is being traced much more quickly....

It is a basic geometric fact that a line tangent to a circle at a point P is per-
pendicular to the line passing through the center of the circle and P. This is

Notes:
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illustrated in Figure 11.14; each tangent vector is perpendicular to the line that
passes through its iniƟal point and the center of the circle. Since the center of
the circle is the origin, we can state this another way: u⃗ ′(t) is orthogonal to u⃗(t).

Recall that the dot product serves as a test for orthogonality: if u⃗ · v⃗ = 0,
then u⃗ is orthogonal to v⃗. Thus in the above example, u⃗(t) · u⃗ ′(t) = 0.

This is true of any vector–valued funcƟon that has a constant length, that is,
that traces out part of a circle. It has important implicaƟons later on, so we state
it as a theorem (and leave its formal proof as an Exercise.)

..
Theorem 93 Vector–Valued FuncƟons of Constant Length

Let r⃗(t) be a differenƟable vector–valued funcƟon on an open interval I of
constant length. That is, || r⃗(t) || = c for all t in I (equivalently, r⃗(t) ·⃗r(t) =
c2 for all t in I). Then r⃗(t) · r⃗ ′(t) = 0 for all t in I.

IntegraƟon

Indefinite and definite integrals of vector–valued funcƟons are also evalu-
ated component–wise.

..
Theorem94 Indefinite and Definite Integrals of Vector–Valued

FuncƟons
Let r⃗(t) = ⟨f(t), g(t)⟩ be a vector–valued funcƟon in R2.

1.
∫

r⃗(t) dt =
⟨∫

f(t) dt,
∫

g(t) dt
⟩

2.
∫ b

a
r⃗(t) dt =

⟨∫ b

a
f(t) dt,

∫ b

a
g(t) dt

⟩

A similar statement holds for vector–valued funcƟons in R3.

.. Example 367 ..EvaluaƟng a definite integral of a vector–valued funcƟon

Let r⃗(t) =
⟨
e2t, sin t

⟩
. Evaluate

∫ 1

0
r⃗(t) dt.

Notes:
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SÊ½çã®ÊÄ We follow Theorem 94.∫ 1

0
r⃗(t) dt =

∫ 1

0

⟨
e2t, sin t

⟩
dt

=

⟨∫ 1

0
e2t dt ,

∫ 1

0
sin t dt

⟩
=

⟨
1
2
e2t
∣∣∣1
0
,− cos t

∣∣∣1
0

⟩
=

⟨
1
2
(e2 − 1) ,− cos(1) + 1

⟩
≈ ⟨3.19, 0.460⟩ ....

.. Example 368 ..Solving an iniƟal value problem
Let r⃗ ′′(t) = ⟨2, cos t, 12t⟩. Find r⃗(t) where:

• r⃗(0) = ⟨−7,−1, 2⟩ and

• r⃗ ′(0) = ⟨5, 3, 0⟩ .

SÊ½çã®ÊÄ Knowing r⃗ ′′(t) = ⟨2, cos t, 12t⟩, we find r⃗ ′(t) by evaluaƟng the
indefinite integral.∫

r⃗ ′′(t) dt =
⟨∫

2 dt ,
∫

cos t dt ,
∫

12t dt
⟩

=
⟨
2t+ C1, sin t+ C2, 6t2 + C3

⟩
=
⟨
2t, sin t, 6t2

⟩
+ ⟨C1, C2, C3⟩

=
⟨
2t, sin t, 6t2

⟩
+ C⃗.

Note how each indefinite integral creates its own constant which we collect as
one constant vector C⃗. Knowing r⃗ ′(0) = ⟨5, 3, 0⟩ allows us to solve for C⃗:

r⃗ ′(t) =
⟨
2t, sin t, 6t2

⟩
+ C⃗

r⃗ ′(0) = ⟨0, 0, 0⟩+ C⃗

⟨5, 3, 0⟩ = C⃗

So r⃗ ′(t) =
⟨
2t, sin t, 6t2

⟩
+ ⟨5, 3, 0⟩ =

⟨
2t+ 5, sin t+ 3, 6t2

⟩
. To find r⃗(t),

we integrate once more.

∫
r⃗ ′(t) dt =

⟨∫
2t+ 5 dt,

∫
sin t+ 3 dt,

∫
6t2 dt

⟩
=
⟨
t2 + 5t,− cos t+ 3t, 2t3

⟩
+ C⃗

Notes:
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11.2 Calculus and Vector–Valued FuncƟons

With r⃗(0) = ⟨−7,−1, 2⟩, we solve for C⃗:

r⃗(t) =
⟨
t2 + 5t,− cos t+ 3t, 2t3

⟩
+ C⃗

r⃗(0) = ⟨0,−1, 0⟩+ C⃗

⟨−7,−1, 2⟩ = ⟨0,−1, 0⟩+ C⃗

⟨−7, 0, 2⟩ = C⃗.

So r⃗(t) =
⟨
t2 + 5t,− cos t+ 3t, 2t3

⟩
+⟨−7, 0, 2⟩ =

⟨
t2 + 5t− 7,− cos t+ 3t, 2t3 + 2

⟩
.

...

What does the integraƟon of a vector–valued funcƟon mean? There are
many applicaƟons, but none as direct as “the area under the curve” that we
used in understanding the integral of a real–valued funcƟon.

A key understanding for us comes from considering the integral of a deriva-
Ɵve: ∫ b

a
r⃗ ′(t) dt = r⃗(t)

∣∣∣b
a
= r⃗(b)− r⃗(a).

IntegraƟng a rate of change funcƟon gives displacement.
NoƟng that vector–valued funcƟons are closely related to parametric equa-

Ɵons, we can describe the arc length of the graph of a vector–valued funcƟon
as an integral. Given parametric equaƟons x = f(t), y = g(t), the arc length on
[a, b] of the graph is

Arc Length =

∫ b

a

√
f ′(t)2 + g′(t)2 dt,

as stated in Theorem82 in SecƟon9.3. If r⃗(t) = ⟨f(t), g(t)⟩, note that
√

f ′(t)2 + g′(t)2 =
|| r⃗ ′(t) ||. Therefore we can express the arc length of the graph of a vector–
valued funcƟon as an integral of the magnitude of its derivaƟve.

..
Theorem 95 Arc Length of a Vector–Valued FuncƟon

Let r⃗(t) be a vector–valued funcƟon where r⃗ ′(t) is conƟnuous on [a, b].
The arc length L of the graph of r⃗(t) is

L =
∫ b

a
|| r⃗ ′(t) || dt.

Note that we are actually integraƟng a scalar–funcƟon here, not a vector–
valued funcƟon.

Notes:
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The next secƟon takes what we have established thus far and applies it to
objects in moƟon. We will let r⃗(t) describe the path of a moƟon in the plane or
in space and will discover the informaƟon provided by r⃗ ′(t) and r⃗ ′′(t).

Notes:
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Exercises 11.2
Terms and Concepts
1. Limits, derivaƟves and integrals of vector–valued funcƟons

are all evaluated –wise.

2. The definite integral of a rate of change funcƟon gives
.

3. Why is it generally not useful to graph both r⃗(t) and r⃗ ′(t)
on the same axes?

Problems
In Exercises 4 – 7, evaluate the given limit.

4. lim
t→5

⟨
2t+ 1, 3t2 − 1, sin t

⟩
5. lim

t→3

⟨
et,

t2 − 9
t+ 3

⟩
6. lim

t→0

⟨ t
sin t

, (1+ t)
1
t

⟩
7. lim

h→0

r⃗(t+ h)− r⃗(t)
h

, where r⃗(t) =
⟨
t2, t, 1

⟩
.

In Exercises 8 – 9, idenƟfy the interval(s) on which r⃗(t) is con-
Ɵnuous.

8. r⃗(t) =
⟨
t2, 1/t

⟩
9. r⃗(t) =

⟨
cos t, et, ln t

⟩
In Exercises 10 – 14, find the derivaƟve of the given funcƟon.

10. r⃗(t) =
⟨
cos t, et, ln t

⟩
11. r⃗(t) =

⟨
1
t
,
2t− 1
3t+ 1

, tan t
⟩

12. r⃗(t) = (t2) ⟨sin t, 2t+ 5⟩

13. r⃗(t) =
⟨
t2 + 1, t− 1

⟩
· ⟨sin t, 2t+ 5⟩

14. r⃗(t) =
⟨
t2 + 1, t− 1, 1

⟩
× ⟨sin t, 2t+ 5, 1⟩

In Exercises 15 – 18, find r⃗ ′(t). Sketch r⃗(t) and r⃗ ′(1), with the
iniƟal point of r⃗ ′(1) at r⃗(1).

15. r⃗(t) =
⟨
t2 + t, t2 − t

⟩
16. r⃗(t) =

⟨
t2 − 2t+ 2, t3 − 3t2 + 2t

⟩
17. r⃗(t) =

⟨
t2 + 1, t3 − t

⟩
18. r⃗(t) =

⟨
t2 − 4t+ 5, , t3 − 6t2 + 11t− 6

⟩
In Exercises 19 – 22, give the equaƟon of the line tangent to
the graph of r⃗(t) at the given t value.

19. r⃗(t) =
⟨
t2 + t, t2 − t

⟩
at t = 1.

20. r⃗(t) = ⟨3 cos t, sin t⟩ at t = π/4.

21. r⃗(t) = ⟨3 cos t, 3 sin t, t⟩ at t = π.

22. r⃗(t) =
⟨
et, tan t, t

⟩
at t = 0.

In Exercises 23 – 26, find the value(s) of t for which r⃗(t) is not
smooth.

23. r⃗(t) = ⟨cos t, sin t− t⟩

24. r⃗(t) =
⟨
t2 − 2t+ 1, t3 + t2 − 5t+ 3

⟩
25. r⃗(t) = ⟨cos t− sin t, sin t− cos t, cos(4t)⟩

26. r⃗(t) =
⟨
t3 − 3t+ 2,− cos(πt), sin2(πt)

⟩
Exercises 27 – 29 ask you to verify parts of Theorem 92.
In each let f(t) = t3, r⃗(t) =

⟨
t2, t− 1, 1

⟩
and s⃗(t) =⟨

sin t, et, t
⟩
. Compute the various derivaƟves as indicated.

27. Simplify f(t)⃗r(t), then find its derivaƟve; show this is the
same as f ′(t)⃗r(t) + f(t)⃗r ′(t).

28. Simplify r⃗(t) · s⃗(t), then find its derivaƟve; show this is the
same as r⃗ ′(t) · s⃗(t) + r⃗(t) · s⃗ ′(t).

29. Simplify r⃗(t)× s⃗(t), then find its derivaƟve; show this is the
same as r⃗ ′(t)× s⃗(t) + r⃗(t)× s⃗ ′(t).

In Exercises 30 – 33 , evaluate the given definite or indefinite
integral.

30.
∫ ⟨

t3, cos t, tet
⟩
dt

31.
∫ ⟨

1
1+ t2

, sec2 t
⟩

dt

32.
∫ π

0
⟨− sin t, cos t⟩ dt

33.
∫ 2

−2
⟨2t+ 1, 2t− 1⟩ dt

In Exercises 34 – 37 , solve the given iniƟal value problems.

34. Find r⃗(t), given that r⃗ ′(t) = ⟨t, sin t⟩ and r⃗(0) = ⟨2, 2⟩.

35. Find r⃗(t), given that r⃗ ′(t) = ⟨1/(t+ 1), tan t⟩ and
r⃗(0) = ⟨1, 2⟩.

36. Find r⃗(t), given that r⃗ ′′(t) =
⟨
t2, t, 1

⟩
,

r⃗ ′(0) = ⟨1, 2, 3⟩ and r⃗(0) = ⟨4, 5, 6⟩.

37. Find r⃗(t), given that r⃗ ′′(t) =
⟨
cos t, sin t, et

⟩
,

r⃗ ′(0) = ⟨0, 0, 0⟩ and r⃗(0) = ⟨0, 0, 0⟩.

In Exercises 38 – 41 , find the arc length of r⃗(t) on the indi-
cated interval.

38. r⃗(t) = ⟨2 cos t, 2 sin t, 3t⟩ on [0, 2π].

39. r⃗(t) = ⟨5 cos t, 3 sin t, 4 sin t⟩ on [0, 2π].

40. r⃗(t) =
⟨
t3, t2, t3

⟩
on [0, 1].

41. r⃗(t) =
⟨
e−t cos t, e−t sin t

⟩
on [0, 1].

42. Prove Theorem 93; that is, show if r⃗(t) has constant length
and is differenƟable, then r⃗(t) · r⃗ ′(t) = 0. (Hint: use the
Product Rule to compute d

dt

(⃗
r(t) · r⃗(t)

)
.)
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Figure 11.15: Graphing the posiƟon, ve-
locity and acceleraƟon of an object in Ex-
ample 369.

Chapter 11 Vector Valued FuncƟons

11.3 The Calculus of MoƟon
A common use of vector–valued funcƟons is to describe themoƟon of an object
in the plane or in space. A posiƟon funcƟon r⃗(t) gives the posiƟon of an object
at Ɵme t. This secƟon explores how derivaƟves and integrals are used to study
the moƟon described by such a funcƟon.

..
DefiniƟon 73 Velocity, Speed and AcceleraƟon

Let r⃗(t) be a posiƟon funcƟon in R2 or R3.

1. Velocity, denoted v⃗(t), is the instantaneous rate of posiƟon
change; that is, v⃗(t) = r⃗ ′(t).

2. Speed is the magnitude of velocity, || v⃗(t) ||.

3. AcceleraƟon, denoted a⃗(t), is the instantaneous rate of velocity
change; that is, a⃗(t) = v⃗ ′(t) = r⃗ ′′(t).

.. Example 369 ..Finding velocity and acceleraƟon
An object is moving with posiƟon funcƟon r⃗(t) =

⟨
t2 − t, t2 + t

⟩
, −3 ≤ t ≤ 3,

where distances are measured in feet and Ɵme is measured in seconds.

1. Find v⃗(t) and a⃗(t).

2. Sketch r⃗(t); plot v⃗(−1), a⃗(−1), v⃗(1) and a⃗(1), each with their iniƟal point
at their corresponding point on the graph of r⃗(t).

3. When is the object’s speed minimized?

SÊ½çã®ÊÄ

1. Taking derivaƟves, we find

v⃗(t) = r⃗ ′(t) = ⟨2t− 1, 2t+ 1⟩ and a⃗(t) = r⃗ ′′(t) = ⟨2, 2⟩ .

Note that acceleraƟon is constant.

2. v⃗(−1) = ⟨−3,−1⟩, a⃗(−1) = ⟨2, 2⟩; v⃗(1) = ⟨1, 3⟩, a⃗(1) = ⟨2, 2⟩.
These are ploƩed with r⃗(t) in Figure 11.15 (a).

We can think of acceleraƟon as “pulling” the velocity vector in a certain
direcƟon. At t = −1, the velocity vector points down and to the leŌ; at
t = 1, the velocity vector has been pulled in the ⟨2, 2⟩ direcƟon and is

Notes:
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11.3 The Calculus of MoƟon

now poinƟng up and to the right. In Figure 11.15 (b) we plot more veloc-
ity/acceleraƟon vectors, making more clear the effect acceleraƟon has on
velocity.

Since a⃗(t) is constant in this example, as t grows large v⃗(t) becomes almost
parallel to a⃗(t). For instance, when t = 10, v⃗(10) = ⟨19, 21⟩, which is
nearly parallel to ⟨2, 2⟩.

3. The object’s speed is given by

|| v⃗(t) || =
√
(2t− 1)2 + (2t+ 1)2 =

√
8t2 + 2.

To find the minimal speed, we could apply calculus techniques (such as
set the derivaƟve equal to 0 and solve for t, etc.) but we can find it by
inspecƟon. Inside the square root we have a quadraƟc which is minimized
when t = 0. Thus the speed is minimized at t = 0, with a speed of

√
2

Ō/s.

The graph in Figure 11.15 (b) also implies speed is minimized here. The
filled dots on the graph are located at integer values of t between −3
and 3. Dots that are far apart imply the object traveled a far distance in
1 second, indicaƟng high speed; dots that are close together imply the
object did not travel far in 1 second, indicaƟng a low speed. The dots are
closest together near t = 0, implying the speed is minimized near that
value....

.. Example 370 ..Analyzing MoƟon
Two objects follow an idenƟcal path at different rates on [−1, 1]. The posiƟon
funcƟon for Object 1 is r⃗1(t) =

⟨
t, t2
⟩
; the posiƟon funcƟon for Object 2 is

r⃗2(t) =
⟨
t3, t6

⟩
, where distances are measured in feet and Ɵme is measured

in seconds. Compare the velocity, speed and acceleraƟon of the two objects on
the path.

SÊ½çã®ÊÄ We begin by compuƟng the velocity and acceleraƟon func-
Ɵon for each object:

v⃗1(t) = ⟨1, 2t⟩ v⃗2(t) =
⟨
3t2, 6t5

⟩
a⃗1(t) = ⟨0, 2⟩ a⃗2(t) =

⟨
6t, 30t4

⟩
We immediately see that Object 1 has constant acceleraƟon, whereas Object 2
does not.

At t = −1, we have v⃗1(−1) = ⟨1,−2⟩ and v⃗2(−1) = ⟨3,−6⟩; the velocity
of Object 2 is three Ɵmes that of Object 1 and so it follows that the speed of
Object 2 is three Ɵmes that of Object 1 (3

√
5 Ō/s compared to

√
5 Ō/s.)

Notes:
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Figure 11.17: Comparing the posiƟons of
Objects 1 and 2 in Example 370.

Chapter 11 Vector Valued FuncƟons

At t = 0, the velocity of Object 1 is v⃗(1) = ⟨1, 0⟩ and the velocity of Object
2 is 0⃗! This tells us that Object 2 comes to a complete stop at t = 0.

In Figure 11.16, we see the velocity and acceleraƟon vectors for Object 1
ploƩed for t = −1,−1/2, 0, 1/2 and t = 1. Note again how the constant accel-
eraƟon vector seems to “pull” the velocity vector from poinƟng down, right to
up, right. We could plot the analogous picture for Object 2, but the velocity and
acceleraƟon vectors are rather large (⃗a2(−1) = ⟨−6, 30⟩!)

Instead, we simply plot the locaƟons of Object 1 and 2 on intervals of 1/10th
of a second, shown in Figure 11.17 (a) and (b). Note how the x-values of Object
1 increase at a steady rate. This is because the x-component of a⃗(t) is 0; there is
no acceleraƟon in the x-component. The dots are not evenly spaced; the object
is moving faster near t = −1 and t = 1 than near t = 0.

In part (b) of the Figure, we see the points ploƩed for Object 2. Note the
large change in posiƟon from t = −1 to t = −0.9; the object starts moving very
quickly. However, it slows considerably at it approaches the origin, and comes
to a complete stop at t = 0. While it looks like there are 3 points near the origin,
there are in reality 5 points there.

Since the objects begin and end at the same locaƟon, the have the same dis-
placement. Since they begin and end at the same Ɵme, with the same displace-
ment, they have they have the same average rate of change (i.e, they have the
same average velocity). Since they follow the same path, they have the same
distance traveled. Even though these three measurements are the same, the
objects obviously travel the path in very different ways. ...

.. Example 371 ..Analyzing the moƟon of a whirling ball on a string
A young boy whirls a ball, aƩached to a string, above his head in a counter-
clockwise circle. The ball follows a circular path and makes 2 revoluƟons per
second. The string has length 2Ō.

1. Find the posiƟon funcƟon r⃗(t) that describes this situaƟon.

2. Find the acceleraƟon of the ball and derive a physical interpretaƟon of it.

3. A tree stands 10Ō in front of the boy. At what t-values should the boy
release the string so that the ball hits the tree?

SÊ½çã®ÊÄ

1. The ball whirls in a circle. Since the string is 2Ō long, the radius of the
circle is 2. The posiƟon funcƟon r⃗(t) = ⟨2 cos t, 2 sin t⟩ describes a circle
with radius 2, centered at the origin, but makes a full revoluƟon every
2π seconds, not two revoluƟons per second. Wemodify the period of the

Notes:
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trigonometric funcƟons to be 1/2 bymulƟplying t by 4π. The final posiƟon
funcƟon is thus

r⃗(t) = ⟨2 cos(4πt), 2 sin(4πt)⟩ .

(Plot this for 0 ≤ t ≤ 1/2 to verify that one revoluƟon is made in 1/2 a
second.)

2. To find a⃗(t), we derive r⃗(t) twice.

v⃗(t) = r⃗ ′(t) = ⟨−8π sin(4πt), 8π cos(4πt)⟩
a⃗(t) = r⃗ ′′(t) =

⟨
−32π2 cos(4πt),−32π2 sin(4πt)

⟩
= −32π2 ⟨cos(4πt), sin(4πt)⟩ .

Note how a⃗(t) is parallel to r⃗(t), but has a different magnitude and points
in the opposite direcƟon. Why is this?

Recall the classic phyics equaƟon, “Force=mass× acceleraƟon.” A force
acƟng on a mass induces acceleraƟon (i.e., the mass moves); acceleraƟon
acƟng on a mass induces a force (gravity gives our mass a weight). Thus
force and acceleraƟon are closely related. A moving ball “wants” to travel
in a straight line. Why does the ball in our example move in a circle? It is
aƩached to the boy’s handby a string. The string applies a force to the ball,
affecƟng it’s moƟon: the string accelerates the ball. This is not accelera-
Ɵon in the sense of “it travels faster;” rather, this acceleraƟon is changing
the velocity of the ball. In what direcƟon is this force/acceleraƟon being
applied? In the direcƟon of the string, towards the boy’s hand.

Themagnitude of the acceleraƟon is related to the speed at which the ball
is traveling. A ball whirling quickly is rapidly changing direcƟon/velocity.
When velocity is changing rapidly, the acceleraƟon must be “large.”

3. When the boy releases the string, the string no longer applies a force to
the ball, meaning acceleraƟon is 0⃗ and the ball can nowmove in a straight
line in the direcƟon of v⃗(t). ..

Let t = t0 be the Ɵme when the boy lets go of the string. The ball will be
at r⃗(t0), traveling in the direcƟon of v⃗(t0). We want to find t0 so that this
line contains the point (0, 10) (since the tree is 10Ō directly in front of the
boy).

There are many ways to find this Ɵme value. We choose one that is rela-
Ɵvely simple computaƟonally. As shown in Figure 11.18, the vector from
the release point to the tree is ⟨0, 10⟩− r⃗(t0). This line segment is tangent
to the circle, which means it is also perpendicular to r⃗(t0) itself, so their
dot product is 0.

Notes:
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r⃗(t0) ·
(
⟨0, 10⟩ − r⃗(t0)

)
= 0

⟨2 cos(4πt0), 2 sin(4πt0)⟩ · ⟨−2 cos(4πt0), 10− 2 sin(4πt0)⟩ = 0

−4 cos2(4πt0) + 20 sin(4πt0)− 4 sin2(4πt0) = 0
20 sin(4πt0)− 4 = 0

sin(4πt0) = 1/5

4πt0 = sin−1(1/5)
4πt0 ≈ 0.2+ 2πn,

where n is an integer. Solving for t0 we have:

t0 ≈ 0.016+ n/2

This is a wonderful formula. Every 1/2 second aŌer t = 0.016s the boy
can release the string (since the ball makes 2 revoluƟons per second, he
has two chances each second to release the ball)....

.. Example 372 Analyzing moƟon in space
An object moves in spiral with posiƟon funcƟon r⃗(t) = ⟨cos t, sin t, t⟩, where
distances are measured in meters and Ɵme is in minutes. Describe the object’s
speed and acceleraƟon at Ɵme t.

SÊ½çã®ÊÄ With r⃗(t) = ⟨cos t, sin t, t⟩, we have:

v⃗(t) = ⟨− sin t, cos t, 1⟩ and
a⃗(t) = ⟨− cos t,− sin t, 0⟩ .

The speed of the object is || v⃗(t) || =
√
(− sin t)2 + cos2 t+ 1 =

√
2m/min;

it moves at a constant speed. Note that the object does not accelerate in the
z-direcƟon, but rather moves up at a constant rate of 1m/min. ..

The objects in Examples 371 and 372 traveled at a constant speed. That is,
|| v⃗(t) || = c for some constant c. Recall Theorem 93, which states that if a
vector–valued funcƟon r⃗(t) has constant length, then r⃗(t) is perpendicular to
its derivaƟve: r⃗(t) · r⃗ ′(t) = 0. In these examples, the velocity funcƟon has
constant length, therefore we can conclude that the velocity is perpendicular to
the acceleraƟon: v⃗(t) · a⃗(t) = 0. A quick check verifies this.

There is an intuiƟve understanding of this. If acceleraƟon is parallel to veloc-
ity, then it is only affecƟng the object’s speed; it does not change the direcƟon
of travel. (For example, consider a dropped stone. AcceleraƟon and velocity are

Notes:
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Note: In this text we use g = 32Ō/s when
using Imperial units, and g = 9.8m/s
when using SI units.

11.3 The Calculus of MoƟon

parallel – straight down – and the direcƟon of velocity never changes, though
speed does increase.) If acceleraƟon is not perpendicular to velocity, then there
is some acceleraƟon in the direcƟon of travel, influencing the speed. If speed
is constant, then acceleraƟon must be orthogonal to velocity, as it then only
affects direcƟon, and not speed.

..
Key Idea 53 Objects With Constant Speed

If an objectmoveswith constant speed, then its velocity and acceleraƟon
vectors are orthogonal. That is, v⃗(t) · a⃗(t) = 0.

ProjecƟle MoƟon

An important applicaƟon of vector–valued posiƟon funcƟons is projecƟle
moƟon: the moƟon of objects under the influence of gravity. We will measure
Ɵme in seconds, and distances will either be in meters or feet. We will show
that we can completely describe the path of such an object knowing its iniƟal
posiƟon and iniƟal velocity (i.e., where it is and where it is going.)

Suppose an object has iniƟal posiƟon r⃗(0) = ⟨x0, y0⟩ and iniƟal velocity
v⃗(0) = ⟨vx, vy⟩. It is customary to rewrite v⃗(0) in terms of its speed v0 and
direcƟon u⃗, where u⃗ is a unit vector. Recall all unit vectors in R2 can be wriƩen
as ⟨cos θ, sin θ⟩, where θ is an angle measure counter–clockwise from the x-axis.
(We refer to θ as the angle of elevaƟon.) Thus v⃗(0) = v0 ⟨cos θ, sin θ⟩ .

Since the acceleraƟon of the object is known, namely a⃗(t) = ⟨0,−g⟩, where
g is the gravitaƟonal constant, we can find r⃗(t) knowing our two iniƟal condi-
Ɵons. We first find v⃗(t):

v⃗(t) =
∫

a⃗(t) dt

v⃗(t) =
∫

⟨0,−g⟩ dt

v⃗(t) = ⟨0,−gt⟩+ C⃗.

Knowing v⃗(0) = v0 ⟨cos θ, sin θ⟩, we have C⃗ = v0 ⟨cos t, sin t⟩ and so

v⃗(t) =
⟨
v0 cos θ,−gt+ v0 sin θ

⟩
.

Notes:
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We integrate once more to find r⃗(t):

r⃗(t) =
∫

v⃗(t) dt

r⃗(t) =
∫ ⟨

v0 cos θ,−gt+ v0 sin θ
⟩
dt

r⃗(t) =
⟨(

v0 cos θ
)
t,−1

2
gt2 +

(
v0 sin θ

)
t
⟩
+ C⃗

Knowing r⃗(0) = ⟨x0, y0⟩, we conclude C⃗ = ⟨x0, y0⟩ and

r⃗(t) =
⟨(

v0 cos θ
)
t+ x0 ,−

1
2
gt2 +

(
v0 sin θ

)
t+ y0

⟩

..
Key Idea 54 ProjecƟle MoƟon

The posiƟon funcƟon of a projecƟle propelled from an iniƟal posiƟon of
r⃗0 = ⟨x0, y0⟩, with iniƟal speed v0, with angle of elevaƟon θ and neglect-
ing all acceleraƟons but gravity is

r⃗(t) =
⟨(

v0 cos θ
)
t+ x0 ,−

1
2
gt2 +

(
v0 sin θ

)
t+ y0

⟩
.

Leƫng v⃗0 = v0 ⟨cos θ, sin θ⟩, r⃗(t) can be wriƩen as

r⃗(t) =
⟨
0,−1

2
gt2
⟩
+ v⃗0t+ r⃗0.

We demonstrate how to use this posiƟon funcƟon in the next two examples.

.. Example 373 ..ProjecƟle MoƟon
Sydney shoots her Red Ryder® bb gun across level ground from an elevaƟon of
4Ō, where the barrel of the gun makes a 5◦ angle with the horizontal. Find how
far the bb travels before landing, assuming the bb is fired at the adverƟsed rate
of 350Ō/s and ignoring air resistance.

SÊ½çã®ÊÄ A direct applicaƟon of Key Idea 54 gives

r⃗(t) =
⟨
(350 cos 5◦)t,−16t2 + (350 sin 5◦)t+ 4

⟩
≈
⟨
346.67t,−16t2 + 30.50t+ 4

⟩
,

Notes:
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wherewe set her iniƟal posiƟon to be ⟨0, 4⟩. We need to findwhen the bb lands,
then we can find where. We accomplish this by seƫng the y-component equal
to 0 and solving for t:

−16t2 + 30.50t+ 4 = 0

t =
−30.50±

√
30.502 − 4(−16)(4)
−32

t ≈ 2.03s.

(We discarded a negaƟve soluƟon that resulted from our quadraƟc equaƟon.)
We have found that the bb lands 2.03s aŌer firing; with t = 2.03, we find

the x-component of our posiƟon funcƟon is 346.67(2.03) = 703.74Ō. The bb
lands about 704 feet away. ...

.. Example 374 ..ProjecƟle MoƟon
Alex holds his sister’s bb gun at a height of 3Ō and wants to shoot a target that
is 6Ō above the ground, 25Ō away. At what angle should he hold the gun to hit
his target? (We sƟll assume the muzzle velocity is 350Ō/s.)

SÊ½çã®ÊÄ The posiƟon funcƟon for the path of Alex’s bb is

r⃗(t) =
⟨
(350 cos θ)t,−16t2 + (350 sin θ)t+ 3

⟩
.

We need to find θ so that r⃗(t) = ⟨25, 6⟩ for some value of t. That is, we want to
find θ and t such that

(350 cos θ)t = 25 and − 16t2 + (350 sin θ)t+ 3 = 6.

This is not trivial (though not “hard”). We start by solving each equaƟon for cos θ
and sin θ, respecƟvely.

cos θ =
25
350t

and sin θ =
3+ 16t2

350t
.

Using the Pythagorean IdenƟty cos2 θ + sin2 θ = 1, we have(
25
350t

)2

+

(
3+ 16t2

350t

)2

= 1

MulƟply both sides by (350t)2:

252 + (3+ 16t2)2 = 3502t2

256t4 − 122, 404t2 + 634 = 0

Notes:
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This is a quadraƟc in t2. That is, we can apply the quadraƟc formula to find t2,
then solve for t itself.

t2 =
122, 404±

√
122, 4042 − 4(256)(634)

512
t2 = 0.0052, 478.135
t = ±0.072, ±21.866

Clearly the negaƟve t values do not fit our context, so we have t = 0.072 and
t = 21.866. Using cos θ = 25/(350t), we can solve for θ:

θ = cos−1
(

25
350 · 0.072

)
and cos−1

(
25

350 · 21.866

)
θ = 7.03◦ and 89.8◦.

Alex has two choices of angle. He can hold the rifle at an angle of about 7◦ with
the horizontal and hit his target 0.07s aŌer firing, or he can hold his rifle almost
straight up, with an angle of 89.8◦, where he’ll hit his target about 22s later. The
first opƟon is clearly the opƟon he should choose. ...

Distance Traveled

Consider a driver who sets her cruise–control to 60mph, and travels at this
speed for an hour. We can ask:

1. How far did the driver travel?

2. How far from her starƟng posiƟon is the driver?

The first is easy to answer: she traveled 60 miles. The second is impossible to
answer with the given informaƟon. We do not know if she traveled in a straight
line, on an oval racetrack, or along a slowly–winding highway.

This highlights an important fact: to compute distance traveled, we need
only to know the speed, given by || v⃗(t) ||.

..
Theorem 96 Distance Traveled

Let v⃗(t) be a velocity funcƟon for a moving object. The distance traveled
by the object on [a, b] is:

distance traveled =

∫ b

a
|| v⃗(t) || dt.

Note that this is just a restatement of Theorem 95: arc length is the same as dis-
tance traveled, just viewed in a different context.

Notes:
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Figure 11.19: The path of the parƟcle,
from two perspecƟves, in Example 375.

11.3 The Calculus of MoƟon

.. Example 375 Distance Traveled, Displacement, and Average Speed
AparƟclemoves in spacewith posiƟon funcƟon r⃗(t) =

⟨
t, t2, sin(πt)

⟩
on [−2, 2],

where t is measured in seconds and distances are in meters. Find:

1. The distance traveled by the parƟcle on [−2, 2].

2. The displacement of the parƟcle on [−2, 2].

3. The parƟcle’s average speed.

SÊ½çã®ÊÄ

1. We use Theorem 96 to establish the integral:

distance traveled =

∫ 2

−2
|| v⃗(t) || dt

=

∫ 2

−2

√
1+ (2t)2 + π2 cos2(πt) dt.

This cannot be solved in terms of elementary funcƟons so we turn to nu-
merical integraƟon, finding the distance to be 12.88m.

2. The displacement is the vector

r⃗(2)− r⃗(−2) = ⟨2, 4, 0⟩ − ⟨−2, 4, 0⟩ = ⟨4, 0, 0⟩ .

That is, the parƟcle ends with an x-value increased by 4 and with y- and
z-values the same (see Figure 11.19).

3. We found above that the parƟcle traveled 12.88mover 4 seconds. We can
compute average speed by dividing: 12.88/4 = 3.22m/s.
We should also consider DefiniƟon 22 of SecƟon 5.4, which says that the
average value of a funcƟon f on [a, b] is 1

b−a

∫ b
a f(x) dx. In our context, the

average value of the speed is

average speed =
1

2− (−2)

∫ 2

−2
|| v⃗(t) || dt ≈ 1

4
12.88 = 3.22m/s.

Note how the physical context of a parƟcle traveling gives meaning to a
more abstract concept learned earlier...

In DefiniƟon 22 we defined the average value of a funcƟon f(x) on [a, b] to
be

1
b− a

∫ b

a
f(x) dx.

Notes:
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Note how in Example 375 we computed the average speed as

distance traveled
travel Ɵme

=
1

2− (−2)

∫ 2

−2
|| v⃗(t) || dt;

that is, we just found the average value of || v⃗(t) || on [−2, 2].
Likewise, given posiƟon funcƟon r⃗(t), the average velocity on [a, b] is

displacement
travel Ɵme

=
1

b− a

∫ b

a
r⃗ ′(t) dt =

r⃗(b)− r⃗(a)
b− a

;

that is, it is the average value of r⃗ ′(t), or v⃗(t), on [a, b].

The next two secƟons invesƟgate more properƟes of the graphs of vector–
valued funcƟons and we’ll apply these new ideas to what we just learned about
moƟon.

Notes:

628



Exercises 11.3
Terms and Concepts
1. How is velocity different from speed?

2. What is the difference between displacement and distance
traveled?

3. What is the difference between average velocity and aver-
age speed?

4. Distance traveled is the same as , just
viewed in a different context.

5. Describe a scenario where an object’s average speed is a
large number, but the magnitude of the average velocity is
not a large number.

6. Explain why it is not possible to have an average velocity
with a large magnitude but a small average speed.

Problems
In Exercises 7 – 10 , a posiƟon funcƟon r⃗(t) is given. Find v⃗(t)
and a⃗(t).

7. r⃗(t) = ⟨2t+ 1, 5t− 2, 7⟩

8. r⃗(t) =
⟨
3t2 − 2t+ 1,−t2 + t+ 14

⟩
9. r⃗(t) = ⟨cos t, sin t⟩

10. r⃗(t) = ⟨t/10,− cos t, sin t⟩

In Exercises 11 – 14 , a posiƟon funcƟon r⃗(t) is given. Sketch
r⃗(t) on the indicated interval. Find v⃗(t) and a⃗(t), then add
v⃗(t0) and a⃗(t0) to your sketch, with their iniƟal points at r⃗(t0),
for the given value of t0.

11. r⃗(t) = ⟨t, sin t⟩ on [0, π/2]; t0 = π/4

12. r⃗(t) =
⟨
t2, sin t2

⟩
on [0, π/2]; t0 =

√
π/4

13. r⃗(t) =
⟨
t2 + t,−t2 + 2t

⟩
on [−2, 2]; t0 = 1

14. r⃗(t) =
⟨
2t+ 3
t2 + 1

, t2
⟩

on [−1, 1]; t0 = 0

In Exercises 15 – 24 , a posiƟon funcƟon r⃗(t) of an object is
given. Find the speed of the object in terms of t, and find
where the speed is minimized/maximized on the indicated
interval.

15. r⃗(t) =
⟨
t2, t
⟩
on [−1, 1]

16. r⃗(t) =
⟨
t2, t2 − t3

⟩
on [−1, 1]

17. r⃗(t) = ⟨5 cos t, 5 sin t⟩ on [0, 2π]

18. r⃗(t) = ⟨2 cos t, 5 sin t⟩ on [0, 2π]

19. r⃗(t) = ⟨sec t, tan t⟩ on [0, π/4]

20. r⃗(t) = ⟨t+ cos t, 1− sin t⟩ on [0, 2π]

21. r⃗(t) = ⟨12t, 5 cos t, 5 sin t⟩ on [0, 4π]

22. r⃗(t) =
⟨
t2 − t, t2 + t, t

⟩
on [0, 1]

23. r⃗(t) =
⟨
t, t2,

√
1− t2

⟩
on [−1, 1]

24. ProjecƟleMoƟon: r⃗(t) =
⟨
(v0 cos θ)t,−

1
2
gt2 + (v0 sin θ)t

⟩
on
[
0,

2v0 sin θ
g

]
In Exercises 25 – 28 , posiƟon funcƟons r⃗1(t) and r⃗2(s) for two
objects are given that follow the same path on the respecƟve
intervals.

(a) Show that the posiƟons are the same at the indicated
t0 and s0 values; i.e., show r⃗1(t0) = r⃗2(s0).

(b) Find the velocity, speed and acceleraƟon of the two
objects at t0 and s0, respecƟvely.

25. r⃗1(t) =
⟨
t, t2
⟩
on [0, 1]; t0 = 1

r⃗2(s) =
⟨
s2, s4

⟩
on [0, 1]; s0 = 1

26. r⃗1(t) = ⟨3 cos t, 3 sin t⟩ on [0, 2π]; t0 = π/2
r⃗2(s) = ⟨3 cos(4s), 3 sin(4s)⟩ on [0, π/2]; s0 = π/8

27. r⃗1(t) = ⟨3t, 2t⟩ on [0, 2]; t0 = 2
r⃗2(s) = ⟨6t− 6, 4t− 4⟩ on [1, 2]; s0 = 2

28. r⃗1(t) =
⟨
t,
√
t
⟩
on [0, 1]; t0 = 1

r⃗2(s) =
⟨
sin t,

√
sin t

⟩
on [0, π/2]; s0 = π/2

In Exercises 29 – 32 , find the posiƟon funcƟon of an object
given its acceleraƟon and iniƟal velocity and posiƟon.

29. a⃗(t) = ⟨2, 3⟩; v⃗(0) = ⟨1, 2⟩, r⃗(0) = ⟨5,−2⟩
30. a⃗(t) = ⟨2, 3⟩; v⃗(1) = ⟨1, 2⟩, r⃗(1) = ⟨5,−2⟩
31. a⃗(t) = ⟨cos t,− sin t⟩; v⃗(0) = ⟨0, 1⟩, r⃗(0) = ⟨0, 0⟩
32. a⃗(t) = ⟨0,−32⟩; v⃗(0) = ⟨10, 50⟩, r⃗(0) = ⟨0, 0⟩
In Exercises 33 – 36 , find the displacement, distance traveled,
average velocity and average speed of the described object
on the given interval.

33. An object with posiƟon funcƟon r⃗(t) = ⟨2 cos t, 2 sin t, 3t⟩,
where distances are measured in feet and Ɵme is in sec-
onds, on [0, 2π].

34. An object with posiƟon funcƟon r⃗(t) = ⟨5 cos t,−5 sin t⟩,
where distances are measured in feet and Ɵme is in sec-
onds, on [0, π].

35. An object with velocity funcƟon v⃗(t) = ⟨cos t, sin t⟩, where
distances are measured in feet and Ɵme is in seconds, on
[0, 2π].

36. An object with velocity funcƟon v⃗(t) = ⟨1, 2,−1⟩, where
distances are measured in feet and Ɵme is in seconds, on
[0, 10].

Exercises 37 – 42 ask you to solve a variety of problems based
on the principles of projecƟle moƟon.

37. A boy whirls a ball, aƩached to a 3Ō string, above his head
in a counter–clockwise circle. The ball makes 2 revoluƟons
per second.
At what t-values should the boy release the string so that
the ball heads directly for a tree standing 10Ō in front of
him?

629



38. David faces Goliath with only a stone in a 3Ō sling, which
he whirls above his head at 4 revoluƟons per second. They
stand 20Ō apart.

(a) At what t-values must David release the stone in his
sling in order to hit Goliath?

(b) What is the speed at which the stone is traveling
when released?

(c) Assume David releases the stone from a height of 6Ō
and Goliath’s forehead is 9Ō above the ground. What
angle of elevaƟonmustDavid apply to the stone to hit
Goliath’s head?

39. A hunter aims at a deer which is 40 yards away. Her cross-
bow is at a height of 5Ō, and she aims for a spot on the
deer 4Ō above the ground. The crossbow fires her arrows
at 300Ō/s.

(a) At what angle of elevaƟon should she hold the cross-
bow to hit her target?

(b) If the deer is moving perpendicularly to her line of
sight at a rate of 20mph, by approximately howmuch

should she lead the deer in order to hit it in the de-
sired locaƟon?

40. A baseball player hits a ball at 100mph, with an iniƟal height
of 3Ō and an angle of elevaƟon of 20◦, at Boston’s Fenway
Park. The ball flies towards the famed “Green Monster,” a
wall 37Ō high located 310Ō from home plate.

(a) Show that as hit, the ball hits the wall.

(b) Show that if the angle of elevaƟon is 21◦, the ball
clears the Green Monster.

41. A Cessna flies at 1000Ō at 150mph and drops a box of sup-
plies to the professor (and his wife) on an island. Ignoring
wind resistance, how far horizontally will the supplies travel
before they land?

42. A football quarterback throws a pass from a height of 6Ō,
intending to hit his receiver 20yds away at a height of 5Ō.

(a) If the ball is thrown at a rate of 50mph, what angle of
elevaƟon is needed to hit his intended target?

(b) If the ball is thrown at with an angle of elevaƟon of
8◦, what iniƟal ball speed is needed to hit his target?
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Figure 11.20: Ploƫng unit tangent vec-
tors in Example 376.

11.4 Unit Tangent and Normal Vectors

11.4 Unit Tangent and Normal Vectors
Unit Tangent Vector

Given a smooth vector–valued funcƟon r⃗(t), we defined in DefiniƟon 71 that
any vector parallel to r⃗ ′(t0) is tangent to the graph of r⃗(t) at t = t0. It is oŌen
useful to consider just the direcƟon of r⃗ ′(t) and not its magnitude. Therefore
we are interested in the unit vector in the direcƟon of r⃗ ′(t). This leads to a
definiƟon.

..
DefiniƟon 74 Unit Tangent Vector

Let r⃗(t) be a smooth funcƟon on an open interval I. The unit tangent
vector T⃗(t) is

T⃗(t) =
1

|| r⃗ ′(t) ||
r⃗ ′(t).

.. Example 376 ..CompuƟng the unit tangent vector
Let r⃗(t) = ⟨3 cos t, 3 sin t, 4t⟩. Find T⃗(t) and compute T⃗(0) and T⃗(1).

SÊ½çã®ÊÄ We apply DefiniƟon 74 to find T⃗(t).

T⃗(t) =
1

|| r⃗ ′(t) ||
r⃗ ′(t)

=
1√(

− 3 sin t
)2

+
(
3 cos t

)2
+ 42

⟨−3 sin t, 3 cos t, 4⟩

=

⟨
−3
5
sin t,

3
5
cos t,

4
5

⟩
.

We can now easily compute T⃗(0) and T⃗(1):

T⃗(0) =
⟨
0,

3
5
,
4
5

⟩
; T⃗(1) =

⟨
−3
5
sin 1,

3
5
cos 1,

4
5

⟩
≈ ⟨−0.505, 0.324, 0.8⟩ .

These are ploƩed in Figure 11.20with their iniƟal points at r⃗(0) and r⃗(1), respec-
Ɵvely. (They look rather “short” since they are only length 1.)

The unit tangent vector T⃗(t) always has a magnitude of 1, though it is some-
Ɵmes easy to doubt that is true. We can help solidify this thought in our minds
by compuƟng || T⃗(1) ||:

|| T⃗(1) || ≈
√
(−0.505)2 + 0.3242 + 0.82 = 1.000001.

Notes:
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Figure 11.22: Given a direcƟon in the
plane, there are always two direcƟons or-
thogonal to it.

Note: T⃗(t) is a unit vector, by definiƟon.
This does not imply that T⃗ ′(t) is also a unit
vector.

Chapter 11 Vector Valued FuncƟons

We have rounded in our computaƟon of T⃗(1), so we don’t get 1 exactly. We
leave it to the reader to use the exact representaƟon of T⃗(1) to verify it has
length 1. ...

In many ways, the previous example was “too nice.” It turned out that r⃗ ′(t)
was always of length 5. In the next example the length of r⃗ ′(t) is variable, leav-
ing us with a formula that is not as clean.

.. Example 377 CompuƟng the unit tangent vector
Let r⃗(t) =

⟨
t2 − t, t2 + t

⟩
. Find T⃗(t) and compute T⃗(0) and T⃗(1).

SÊ½çã®ÊÄ We find r⃗ ′(t) = ⟨2t− 1, 2t+ 1⟩, and

|| r⃗ ′(t) || =
√
(2t− 1)2 + (2t+ 1)2 =

√
8t2 + 2.

Therefore

T⃗(t) =
1√

8t2 + 2
⟨2t− 1, 2t+ 1⟩ =

⟨
2t− 1√
8t2 + 2

,
2t+ 1√
8t2 + 2

⟩
.

When t = 0, we have T⃗(0) =
⟨
−1/

√
2, 1/

√
2
⟩
; when t = 1, we have T⃗(1) =⟨

1/
√
10, 3/

√
10
⟩
.We leave it to the reader to verify each of these is a unit vec-

tor. They are ploƩed in Figure 11.21 ..

Unit Normal Vector

Just as knowing the direcƟon tangent to a path is important, knowing a direc-
Ɵon orthogonal to a path is important. When dealingwith real-valued funcƟons,
we defined the normal line at a point to the be the line through the point that
was perpendicular to the tangent line at that point. We can do a similar thing
with vector–valued funcƟons. Given r⃗(t) inR2, we have 2 direcƟons perpendic-
ular to the tangent vector, as shown in Figure 11.22. It is good to wonder “Is one
of these two direcƟons preferable over the other?”

Given r⃗(t) in R3, however, there are infinite vectors orthogonal to the tan-
gent vector at a given point. Again, we might wonder “Is one of these infinite
choices preferable over the others? Is one of these the ‘right’ choice?”

The answer in both R2 and R3 is “Yes, there is one vector that is not only
preferable, it is the ‘right’ one to choose.” Recall Theorem 93, which states that
if r⃗(t) has constant length, then r⃗(t) is orthogonal to r⃗ ′(t) for all t. We know
T⃗(t), the unit tangent vector, has constant length. Therefore T⃗(t) is orthogonal
to T⃗ ′(t).

We’ll see that T⃗ ′(t) is more than just a convenient choice of vector that is
orthogonal to r⃗ ′(t); rather, it is the “right” choice. Since all we care about is the
direcƟon, we define this newly found vector to be a unit vector.

Notes:
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Figure 11.23: Ploƫng unit tangent and
normal vectors in Example 11.23.

11.4 Unit Tangent and Normal Vectors

..
DefiniƟon 75 Unit Normal Vector

Let r⃗(t) be a vector–valued funcƟon where the unit tangent vector, T⃗(t),
is smooth on an open interval I. The unit normal vector N⃗(t) is

N⃗(t) =
1

|| T⃗ ′(t) ||
T⃗ ′(t).

.. Example 378 CompuƟng the unit normal vector
Let r⃗(t) = ⟨3 cos t, 3 sin t, 4t⟩ as in Example 376. Sketch both T⃗(π/2) and N⃗(π/2)
with iniƟal points at r⃗(π/2).

SÊ½çã®ÊÄ In Example 376, we found T⃗(t) =
⟨
(−3/5) sin t, (3/5) cos t, 4/5

⟩
.

Therefore

T⃗ ′(t) =
⟨
−3
5
cos t,−3

5
sin t, 0

⟩
and || T⃗ ′(t) || = 3

5
.

Thus

N⃗(t) =
T⃗ ′(t)
3/5

= ⟨− cos t,− sin t, 0⟩ .

We compute T⃗(π/2) = ⟨−3/5, 0, 4/5⟩ and N⃗(π/2) = ⟨0,−1, 0⟩. These are
sketched in Figure 11.23. ..

The previous example was once again “too nice.” In general, the expression
for T⃗(t) contains fracƟons of square–roots, hence the expression of T⃗ ′(t) is very
messy. We demonstrate this in the next example.

.. Example 379 ..CompuƟng the unit normal vector
Let r⃗(t) =

⟨
t2 − t, t2 + t

⟩
as in Example 377. Find N⃗(t) and sketch r⃗(t) with the

unit tangent and normal vectors at t = −1, 0 and 1.

SÊ½çã®ÊÄ In Example 377, we found

T⃗(t) =
⟨

2t− 1√
8t2 + 2

,
2t+ 1√
8t2 + 2

⟩
.

Finding T⃗ ′(t) requires two applicaƟons of the QuoƟent Rule:

Notes:
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Figure 11.24: Ploƫng unit tangent and
normal vectors in Example 379.

Chapter 11 Vector Valued FuncƟons

T ′(t) =

⟨√
8t2 + 2(2)− (2t− 1)

( 1
2 (8t

2 + 2)−1/2(16t)
)

8t2 + 2
,

√
8t2 + 2(2)− (2t+ 1)

( 1
2 (8t

2 + 2)−1/2(16t)
)

8t2 + 2

⟩

=

⟨
4(2t+ 1)

(8t2 + 2)3/2
,

4(1− 2t)
(8t2 + 2)3/2

⟩

This is not a unit vector; to find N⃗(t), we need to divide T⃗ ′(t) by it’s magni-
tude.

|| T⃗ ′(t) || =

√
16(2t+ 1)2

(8t2 + 2)3
+

16(1− 2t)2

(8t2 + 2)3

=

√
16(8t2 + 2)
(8t2 + 2)3

=
4

8t2 + 2
.

Finally,

N⃗(t) =
1

4/(8t2 + 2)

⟨
4(2t+ 1)

(8t2 + 2)3/2
,

4(1− 2t)
(8t2 + 2)3/2

⟩

=

⟨
2t+ 1√
8t2 + 2

,− 2t− 1√
8t2 + 2

⟩
.

Using this formula for N⃗(t), we compute the unit tangent and normal vectors
for t = −1, 0 and 1 and sketch them in Figure 11.24. ...

The final result for N⃗(t) in Example 379 is suspiciously similar to T⃗(t). There
is a clear reason for this. If u⃗ = ⟨u1, u2⟩ is a unit vector in R2, then the only unit
vectors orthogonal to u⃗ are ⟨−u2, u1⟩ and ⟨u2,−u1⟩. Given T⃗(t), we can quickly
determine N⃗(t) if we know which term to mulƟply by (−1).

Consider again Figure 11.24, where we have ploƩed some unit tangent and
normal vectors. Note how N⃗(t) always points “inside” the curve, or to the con-
cave side of the curve. This is not a coincidence; this is true in general. Knowing
the direcƟon that r⃗(t) “turns” allows us to quickly find N⃗(t).

Notes:
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Note: Keep in mind that both aT and
aN are funcƟons of t; that is, the scalar
changes depending on t. It is convenƟon
to drop the “(t)” notaƟon from aT(t) and
simply write aT.

11.4 Unit Tangent and Normal Vectors

..
Theorem 97 Unit Normal Vectors in R2

Let r⃗(t) be a vector–valued funcƟon in R2 where T⃗ ′(t) is smooth on an
open interval I. Let T⃗(t) = ⟨t1, t2⟩. Then N⃗(t) is either

N⃗(t) = ⟨−t2, t1⟩ or N⃗(t) = ⟨t2,−t1⟩ ,

whichever is the vector that points to the concave side of the graph of r⃗.

ApplicaƟon to AcceleraƟon

Let r⃗(t) be a posiƟon funcƟon. It is a fact (stated later in Theorem 98) that
acceleraƟon, a⃗(t), lies in the plane defined by T⃗ and N⃗. That is, there are scalars
aT and aN such that

a⃗(t) = aTT⃗(t) + aNN⃗(t).

The scalar aTmeasures “howmuch” acceleraƟon is in the direcƟon of travel, that
is, it measures the component of acceleraƟon that affects the speed. The scalar
aNmeasures “howmuch” acceleraƟon is perpendicular to the direcƟon of travel,
that is, it measures the component of acceleraƟon that affects the direcƟon of
travel.

We can find aT using the orthogonal projecƟon of a⃗(t) onto T⃗(t) (review Def-
iniƟon 59 in SecƟon 10.3 if needed). Recalling that since T⃗(t) is a unit vector,
T⃗(t) · T⃗(t) = 1, so we have

proj T⃗(t) a⃗(t) =
a⃗(t) · T⃗(t)
T⃗(t) · T⃗(t)

T⃗(t) =
(⃗
a(t) · T⃗(t)

)︸ ︷︷ ︸
aT

T⃗(t).

Thus the amount of a⃗(t) in the direcƟon of T⃗(t) is aT = a⃗(t) · T⃗(t). The same
logic gives aN = a⃗(t) · N⃗(t).

While this is a fine way of compuƟng aT, there are simpler ways of finding aN
(as finding N⃗ itself can be complicated). The following theorem gives alternate
formulas for aT and aN.

Notes:
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..
Theorem 98 AcceleraƟon in the Plane Defined by T⃗ and N⃗

Let r⃗(t) be a posiƟon funcƟon with acceleraƟon a⃗(t) and unit tangent and
normal vectors T⃗(t) and N⃗(t). Then a⃗(t) lies in the plane defined by T⃗(t) and
N⃗(t); that is, there exists scalars aT and aN such that

a⃗(t) = aTT⃗(t) + aNN⃗(t).

Moreover,

aT = a⃗(t) · T⃗(t) = d
dt

(
|| v⃗(t) ||

)
aN = a⃗(t) · N⃗(t) =

√
|| a⃗(t) ||2 − a2T =

|| a⃗(t)× v⃗(t) ||
|| v⃗(t) ||

= || v⃗(t) || || T⃗ ′(t) ||

Note the second formula for aT:
d
dt

(
|| v⃗(t) ||

)
. This measures the rate of

change of speed, which again is the amount of acceleraƟon in the direcƟon of
travel.

.. Example 380 CompuƟng aT and aN
Let r⃗(t) = ⟨3 cos t, 3 sin t, 4t⟩ as in Examples 376 and 378. Find aT and aN.

SÊ½çã®ÊÄ The previous examples give a⃗(t) = ⟨−3 cos t,−3 sin t, 0⟩
and

T⃗(t) =
⟨
−3
5
sin t,

3
5
cos t,

4
5

⟩
and N⃗(t) = ⟨− cos t,− sin t, 0⟩ .

We can find aT and aN directly with dot products:

aT = a⃗(t) · T⃗(t) = 9
5
cos t sin t− 9

5
cos t sin t+ 0 = 0.

aN = a⃗(t) · N⃗(t) = 3 cos2 t+ 3 sin2 t+ 0 = 3.

Thus a⃗(t) = 0⃗T(t) + 3N⃗(t) = 3N⃗(t), which is clearly the case.
What is the pracƟcal interpretaƟon of these numbers? aT = 0 means the

object is moving at a constant speed, and hence all acceleraƟon comes in the
form of direcƟon change. ..

.. Example 381 ..CompuƟng aT and aN
Let r⃗(t) =

⟨
t2 − t, t2 + t

⟩
as in Examples 377 and 379. Find aT and aN.

Notes:
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11.4 Unit Tangent and Normal Vectors

SÊ½çã®ÊÄ The previous examples give a⃗(t) = ⟨2, 2⟩ and

T⃗(t) =
⟨

2t− 1√
8t2 + 2

,
2t+ 1√
8t2 + 2

⟩
and N⃗(t) =

⟨
2t+ 1√
8t2 + 2

,− 2t− 1√
8t2 + 2

⟩
.

While we can compute aN using N⃗(t), we instead demonstrate using another
formula from Theorem 98.

aT = a⃗(t) · T⃗(t) = 4t− 2√
8t2 + 2

+
4t+ 2√
8t2 + 2

=
8t√

8t2 + 2
.

aN =
√
|| a⃗(t) ||2 − a2T =

√
8−

(
8t√

8t2 + 2

)2

=
4√

8t2 + 2
.

When t = 2, aT =
16√
34

≈ 2.74 and aN =
4√
34

≈ 0.69. We interpret this to

mean that at t = 2, the parƟcle is accleraƟng mostly by increasing speed, not
by changing direcƟon. As the path near t = 2 is relaƟvely straight, this should
make intuiƟve sense. Figure 11.25 gives a graph of the path for reference.

Contrast this with t = 0, where aT = 0 and aN = 4/
√
2 ≈ 2.82. Here the

parƟcle’s speed is not changing and all acceleraƟon is in the form of direcƟon
change. ...

.. Example 382 ..Analyzing projecƟle moƟon
A ball is thrown from a height of 240Ō with an iniƟal velocity of 64Ō/s with an
angle of elevaƟon of 30◦. Find the posiƟon funcƟon r⃗(t) for the ball and analyze
aT and aN.

SÊ½çã®ÊÄ Using Key Idea 54 of SecƟon 11.3 we form the posiƟon func-
Ɵon of the ball:

r⃗(t) =
⟨(
64 cos 30◦

)
t,−16t2 +

(
64 sin 30◦

)
t+ 240

⟩
,

which we plot in Figure 11.26.
From thiswefind v⃗(t) = ⟨64 cos 30◦,−32t+ 64 sin 30◦⟩ and a⃗(t) = ⟨0,−32⟩.

CompuƟng T⃗(t) is not difficult, and with some simplificaƟon we find

T⃗(t) =
⟨ √

3√
t2 − 2t+ 4

,
1− t√

t2 − 2t+ 4

⟩
.

With a⃗(t) as simple as it is, finding aT is also simple:

aT = a⃗(t) · T⃗(t) = 32t− 32√
t2 − 2t+ 4

.

Notes:
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t aT aN
0 −16 27.7
1 0 32
2 16 27.7
3 24.2 20.9
4 27.7 16
5 29.4 12.7

Figure 11.27: A table of values of aT and
aN in Example 382.

Chapter 11 Vector Valued FuncƟons

Wechoose to not find N⃗(t) andfindaN through the formulaaN =
√
|| a⃗(t) ||2 − a2T :

aN =

√
322 −

(
32t− 32√
t2 − 2t+ 4

)2

=
32

√
3√

t2 − 2t+ 4
.

Figure 11.27 gives a table of values of aT and aN. When t = 0, we see the
ball’s speed is decreasing; when t = 1 the speed of the ball is unchanged. This
corresponds to the fact that at t = 1 the ball reaches its highest point.

AŌer t = 1 we see that aN is decreasing in value. This is because as the ball
falls, it’s path becomes straighter and most of the acceleraƟon is in the form of
speeding up the ball, and not in changing its direcƟon. ...

Our understanding of the unit tangent and normal vectors is aiding our un-
derstanding of moƟon. The work in Example 382 gave quanƟtaƟve analysis of
what we intuiƟvely knew.

The next secƟon provides two more important steps towards this analysis.
We currently describe posiƟon only in terms of Ɵme. In everyday life, though,
we oŌen describe posiƟon in terms of distance (“The gas staƟon is about 2miles
ahead, on the leŌ.”). The arc length parameter allows us to reference a parƟcle’s
posiƟon in terms of distance traveled.

We also intuiƟvely know that some paths are straighter than others – and
some are curvier than others, but we lack a measurement of “curviness.” The
arc length parameter provides a way for us to compute curvature, a quanƟtaƟve
measurement of how curvy a curve is.

Notes:
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Exercises 11.4
Terms and Concepts
1. If T⃗(t) is a unit tangent vector, what is || T⃗(t) ||?

2. If N⃗(t) is a unit normal vector, what is N⃗(t) · r⃗ ′(t)?

3. The acceleraƟon vector a⃗(t) lies in the plane defined by
what two vectors?

4. aT measures how much the acceleraƟon is affecƟng the
of an object.

Problems
In Exercises 5 – 8 , given r⃗(t), find T⃗(t) and evaluate it at the
indicated value of t.

5. r⃗(t) =
⟨
2t2, t2 − t

⟩
, t = 1

6. r⃗(t) = ⟨t, cos t⟩, t = π/4

7. r⃗(t) =
⟨
cos3 t, sin3 t

⟩
, t = π/4

8. r⃗(t) = ⟨cos t, sin t⟩, t = π

In Exercises 9 – 12 , find the equaƟon of the line tangent to
the curve at the indicated t-value using the unit tangent vec-
tor. Note: these are the same problems as in Exercises 5 –
8.

9. r⃗(t) =
⟨
2t2, t2 − t

⟩
, t = 1

10. r⃗(t) = ⟨t, cos t⟩, t = π/4

11. r⃗(t) =
⟨
cos3 t, sin3 t

⟩
, t = π/4

12. r⃗(t) = ⟨cos t, sin t⟩, t = π

In Exercises 13 – 16 , find N⃗(t) using DefiniƟon 75. Confirm
the result using Theorem 97.

13. r⃗(t) = ⟨3 cos t, 3 sin t⟩

14. r⃗(t) =
⟨
t, t2
⟩

15. r⃗(t) = ⟨cos t, 2 sin t⟩

16. r⃗(t) =
⟨
et, e−t⟩

In Exercises 17 – 20 , a posiƟon funcƟon r⃗(t) is given along
with its unit tangent vector T⃗(t) evaluated at t = a, for some
value of a.

(a) Confirm that T⃗(a) is as stated.

(b) Using a graph of r⃗(t) and Theorem 97, find N⃗(a).

17. r⃗(t) = ⟨3 cos t, 5 sin t⟩; T⃗(π/4) =
⟨
− 3√

34
,

5√
34

⟩
.

18. r⃗(t) =
⟨
t,

1
t2 + 1

⟩
; T⃗(1) =

⟨
2√
5
,− 1√

5

⟩
.

19. r⃗(t) = (1+ 2 sin t) ⟨cos t, sin t⟩; T⃗(0) =
⟨

2√
5
,

1√
5

⟩
.

20. r⃗(t) =
⟨
cos3 t, sin3 t

⟩
; T⃗(π/4) =

⟨
− 1√

2
,

1√
2

⟩
.

In Exercises 21 – 24 , find N⃗(t).

21. r⃗(t) = ⟨4t, 2 sin t, 2 cos t⟩

22. r⃗(t) = ⟨5 cos t, 3 sin t, 4 sin t⟩

23. r⃗(t) = ⟨a cos t, a sin t, bt⟩; a > 0

24. r⃗(t) = ⟨cos(at), sin(at), t⟩

In Exercises 25 – 30 , find aT and aN given r⃗(t). Sketch r⃗(t) on
the indicated interval, and comment on the relaƟve sizes of
aT and aN at the indicated t values.

25. r⃗(t) =
⟨
t, t2
⟩
on [−1, 1]; consider t = 0 and t = 1.

26. r⃗(t) = ⟨t, 1/t⟩ on (0, 4]; consider t = 1 and t = 2.

27. r⃗(t) = ⟨2 cos t, 2 sin t⟩ on [0, 2π]; consider t = 0 and
t = π/2.

28. r⃗(t) =
⟨
cos(t2), sin(t2)

⟩
on (0, 2π]; consider t =

√
π/2

and t =
√
π.

29. r⃗(t) = ⟨a cos t, a sin t, bt⟩ on [0, 2π], where a, b > 0; con-
sider t = 0 and t = π/2.

30. r⃗(t) = ⟨5 cos t, 4 sin t, 3 sin t⟩ on [0, 2π]; consider t = 0
and t = π/2.

639



.....−2. 2. 4. 6.

2

.

4

.

6

.

t = 0

.

t = 1

.

t = 2

.

r⃗(t)

.
x

.

y

(a)

.....−2. 2. 4. 6.

2

.

4

.

6

.

s = 0

.

s = 1

.

s = 2

.

s = 3

.

s = 4

.

s = 5

.

s = 6

.

r⃗(s)

.
x

.

y

(b)

Figure 11.28: Introducing the arc length
parameter.
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11.5 The Arc Length Parameter and Curvature

In normal conversaƟon we describe posiƟon in terms of both Ɵme and distance.
For instance, imagine driving to visit a friend. If she calls and asks where you
are, you might answer “I am 20 minutes from your house,” or you might say “I
am 10 miles from your house.” Both answers provide your friend with a general
idea of where you are.

Currently, our vector–valued funcƟons have defined pointswith a parameter
t, whichweoŌen take to represent Ɵme. Consider Figure 11.28 (a), where r⃗(t) =⟨
t2 − t, t2 + t

⟩
is graphed and the points corresponding to t = 0, 1 and 2 are

shown. Note how the arc length between t = 0 and t = 1 is smaller than the
arc length between t = 1 and t = 2; if the parameter t is Ɵme and r⃗ is posiƟon,
we can say that the parƟcle traveled faster on [1, 2] than on [0, 1].

Now consider Figure 11.28 (b), where the same graph is parametrized by a
different variable s. Points corresponding to s = 0 through s = 6 are ploƩed.
The arc length of the graph between each adjacent pair of points is 1. We can
view this parameter s as distance; that is, the arc length of the graph from s = 0
to s = 3 is 3, the arc length from s = 2 to s = 6 is 4, etc. If one wants to find the
point 2.5 units from an iniƟal locaƟon (i.e., s = 0), one would compute r⃗(2.5).
This parameter s is very useful, and is called the arc length parameter.

How do we find the arc length parameter?
Start with any parametrizaƟon of r⃗. We can compute the arc length of the

graph of r⃗ on the interval [0, t] with

arc length =

∫ t

0
|| r⃗ ′(u) || du.

We can turn this into a funcƟon: as t varies, we find the arc length s from 0 to t.
This funcƟon is

s(t) =
∫ t

0
|| r⃗ ′(u) || du. (11.1)

This establishes a relaƟonship between s and t. Knowing this relaƟonship
explicitly, we can rewrite r⃗(t) as a funcƟon of s: r⃗(s). We demonstrate this in an
example.

.. Example 383 ..Finding the arc length parameter
Let r⃗(t) = ⟨3t− 1, 4t+ 2⟩. Parametrize r⃗ with the arc length parameter s.

SÊ½çã®ÊÄ Using EquaƟon (11.1), we write

s(t) =
∫ t

0
|| r⃗ ′(u) || du.

Notes:
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Figure 11.29: Graphing r⃗ in Example 383
with parameters t and s.

11.5 The Arc Length Parameter and Curvature

We can integrate this, explicitly finding a relaƟonship between s and t:

s(t) =
∫ t

0
|| r⃗ ′(u) || du

=

∫ t

0

√
32 + 42 du

=

∫ t

0
5 du

= 5t.

Since s = 5t, we can write t = s/5 and replace t in r⃗(t) with s/5:

r⃗(s) = ⟨3(s/5)− 1, 4(s/5) + 2⟩ =
⟨
3
5
s− 1,

4
5
s+ 2

⟩
.

Clearly, as shown in Figure 11.29, the graph of r⃗ is a line, where t = 0 corre-
sponds to the point (−1, 2). What point on the line is 2 units away from this
iniƟal point? We find it with s(2) = ⟨1/5, 18/5⟩.

Is the point (1/5, 18/5) really 2 units away from (−1, 2)? We use the Dis-
tance Formula to check:

d =

√(
1
5
− (−1)

)2

+

(
18
5

− 2
)2

=

√
36
25

+
64
25

=
√
4 = 2.

Yes, s(2) is indeed 2 units away, in the direcƟon of travel, from the iniƟal point. ...

Things worked out very nicely in Example 383; we were able to establish
directly that s = 5t. Usually, the arc length parameter is much more difficult to
describe in terms of t, a result of integraƟng a square–root. There are a number
of things that we can learn about the arc length parameter from EquaƟon (11.1),
though, that are incredibly useful.

First, take the derivaƟve of s with respect to t. The Fundamental Theorem
of Calculus (see Theorem 39) states that

ds
dt

= s ′(t) = || r⃗ ′(t) ||. (11.2)

Leƫng t represent Ɵme and r⃗(t) represent posiƟon, we see that the rate of
change of s with respect to t is speed; that is, the rate of change of “distance
traveled” is speed, which should match our intuiƟon.

The Chain Rule states that
d⃗r
dt

=
d⃗r
ds

· ds
dt

r⃗ ′(t) = r⃗ ′(s) · || r⃗ ′(t) ||.

Notes:
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Figure 11.30: Establishing the concept of
curvature.
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Solving for r⃗ ′(s), we have

r⃗ ′(s) =
r⃗ ′(t)

|| r⃗ ′(t) ||
= T⃗(t), (11.3)

where T⃗(t) is the unit tangent vector. EquaƟon 11.3 is oŌen misinterpreted, as
one is tempted to think it states r⃗ ′(t) = T⃗(t), but there is a big difference be-
tween r⃗ ′(s) and r⃗ ′(t). The key to take from it is that r⃗ ′(s) is a unit vector. In fact,
the following theorem states that this characterizes the arc length parameter.

..
Theorem 99 Arc Length Parameter

Let r⃗(s) be a vector–valued funcƟon. The parameter s is the arc length
parameter if, and only if, || r⃗ ′(s) || = 1.

Curvature

Consider points A and B on the curve graphed in Figure 11.30 (a). One can
readily argue that the curve curvesmore sharply at A than at B. It is useful to use
a number to describe how sharply the curve bends; that number is the curvature
of the curve.

Wederive this number in the followingway. Consider Figure 11.30 (b), where
unit tangent vectors are graphed around points A and B. NoƟce how the direc-
Ɵon of the unit tangent vector changes quite a bit near A, whereas it does not
change as much around B. This leads to an important concept: measuring the
rate of change of the unit tangent vector with respect to arc length gives us a
measurement of curvature.

..
DefiniƟon 76 Curvature

Let r⃗(s) be a vector–valued funcƟon where s is the arc length parameter.
The curvature κ of the graph of r⃗(s) is

κ =

∣∣∣∣∣
∣∣∣∣∣ d⃗Tds

∣∣∣∣∣
∣∣∣∣∣ = ∣∣∣∣ T⃗ ′(s)

∣∣∣∣ .

If r⃗(s) is parametrized by the arc length parameter, then

T⃗(s) =
r⃗ ′(s)

|| r⃗ ′(s) ||
and N⃗(s) =

T⃗ ′(s)
|| T⃗ ′(s) ||

.

Notes:
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11.5 The Arc Length Parameter and Curvature

Having defined || T⃗ ′(s) || = κ, we can rewrite the second equaƟon as

T⃗ ′(s) = κN⃗(s). (11.4)

We already knew that T⃗ ′(s) is in the same direcƟon as N⃗(s); that is, we can think
of T⃗(s) as being “pulled” in the direcƟon of N⃗(s). How “hard” is it being pulled?
By a factor of κ. When the curvature is large, T⃗(s) is being “pulled hard” and the
direcƟon of T⃗(s) changes rapidly. When κ is small, T(s) is not being pulled hard
and hence its direcƟon is not changing rapidly.

We use DefiniƟon 76 to find the curvature of the line in Example 383.

.. Example 384 Finding the curvature of a line
Use DefiniƟon 76 to find the curvature of r⃗(t) = ⟨3t− 1, 4t+ 2⟩.

SÊ½çã®ÊÄ In Example 383, we found that the arc length parameter was
defined by s = 5t, so r⃗(s) = ⟨3t/5− 1, 4t/5+ 2⟩ parametrized r⃗ with the arc
length parameter. To find κ, we need to find T⃗ ′(s).

T⃗(s) = r⃗ ′(s) (recall this is a unit vector)
= ⟨3/5, 4/5⟩ .

Therefore

T⃗ ′(s) = ⟨0, 0⟩

and

κ =
∣∣∣∣ T⃗ ′(s)

∣∣∣∣ = 0.

It probably comes as no surprise that the curvature of a line is 0. (How “curvy”
is a line? It is not curvy at all.) ..

While the definiƟon of curvature is a beauƟful mathemaƟcal concept, it is
nearly impossible to use most of the Ɵme; wriƟng r⃗ in terms of the arc length
parameter is generally very hard. Fortunately, there are other methods of cal-
culaƟng this value that are much easier. There is a tradeoff: the definiƟon is
“easy” to understand though hard to compute, whereas these other formulas
are easy to compute though hard to understand why they work.

Notes:
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..
Theorem 100 Formulas for Curvature

Let C be a smooth curve on an open interval I in the plane or in space.

1. If C is defined by y = f(x), then

κ =
|f ′′(x)|(

1+
(
f ′(x)

)2)3/2 .
2. If C is defined as a vector–valued funcƟon in the plane, r⃗(t) =

⟨x(t), y(t)⟩, then

κ =
|x′y′′ − x′′y′|(

(x′)2 + (y′)2
)3/2 .

3. If C is defined in space by a vector–valued funcƟon r⃗(t), then

κ =
|| T⃗ ′(t) ||
|| r⃗ ′(t) ||

=
|| r⃗ ′(t)× r⃗ ′′(t) ||

|| r⃗ ′(t) ||3
=

a⃗(t) · N⃗(t)
|| v⃗(t) ||2

.

We pracƟce using these formulas.

.. Example 385 Finding the curvature of a circle
Find the curvature of a circle with radius r, defined by r⃗(t) = ⟨r cos t, r sin t⟩.

SÊ½çã®ÊÄ Before we start, we should expect the curvature of a circle
to be constant, and not dependent on t. (Why?)

We compute κ using the second part of Theorem 100.

κ =
|(−r sin t)(−r sin t)− (−r cos t)(r cos t)|(

(−r sin t)2 + (r cos t)2
)3/2

=
r2(sin2 t+ cos2 t)(

r2(sin2 t+ cos2 t)
)3/2

=
r2

r3
=

1
r
.

We have found that a circle with radius r has curvature κ = 1/r. ..

Notes:
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Figure 11.31: IllustraƟng the osculaƟng
circles for the curve seen in Figure 11.30.

.....
−10
.

−5
.

5

.

10

.

x

.

y

Figure 11.32: Examining the curvature of
y = x2.

11.5 The Arc Length Parameter and Curvature

Example 385 gives a great result. Before this example, if we were told “The
curve has a curvature of 5 at point A,” we would have no idea what this re-
ally meant. Is 5 “big” – does is correspond to a really sharp turn, or a not-so-
sharp turn? Now we can think of 5 in terms of a circle with radius 1/5. Knowing
the units (inches vs. miles, for instance) allows us to determine how sharply the
curve is curving.

Let a point P on a smooth curve C be given, and let κ be the curvature of the
curve at P. A circle that:

• passes through P,

• lies on the concave side of C,

• has a common tangent line as C at P and

• has radius r = 1/κ (hence has curvature κ)

is the osculaƟng circle, or circle of curvature, to C at P, and r is the radius of cur-
vature. Figure 11.31 shows the graph of the curve seen earlier in Figure 11.30
and its osculaƟng circles at A and B. A sharp turn corresponds to a circle with
a small radius; a gradual turn corresponds to a circle with a large radius. Being
able to think of curvature in terms of the radius of a circle is very useful. (The
word “osculaƟng” comes from a LaƟn word related to kissing; an osculaƟng cir-
cle “kisses” the graph at a parƟcular point. Many beauƟful ideas inmathemaƟcs
have come from studying the osculaƟng circles to a curve.)

.. Example 386 Finding curvature
Find the curvature of the parabola defined by y = x2 at the vertex and at x = 1.

SÊ½çã®ÊÄ We use the first formula found in Theorem 100.

κ(x) =
|2|(

1+ (2x)2
)3/2

=
2(

1+ 4x2
)3/2 .

At the vertex (x = 0), the curvature is κ = 2. At x = 1, the curvature
is κ = 2/(5)3/2 ≈ 0.179. So at x = 0, the curvature of y = x2 is that of
a circle of radius 1/2; at x = 1, the curvature is that of a circle with radius
≈ 1/0.179 ≈ 5.59. This is illustrated in Figure 11.32. At x = 3, the curvature is
0.009; the graph is nearly straight as the curvature is very close to 0. ..

Notes:
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Figure 11.33: Understanding the curva-
ture of a curve in space.
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.. Example 387 Finding curvature
Find where the curvature of r⃗(t) =

⟨
t, t2, 2t3

⟩
is maximized.

SÊ½çã®ÊÄ We use the third formula in Theorem 100 as r⃗(t) is defined
in space. We leave it to the reader to verify that

r⃗ ′(t) =
⟨
1, 2t, 6t2

⟩
, r⃗ ′′(t) = ⟨0, 2, 12t⟩ , and r⃗ ′(t)×⃗r ′′(t) =

⟨
12t2,−12t, 2

⟩
.

Thus

κ(t) =
|| r⃗ ′(t)× r⃗ ′′(t) ||

|| r⃗ ′(t) ||3

=
||
⟨
12t2,−12t, 2

⟩
||

|| ⟨1, 2t, 6t2⟩ ||3

=

√
144t4 + 144t2 + 4(√
1+ 4t2 + 36t4

)3
While this is not a parƟcularly “nice” formula, it does explictly tell us what the
curvature is at a given t value. To maximize κ(t), we should solve κ′(t) = 0 for
t. This is doable, but very Ɵme consuming. Instead, consider the graph of κ(t)
as given in Figure 11.33 (a). We see that κ is maximized at two t values; using a
numerical solver, we find these values are t ≈ ±0.189. In part (b) of the figure
we graph r⃗(t) and indicate the points where curvature is maximized. ..

Curvature and MoƟon

Let r⃗(t) be a posiƟon funcƟon of an object, with velocity v⃗(t) = r⃗ ′(t) and
acceleraƟon a⃗(t) = r⃗ ′′(t). In SecƟon 11.4 we established that acceleraƟon is in
the plane formed by T⃗(t) and N⃗(t), and that we can find scalars aT and aN such
that

a⃗(t) = aTT⃗(t) + aNN⃗(t).

Theorem 98 gives formulas for aT and aN:

aT =
d
dt

(
|| v⃗(t) ||

)
and aN =

|| v⃗(t)× a⃗(t) ||
|| v⃗(t) ||

.

We understood that the amount of acceleraƟon in the direcƟon of T⃗ relates only
to how the speed of the object is changing, and that the amount of acceleraƟon
in the direcƟon of N⃗ relates to how the direcƟon of travel of the object is chang-
ing. (That is, if the object travels at constant speed, aT = 0; if the object travels
in a constant direcƟon, aN = 0.)

Notes:
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OperaƟng
Speed (mph)

Minimum
Radius (Ō)

35 310
40 430
45 540

Figure 11.34: OperaƟng speed and mini-
mum radius in highway cloverleaf design.

11.5 The Arc Length Parameter and Curvature

In EquaƟon (11.2) at the beginning of this secƟon, we found s ′(t) = || v⃗(t) ||.
We can combine this fact with the above formula for aT to write

aT =
d
dt

(
|| v⃗(t) ||

)
=

d
dt
(
s ′(t)

)
= s ′′(t).

Since s ′(t) is speed, s ′′(t) is the rate at which speed is changing with respect to
Ɵme. We see once more that the component of acceleraƟon in the direcƟon of
travel relates only to speed, not to a change in direcƟon.

Now compare the formula for aN above to the formula for curvature in The-
orem 100:

aN =
|| v⃗(t)× a⃗(t) ||

|| v⃗(t) ||
and κ =

|| r⃗ ′(t)× r⃗ ′′(t) ||
|| r⃗ ′(t) ||3

=
|| v⃗(t)× a⃗(t) ||

|| v⃗(t) ||3
.

Thus

aN = κ|| v⃗(t) ||2 (11.5)

= κ
(
s ′(t)

)2
This last equaƟon shows that the component of acceleraƟon that changes

the object’s direcƟon is dependent on two things: the curvature of the path and
the speed of the object.

Imagine driving a car in a clockwise circle. Youwill naturally feel a force push-
ing you towards the door (more accurately, the door is pushing you as the car
is turning and you want to travel in a straight line). If you keep the radius of
the circle constant but speed up, the door pushes harder against you (aN has
increased). If you keep your speed constant but Ɵghten the turn, once again the
door will push harder against you.

Puƫng our new formulas for aT and aN together, we have

a⃗(t) = s ′′(t)⃗T(t) + κ|| v⃗(t) ||2N⃗(t).

This is not a parƟcularly pracƟcal way of finding aT and aN, but it reveals some
great concepts about how acceleraƟon interacts with speed and the shape of a
curve.

.. Example 388 ..Curvature and road design
The minimum radius of the curve in a highway cloverleaf is determined by the
operaƟng speed, as given in the table in Figure 11.34. For each curve and speed,
compute aN.

SÊ½çã®ÊÄ Using EquaƟon (11.5), we can compute the acceleraƟon
normal to the curve in each case. We start by converƟng each speed from “miles
per hour” to “feet per second” by mulƟplying by 5280/3600.

Notes:
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35mph, 310Ō ⇒ 51.33Ō/s, κ = 1/310

aN = κ || v⃗(t) ||2

=
1

310
(
51.33

)2
= 8.50Ō/s2.

40mph, 430Ō ⇒ 58.67Ō/s, κ = 1/430

aN =
1

430
(
58.67

)2
= 8.00Ō/s2.

45mph,540Ō ⇒ 66Ō/s, κ = 1/540

aN =
1

540
(
66
)2

= 8.07Ō/s2.

Note that each acceleraƟon is similar; this is by design. Considering the classic
“Force=mass× acceleraƟon” formula, this acceleraƟon must be kept small in
order for the Ɵres of a vehicle to keep a “grip” on the road. If one travels on a
turn of radius 310Ō at a rate of 50mph, the acceleraƟon is double, at 17.35Ō/s2.
If the acceleraƟon is too high, the fricƟonal force created by the Ɵresmay not be
enough to keep the car from sliding. Civil engineers rouƟnely compute a “safe”
design speed, then subtract 5-10mph to create the posted speed limit for addi-
Ɵonal safety. ...

We end this chapter with a reflecƟon on what we’ve covered. We started
with vector–valued funcƟons, which may have seemed at the Ɵme to be just
another way of wriƟng parametric equaƟons. However, we have seen that the
vector perspecƟve has given us great insight into the behavior of funcƟons and
the study of moƟon. Vector–valued posiƟon funcƟons convey displacement,
distance traveled, speed, velocity, acceleraƟon and curvature informaƟon, each
of which has great importance in science and engineering.

Notes:
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Exercises 11.5
Terms and Concepts
1. It is common to describe posiƟon in terms of both

and/or .

2. A measure of the “curviness” of a curve is .

3. Give two shapes with constant curvature.

4. Describe in your own words what an “osculaƟng circle” is.

5. Complete the idenƟty: T⃗ ′(s) = N⃗(s).

6. Given a posiƟon funcƟon r⃗(t), how are aT and aN affected
by the curvature?

Problems
In Exercises 7 – 10 , a posiƟon funcƟon r⃗(t) is given, where
t = 0 corresponds to the iniƟal posiƟon. Find the arc length
parameter s, and rewrite r⃗(t) in terms of s; that is, find r⃗(s).

7. r⃗(t) = ⟨2t, t,−2t⟩

8. r⃗(t) = ⟨7 cos t, 7 sin t⟩

9. r⃗(t) = ⟨3 cos t, 3 sin t, 2t⟩

10. r⃗(t) = ⟨5 cos t, 13 sin t, 12 cos t⟩

In Exercises 11 – 22 , a curve C is described alongwith 2 points
on C. Using a sketch, determine at which of these points the
curvature is greater. Find the curvature κ of C.

11. C is defined by y = x3 − x; points given at x = 0 and
x = 1/2.

12. C is defined by y =
1

x2 + 1
; points given at x = 0 and

x = 2.

13. C is defined by y = cos x; points given at x = 0 and
x = π/2.

14. C is defined by y =
√
1− x2 on (−1, 1); points given at

x = 0 and x = 1/2.

15. C is defined by r⃗(t) = ⟨cos t, sin(2t)⟩; points given at t = 0
and t = π/4.

16. C is defined by r⃗(t) =
⟨
cos2 t, sin t cos t

⟩
; points given at

t = 0 and t = π/3.

17. C is defined by r⃗(t) =
⟨
t2 − 1, t3 − t

⟩
; points given at t = 0

and t = 5.

18. C is defined by r⃗(t) = ⟨tan t, sec t⟩; points given at t = 0
and t = π/6.

19. C is defined by r⃗(t) = ⟨4t+ 2, 3t− 1, 2t+ 5⟩; points given
at t = 0 and t = 1.

20. C is defined by r⃗(t) =
⟨
t3 − t, t3 − 4, t2 − 1

⟩
; points given

at t = 0 and t = 1.

21. C is defined by r⃗(t) = ⟨3 cos t, 3 sin t, 2t⟩; points given at
t = 0 and t = π/2.

22. C is defined by r⃗(t) = ⟨5 cos t, 13 sin t, 12 cos t⟩; points
given at t = 0 and t = π/2.

In Exercises 23 – 26 , find the value of x or t where curvature
is maximized.

23. y =
1
6
x3

24. y = sin x

25. r⃗(t) =
⟨
t2 + 2t, 3t− t2

⟩
26. r⃗(t) = ⟨t, 4/t, 3/t⟩

In Exercises 27 – 30 , find the radius of curvature at the indi-
cated value.

27. y = tan x, at x = π/4

28. y = x2 + x− 3, at x = π/4

29. r⃗(t) = ⟨cos t, sin(3t)⟩, at t = 0

30. r⃗(t) = ⟨5 cos(3t), t⟩, at t = 0

In Exercises 31 – 34 , find the equaƟon of the osculaƟng circle
to the curve at the indicated t-value.

31. r⃗(t) =
⟨
t, t2
⟩
, at t = 0

32. r⃗(t) = ⟨3 cos t, sin t⟩, at t = 0

33. r⃗(t) = ⟨3 cos t, sin t⟩, at t = π/2

34. r⃗(t) =
⟨
t2 − t, t2 + t

⟩
, at t = 0
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A funcƟon of the form y = f(x) is a funcƟon of a single variable; given a value
of x, we can find a value y. Even the vector–valued funcƟons of Chapter 11 are
single–variable funcƟons; the input is a single variable though the output is a
vector.

There are many situaƟons where a desired quanƟty is a funcƟon of two or
more variables. For instance, wind chill ismeasuredby knowing the temperature
and wind speed; the volume of a gas can be computed knowing the pressure
and temperature of the gas; to compute a baseball player’s baƫng average, one
needs to know the number of hits and the number of at–bats.

This chapter studies mulƟvariable funcƟons, that is, funcƟons with more
than one input.

12.1 IntroducƟon to MulƟvariable FuncƟons

..
DefiniƟon 77 FuncƟon of Two Variables

LetD be a subset ofR2. A funcƟon f of two variables is a rule that assigns
each pair (x, y) in D a value z = f(x, y) in R. D is the domain of f; the set
of all outputs of f is the range.

.. Example 389 ..Understanding a funcƟon of two variables
Let z = f(x, y) = x2 − y. Evaluate f(1, 2), f(2, 1), and f(−2, 4); find the domain
and range of f.

SÊ½çã®ÊÄ Using the definiƟon f(x, y) = x2 − y, we have:

f(1, 2) = 12 − 2 = −1

f(2, 1) = 22 − 1 = 3

f(−2, 4) = (−2)2 − 4 = 0

The domain is not specified, so we take it to be all possible pairs in R2 for which
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Figure 12.2: Graphing a funcƟon of two
variables.

Chapter 12 FuncƟons of Several Variables

f is defined. In this example, f is defined for all pairs (x, y), so the domain D of f
is R2.

The output of f can be made as large or small as possible; any real number r
can be the output. (In fact, given any real number r, f(0,−r) = r.) So the range
R of f is R. ...

.. Example 390 Understanding a funcƟon of two variables

Let f(x, y) =

√
1− x2

9
− y2

4
. Find the domain and range of f.

SÊ½çã®ÊÄ The domain is all pairs (x, y) allowable as input in f. Because
of the square–root, we need (x, y) such that 0 ≤ 1− x2

9 − y2
4 :

0 ≤ 1− x2

9
− y2

4
x2

9
+

y2

4
≤ 1

The above equaƟon describes the interior of an ellipse as shown in Figure 12.1.
We can represent the domain D graphically with the figure; in set notaƟon, we
can write D = {(x, y) : x2

9 + y2
4 ≤ 1}.

The range is the set of all possible output values. The square–root ensures
that all output is ≥ 0. Since the x and y terms are squared, then subtracted, in-
side the square–root, the largest output value comes at x = 0, y = 0: f(0, 0) =
1. Thus the range R is the interval [0, 1]. ..

Graphing FuncƟons of Two Variables

The graph of a funcƟon f of two variables is the set of all points
(
x, y, f(x, y)

)
where (x, y) is in the domain of f. This creates a surface in space.

One can begin sketching a graph by ploƫng points, but this has limitaƟons.

Consider Figure 12.2awhere 25points havebeenploƩedof f(x, y) =
1

x2 + y2 + 1
.

More points have been ploƩed than one would reasonably want to do by hand,
yet it is not clear at all what the graph of the funcƟon looks like. Technology al-
lows us to plot lots of points, connect adjacent points with lines and add shading
to create a graph like Figure 12.2b which does a far beƩer job of illustraƟng the
behavior of f.

While technology is readily available to help us graph funcƟons of two vari-
ables, there is sƟll a paper–and–pencil approach that is useful to understand and
master as it, combined with high–quality graphics, gives one great insight into
the behavior of a funcƟon. This technique is known as sketching level curves.

Notes:
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Figure 12.3: A topographicalmap displays
elevaƟon by drawing contour lines, along
with the elevaƟon is constant.
Sample taken from the public domain USGS Digital Raster Graphics,
http://topmaps.usgs.gove/drg/.

12.1 IntroducƟon to MulƟvariable FuncƟons

Level Curves

It may be surprising to find that the problem of represenƟng a three dimen-
sional surface on paper is familiar to most people (they just don’t realize it).
Topographical maps, like the one shown in Figure 12.3, represent the surface
of Earth by indicaƟng points with the same elevaƟon with contour lines. The
elevaƟons marked are equally spaced; in this example, each thin line indicates
an elevaƟon change in 50Ō increments and each thick line indicates a change
of 200Ō. When lines are drawn close together, elevaƟon changes rapidly (as
one does not have to travel far to rise 50Ō). When lines are far apart, such as
near “Aspen Campground,” elevaƟon changesmore gradually as one has to walk
farther to rise 50Ō.

Given a funcƟon z = f(x, y), we can draw a “topographical map” of f by
drawing level curves (or, contour lines). A level curve at z = c is a curve in the
x-y plane such that for all points (x, y) on the curve, f(x, y) = c.

Whendrawing level curves, it is important that the c values are spaced equally
apart as that gives the best insight to how quickly the “elevaƟon” is changing.
Examples will help one understand this concept.

.. Example 391 ..Drawing Level Curves

Let f(x, y) =

√
1− x2

9
− y2

4
. Find the level curves of f for c = 0, 0.2, 0.4, 0.6,

0.8 and 1.

SÊ½çã®ÊÄ Consider first c = 0. The level curve for c = 0 is the set of
all points (x, y) such that 0 =

√
1− x2

9 − y2
4 . Squaring both sides quickly gives

us
x2

9
+

y2

4
= 1,

an ellipse centered at (0, 0)with horizontal major axis of length 6 andminor axis
of length 4. Thus for any point (x, y) on this curve, f(x, y) = 0.

Now consider the level curve for c = 0.2

0.2 =

√
1− x2

9
− y2

4

0.04 = 1− x2

9
− y2

4
x2

9
+

y2

4
= 0.96

x2

8.64
+

y2

3.84
= 1.

Notes:
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Figure 12.4: Graphing the level curves in
Example 391.

Chapter 12 FuncƟons of Several Variables

This is also an ellipse, where a =
√
8.64 ≈ 2.94 and b =

√
3.84 ≈ 1.96.

In general, for z = c, the level curve is:

c =

√
1− x2

9
− y2

4

c2 = 1− x2

9
− y2

4
x2

9
+

y2

4
= 1− c2

x2

9(1− c2)
+

y2

4(1− c2)
= 1,

ellipses that are decreasing in size as c increases. A special case is when c = 1;
there the ellipse is just the point (0, 0).

The level curves are shown in Figure 12.4(a). Note how the level curves for
c = 0 and c = 0.2 are very, very close together: this indicates that f is growing
rapidly along those curves.

In Figure 12.4(b), the curves are drawn on a graph of f in space. Note how
the elevaƟons are evenly spaced. Near the level curves of c = 0 and c = 0.2 we
can see that f indeed is growing quickly. ...

.. Example 392 ..Analyzing Level Curves
Let f(x, y) =

x+ y
x2 + y2 + 1

. Find the level curves for z = c.

SÊ½çã®ÊÄ We begin by seƫng f(x, y) = c for an arbitrary c and seeing
if algebraic manipulaƟon of the equaƟon reveals anything significant.

x+ y
x2 + y2 + 1

= c

x+ y = c(x2 + y2 + 1).

We recognize this as a circle, though the center and radius are not yet clear. By
compleƟng the square, we can obtain:(

x− 1
2c

)2

+

(
y− 1

2c

)2

=
1
2c2

− 1,

a circle centered at
(
1/(2c), 1/(2c)

)
with radius

√
1/(2c2)− 1, where |c| <

1/
√
2. The level curves for c = ±0.2, 0.4 and 0.6 are sketched in Figure 12.5(a).

To help illustrate “elevaƟon,” we use thicker lines for c values near 0, and dashed
lines indicate where c < 0.

Notes:
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Figure 12.5: Graphing the level curves in
Example 392.

12.1 IntroducƟon to MulƟvariable FuncƟons

There is one special level curve, when c = 0. The level curve in this situaƟon
is x+ y = 0, the line y = −x.

In Figure 12.5(b) we see a graph of the surface. Note how the y-axis is point-
ing away from the viewer to more closely resemble the orientaƟon of the level
curves in (a).

Seeing the level curves helps us understand the graph. For instance, the
graph does not make it clear that one can “walk” along the line y = −x without
elevaƟon change, though the level curve does. ...

FuncƟons of Three Variables

We extend our study of mulƟvariable funcƟons to funcƟons of three vari-
ables. (One can make a funcƟon of as many variables as one likes; we limit our
study to three variables.)

..
DefiniƟon 78 FuncƟon of Three Variables

Let D be a subset of R3. A funcƟon f of three variables is a rule that
assigns each triple (x, y, z) inD a valuew = f(x, y, z) inR. D is thedomain
of f; the set of all outputs of f is the range.

Note how this definiƟon closely resembles that of DefiniƟon 77.

.. Example 393 Understanding a funcƟon of three variables

Let f(x, y, z) =
x2 + z+ 3 sin y
x+ 2y− z

. Evaluate f at the point (3, 0, 2) and find the

domain and range of f.

SÊ½çã®ÊÄ f(3, 0, 2) =
32 + 2+ 3 sin 0
3+ 2(0)− 2

= 11.

As the domain of f is not specified, we take it to be the set of all triples (x, y, z)
for which f(x, y, z) is defined. As we cannot divide by 0, we find the domain D is

D = {(x, y, z) | x+ 2y− z ̸= 0}.

We recognize that the set of all points in R3 that are not in D form a plane in
space that passes through the origin (with normal vector ⟨1, 2,−1⟩).

We determine the range R isR; that is, all real numbers are possible outputs
of f. There is no set way of establishing this. Rather, to get numbers near 0 we
can let y = 0 and choose z ≈ −x2. To get numbers of arbitrarily large magni-
tude, we can let z ≈ x+ 2y. ..

Notes:
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c r
16. 0.25
8. 0.35
4. 0.5
2. 0.71
1. 1.
0.5 1.41
0.25 2.
0.125 2.83
0.0625 4.

Figure 12.6: A table of c values and the
corresponding radius r of the spheres of
constant value in Example 394.

Chapter 12 FuncƟons of Several Variables

Level Surfaces

It is very difficult to produce a meaningful graph of a funcƟon of three vari-
ables. A funcƟon of one variable is a curve drawn in 2 dimensions; a funcƟon of
two variables is a surface drawn in 3 dimensions; a funcƟon of three variables is
a hypersurface drawn in 4 dimensions.

There are a few techniques one can employ to try to “picture” a graph of
three variables. One is an analogue of level curves: level surfaces. Given w =
f(x, y, z), the level surface at w = c is the surface in space formed by all points
(x, y, z) where f(x, y, z) = c.

.. Example 394 Finding level surfaces
If a point source S is radiaƟng energy, the intensity I at a given point P in space
is inversely proporƟonal to the square of the distance between S and P. That is,

when S = (0, 0, 0), I(x, y, z) =
k

x2 + y2 + z2
for some constant k.

Let k = 1; find the level surfaces of I.

SÊ½çã®ÊÄ Wecan (mostly) answer this quesƟonusing “common sense.”
If energy (say, in the form of light) is emanaƟng from the origin, its intensity will
be the same all a points equidistant from the origin. That is, at any point on
the surface of a sphere centered at the origin, the intensity should be the same.
Therefore, the level surfaces are spheres.

We now find this mathemaƟcally. The level surface at I = c is defined by

c =
1

x2 + y2 + z2
.

A small amount of algebra reveals

x2 + y2 + z2 =
1
c
.

Given an intensity c, the level surface I = c is a sphere of radius 1/
√
c, centered

at the origin.
Figure 12.6 gives a table of the radii of the spheres for given c values. Nor-

mally onewould use equally spaced c values, but these values have been chosen
purposefully. At a distance of 0.25 from the point source, the intensity is 16; to
move to a point of half that intensity, one just moves out 0.1 to 0.35 – not much
at all. To again halve the intensity, one moves 0.15, a liƩle more than before.

Note how each Ɵme the intensity if halved, the distance required to move
away grows. We conclude that the closer one is to the source, the more rapidly
the intensity changes. ..

Notes:
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Exercises 12.1
Terms and Concepts
1. Give two examples (other than those given in the text) of

“real world” funcƟons that require more than one input.

2. The graph of a funcƟon of two variables is a .

3. Most people are familiar with the concept of level curves in
the context of maps.

4. T/F: Along a level curve, the output of a funcƟon does not
change.

5. The analogue of a level curve for funcƟons of three vari-
ables is a level .

6. What does it mean when level curves are close together?
Far apart?

Problems
Exercises 7 – 14, give the domain and range of the mulƟvari-
able funcƟon.

7. f(x, y) = x2 + y2 + 2

8. f(x, y) = x+ 2y

9. f(x, y) = x− 2y

10. f(x, y) =
1

x+ 2y

11. f(x, y) =
1

x2 + y2 + 1

12. f(x, y) = sin x cos y

13. f(x, y) =
√

9− x2 − y2

14. f(x, y) =
1√

x2 + y2 − 9
Exercises 15 – 22, describe in words and sketch the level
curves for the funcƟon and given c values.

15. f(x, y) = 3x− 2y; c = −2, 0, 2

16. f(x, y) = x2 − y2; c = −1, 0, 1

17. f(x, y) = x− y2; c = −2, 0, 2

18. f(x, y) =
1− x2 − y2

2y− 2x
; c = −2, 0, 2

19. f(x, y) =
2x− 2y

x2 + y2 + 1
; c = −1, 0, 1

20. f(x, y) =
y− x3 − 1

x
; c = −3,−1, 0, 1, 3

21. f(x, y) =
√

x2 + 4y2; c = 1, 2, 3, 4

22. f(x, y) = x2 + 4y2; c = 1, 2, 3, 4

Exercises 23 – 26, give the domain and range of the funcƟons
of three variables.

23. f(x, y, z) =
x

x+ 2y− 4z

24. f(x, y, z) =
1

1− x2 − y2 − z2

25. f(x, y, z) =
√

z− x2 + y2

26. f(x, y, z) = z2 sin x cos y

Exercises 27 – 30, describe the level surfaces of the given func-
Ɵons of three variables.

27. f(x, y, z) = x2 + y2 + z2

28. f(x, y, z) = z− x2 + y2

29. f(x, y, z) =
x2 + y2

z

30. f(x, y, z) =
z

x− y

31. Compare the level curves of Exercises 21 and 22. How are
they similar, and how are they different? Each surface is a
quadric surface; describe how the level curves are consis-
tent with what we know about each surface.
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Figure 12.7: IllustraƟng open and closed
sets in the x-y plane.

Chapter 12 FuncƟons of Several Variables

12.2 Limits andConƟnuity ofMulƟvariable FuncƟons
We conƟnue with the paƩern we have established in this text: aŌer defining a
new kind of funcƟon, we apply calculus ideas to it. The previous secƟon defined
funcƟons of two and three variables; this secƟon invesƟgates what it means for
these funcƟons to be “conƟnuous.”

We begin with a series of definiƟons. We are used to “open intervals” such
as (1, 3), which represents the set of all x such that 1 < x < 3, and “closed
intervals” such as [1, 3], which represents the set of all x such that 1 ≤ x ≤ 3.
We need analogous definiƟons for open and closed sets in the x-y plane.

..
DefiniƟon 79 Open Disk, Boundary and Interior Points, Open and
Closed Sets, Bounded Sets

An open disk B in R2 centered at (x0, y0) with radius r is the set of all
points (x, y) such that

√
(x− x0)2 + (y− y0)2 < r.

Let S be a set of points in R2. A point P in R2 is a boundary point of S
if all open disks centered at P contain both points in S and points not in S.

A point P in S is an interior point of S if there is an open disk centered at
P that contains only points in S.

A set S is open if every point in S is an interior point.

A set S is closed if it contains all of its boundary points.

A set S is bounded if there is an M > 0 such that the open disk, cen-
tered at the origin, with radius M contains S. A set that is not bounded
is unbounded.

Figure 12.7 shows several sets in the x-y plane. In each set, point P1 lies on
the boundary of the set as all open disks centered there contain both points in,
and not in, the set. In contrast, point P2 is an interior point for there is an open
disk centered there that lies enƟrely within the set.

The set depicted in Figure 12.7(a) is a closed set as it contains all of its bound-
ary points. The set in (b) is open, for all of its points are interior points (or, equiv-
alently, it does not contain any of its boundary points). The set in (c) is neither
open nor closed as it contains just some of its boundary points.

Notes:
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Figure 12.8: Sketching the domain of the
funcƟon in Example 396.
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.. Example 395 Determining open/closed, bounded/unbounded
Determine if the domain of the funcƟon f(x, y) =

√
1− x2

9 − y2
4 is open, closed,

or neither, and if it is bounded.

SÊ½çã®ÊÄ This domain of this funcƟonwas found in Example 390 to be
D = {(x, y) | x2

9 + y2
4 ≤ 1}, the region bounded by the ellipse x2

9 + y2
4 = 1. Since

the region includes the boundary (indicated by the use of “≤”), the set contains
all of its boundary points and hence is closed. The region is bounded as a disk
of radius 4, centered at the origin, contains D. ..

.. Example 396 Determining open/closed, bounded/unbounded
Determine if the domain of f(x, y) = 1

x−y is open, closed, or neither.

SÊ½çã®ÊÄ As we cannot divide by 0, we find the domain to be D =
{(x, y) | x− y ̸= 0}. In other words, the domain is the set of all points (x, y) not
on the line y = x.

The domain is sketched in Figure 12.8. Note how we can draw an open disk
around any point in the domain that lies enƟrely inside the domain, and also
note how the only boundary points of the domain are the points on the line
y = x. We conclude the domain is an open set. The set is unbounded. ..

Limits

Recall a pseudo–definiƟonof the limit of a funcƟonof one variable: “lim
x→c

f(x) =
L” means that if x is “really close” to c, then f(x) is “really close” to L. A similar
pseudo–definiƟon holds for funcƟons of two variables. We’ll say that

“ lim
(x,y)→(x0,y0)

f(x, y) = L”

means “if the point (x, y) is really close to the point (x0, y0), then f(x, y) is really
close to L.” The formal definiƟon is given below.

..
DefiniƟon 80 Limit of a FuncƟon of Two Variables

Let f(x, y) be a funcƟon of two variables and let (x0, y0) be a point in the
domain of f. The limit of f(x, y) as (x, y) approaches (x0, y0) is L, denoted

lim
(x,y)→(x0,y0)

f(x, y) = L,

if, for every ε > 0 there is a δ > 0 such that if (x, y) is in the open disk
centered at (x0, y0) with radius δ, then |f(x, y)− L| < ε.

Notes:
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Figure 12.9: IllustraƟng the definiƟon of
a limit. The open disk in the x-y plane has
radius δ. Let (x, y) be any point in this
disk; f(x, y) is within ε of L.
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The concept behind DefiniƟon 80 is sketched in Figure 12.9. Given ε > 0,
find δ > 0 such that if (x, y) is any point in the open disk centered at (x0, y0) in
the x-y plane with radius δ, then f(x, y) should be within ε of L.

CompuƟng limits using this definiƟon is rather cumbersome. The following
theorem allows us to evaluate limits much more easily.

..
Theorem 101 Basic Limit ProperƟes of FuncƟons of Two Variables

Let b, x0, y0, L and K be real numbers, let n be a posiƟve integer, and let
f and g be funcƟons with the following limits:

lim
(x,y)→(x0,y0)

f(x, y) = L and lim
(x,y)→(x0,y0)

g(x, y) = K.

The following limits hold.

1. Constants: lim
(x,y)→(x0,y0)

b = b

2. IdenƟty lim
(x,y)→(x0,y0)

x = x0; lim
(x,y)→(x0,y0)

y = y0

3. Sums/Differences: lim
(x,y)→(x0,y0)

(
f(x, y)± g(x, y)

)
= L± K

4. Scalar MulƟples: lim
(x,y)→(x0,y0)

b · f(x, y) = bL

5. Products: lim
(x,y)→(x0,y0)

f(x, y) · g(x, y) = LK

6. QuoƟents: lim
(x,y)→(x0,y0)

f(x, y)/g(x, y) = L/K, (K ̸= 0)

7. Powers: lim
(x,y)→(x0,y0)

f(x, y)n = Ln

This theorem, combined with Theorems 2 and 3 of SecƟon 1.3, allows us to
evaluate many limits.

.. Example 397 ..EvaluaƟng a limit
Evaluate the following limits:

1. lim
(x,y)→(1,π)

y
x
+ cos(xy) 2. lim

(x,y)→(0,0)

3xy
x2 + y2

SÊ½çã®ÊÄ

Notes:
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1. The aforemenƟoned theorems allow us to simply evaluate y/x+ cos(xy)
when x = 1 and y = π. If an indeterminate form is returned, we must do
more work to evaluate the limit; otherwise, the result is the limit. There-
fore

lim
(x,y)→(1,π)

y
x
+ cos(xy) =

π

1
+ cos π

= π − 1.

2. We aƩempt to evaluate the limit by subsƟtuƟng 0 in for x and y, but the
result is the indeterminate form “0/0.” To evaluate this limit, we must
“do more work,” but we have not yet learned what “kind” of work to do.
Therefore we cannot yet evaluate this limit....

When dealing with funcƟons of a single variable we also considered one–
sided limits and stated

lim
x→c

f(x) = L if, and only if, lim
x→c+

f(x) = L and lim
x→c−

f(x) = L.

That is, the limit is L if and only if f(x) approaches L when x approaches c from
either direcƟon, the leŌ or the right.

In the plane, there are infinite direcƟons from which (x, y) might approach
(x0, y0). In fact, we do not have to restrict ourselves to approaching (x0, y0) from
a parƟcular direcƟon, but rather we can approach that point along a path that is
not a straight line. It is possible to arrive at different limiƟng values by approach-
ing (x0, y0) along different paths. If this happens, we say that lim

(x,y)→(x0,y0)
f(x, y)

does not exist (this is analogous to the leŌ and right hand limits of single variable
funcƟons not being equal).

Our theorems tell us that we can evaluate most limits quite simply, without
worrying about paths. When indeterminate forms arise, the limit may or may
not exist. If it does exist, it can be difficult to prove this as we need to show the
same limiƟng value is obtained regardless of the path chosen. The case where
the limit does not exist is oŌen easier to deal with, for we can oŌen pick two
paths along which the limit is different.

.. Example 398 ..Showing limits do not exist

1. Show lim
(x,y)→(0,0)

3xy
x2 + y2

does not exist by finding the limits along the lines
y = mx.

2. Show lim
(x,y)→(0,0)

sin(xy)
x+ y

does not exist by finding the limit along the path

y = − sin x.

Notes:
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SÊ½çã®ÊÄ

1. EvaluaƟng lim
(x,y)→(0,0)

3xy
x2 + y2

along the lines y = mxmeans replace all y’s

withmx and evaluaƟng the resulƟng limit:

lim
(x,mx)→(0,0)

3x(mx)
x2 + (mx)2

= lim
x→0

3mx2

x2(m2 + 1)

= lim
x→0

3m
m2 + 1

=
3m

m2 + 1
.

While the limit exists for each choice ofm, we get a different limit for each
choice of m. That is, along different lines we get differing limiƟng values,
meaning the limit does not exist.

2. Let f(x, y) = sin(xy)
x+y . We are to show that lim

(x,y)→(0,0)
f(x, y) does not exist

by finding the limit along the path y = − sin x. First, however, consider
the limits found along the lines y = mx as done above.

lim
(x,mx)→(0,0)

sin
(
x(mx)

)
x+mx

= lim
x→0

sin(mx2)
x(m+ 1)

= lim
x→0

sin(mx2)
x

· 1
m+ 1

.

By applying L’Hôpital’s Rule, we can show this limit is 0 except whenm =
−1, that is, along the line y = −x. This line is not in the domain of f, so
we have found the following fact: along every line y = mx in the domain
of f, lim

(x,y)→(0,0)
f(x, y) = 0. ..

Now consider the limit along the path y = − sin x:

lim
(x,− sin x)→(0,0)

sin
(
− x sin x

)
x− sin x

= lim
x→0

sin
(
− x sin x

)
x− sin x

Now apply L’Hôpital’s Rule twice:

= lim
x→0

cos
(
− x sin x

)
(− sin x− x cos x)

1− cos x
(“ = 0/0”)

= lim
x→0

− sin
(
− x sin x

)
(− sin x− x cos x)2 + cos

(
− x sin x

)
(−2 cos x+ x sin x)

sin x
= “2/0” ⇒ the limit does not exist.

Step back and consider what we have just discovered. Along any line y =
mx in the domain of the f(x, y), the limit is 0. However, along the path

Notes:
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y = − sin x, which lies in the domain of the f(x, y) for all x ̸= 0, the limit
does not exist. Since the limit is not the same along every path to (0, 0),

we say lim
(x,y)→(0,0)

sin(xy)
x+ y

does not exist.
...

.. Example 399 Finding a limit

Let f(x, y) =
5x2y2

x2 + y2
. Find lim

(x,y)→(0,0)
f(x, y).

SÊ½çã®ÊÄ It is relaƟvely easy to show that along any line y = mx, the
limit is 0. This is not enough to prove that the limit exists, as demonstrated in
the previous example, but it tells us that if the limit does exist then it must be 0.

To prove the limit is 0, we apply DefiniƟon 80. Let ε > 0 be given. We want
to find δ > 0 such that if

√
(x− 0)2 + (y− 0)2 < δ, then |f(x, y)− 0| < ε.

Set δ <
√

ε/5. Note that
∣∣∣∣ 5y2

x2 + y2

∣∣∣∣ < 5 for all (x, y) ̸= (0, 0), and that if√
x2 + y2 < δ, then x2 < δ2.

Let
√
(x− 0)2 + (y− 0)2 < δ. Consider |f(x, y)− 0|:

|f(x, y)− 0| =
∣∣∣∣ 5x2y2x2 + y2

− 0
∣∣∣∣

=

∣∣∣∣x2 · 5y2

x2 + y2

∣∣∣∣
< δ2 · 5

<
ε

5
· 5

= ε.

Thus if
√
(x− 0)2 + (y− 0)2 < δ then |f(x, y) − 0| < ε, which is what we

wanted to show. Thus lim
(x,y)→(0,0)

5x2y2

x2 + y2
= 0. ..

ConƟnuity

DefiniƟon 3 defines what it means for a funcƟon of one variable to be con-
Ɵnuous. In brief, it meant that the graph of the funcƟon did not have breaks,
holes, jumps, etc. We define conƟnuity for funcƟons of two variables in a similar
way.

Notes:
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..
DefiniƟon 81 ConƟnuous

Let a funcƟon f(x, y) be defined on an open disk B containing the point
(x0, y0).

1. f is conƟnuous at (x0, y0) if lim
(x,y)→(x0,y0)

f(x, y) = f(x0, y0).

2. f is conƟnuous on B if f is conƟnuous at all points in B. If f is conƟn-
uous at all points in R2, we say that f is conƟnuous everywhere.

.. Example 400 ..ConƟnuity of a funcƟon of two variables

Let f(x, y) =

{ cos y sin x
x x ̸= 0
cos y x = 0 . Is f conƟnuous at (0, 0)? Is f conƟnuous

everywhere?

SÊ½çã®ÊÄ To determine if f is conƟnuous at (0, 0), we need to compare
lim

(x,y)→(0,0)
f(x, y) to f(0, 0).

Applying the definiƟon of f, we see that f(0, 0) = cos 0 = 1.
We now consider the limit lim

(x,y)→(0,0)
f(x, y). SubsƟtuƟng 0 for x and y in

(cos y sin x)/x returns the indeterminate form “0/0”, so we need to do more
work to evaluate this limit.

Consider two related limits: lim
(x,y)→(0,0)

cos y and lim
(x,y)→(0,0)

sin x
x

. The first

limit does not contain x, and since cos y is conƟnuous,

lim
(x,y)→(0,0)

cos y = lim
y→0

cos y = cos 0 = 1.

The second limit does not contain y. By Theorem 5 we can say

lim
(x,y)→(0,0)

sin x
x

= lim
x→0

sin x
x

= 1.

Finally, Theorem 101 of this secƟon states that we can combine these two limits
as follows:

lim
(x,y)→(0,0)

cos y sin x
x

= lim
(x,y)→(0,0)

(cos y)
(
sin x
x

)
=

(
lim

(x,y)→(0,0)
cos y

)(
lim

(x,y)→(0,0)

sin x
x

)
= (1)(1)
= 1.

Notes:
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Figure 12.10: A graph of f(x, y) in Example
400.

12.2 Limits and ConƟnuity of MulƟvariable FuncƟons

We have found that lim
(x,y)→(0,0)

cos y sin x
x

= f(0, 0), so f is conƟnuous at

(0, 0).
A similar analysis shows that f is conƟnuous at all points in R2. As long as

x ̸= 0, we can evaluate the limit directly; when x = 0, a similar analysis shows
that the limit is cos y. Thus we can say that f is conƟnuous everywhere. A graph
of f is given in Figure 12.10. NoƟce how it has no breaks, jumps, etc. ...

The following theorem is very similar to Theorem 8, giving us ways to com-
bine conƟnuous funcƟons to create other conƟnuous funcƟons.

..
Theorem 102 ProperƟes of ConƟnuous FuncƟons

Let f and g be conƟnuous on an open disk B, let c be a real number, and
let n be a posiƟve integer. The following funcƟons are conƟnuous on B.

1. Sums/Differences: f± g

2. Constant MulƟples: c · f

3. Products: f · g

4. QuoƟents: f/g (as longs as g ̸= 0 on I)

5. Powers: f n

6. Roots: n
√
f (if n is even then f ≥ 0 on I; if n is odd,

then true for all values of f on I.)

7. ComposiƟons: Adjust the definiƟons of f and g to: Let f be
conƟnuous on B, where the range of f on B is
J, and let g be a single variable funcƟon that is
conƟnuous on J. Then g ◦ f, i.e., g(f(x, y)), is
conƟnuous on B.

.. Example 401 Establishing conƟnuity of a funcƟon
Let f(x, y) = sin(x2 cos y). Show f is conƟnuous everywhere.

SÊ½çã®ÊÄ We will apply both Theorems 8 and 102. Let f1(x, y) = x2.
Since y is not actually used in the funcƟon, and polynomials are conƟnuous (by
Theorem 8), we conclude f1 is conƟnuous everywhere. A similar statement can
be made about f2(x, y) = cos y. Part 3 of Theorem 102 states that f3 = f1 · f2
is conƟnuous everywhere, and Part 7 of the theorem states the composiƟon of
sine with f3 is conƟnuous: that is, sin(f3) = sin(x2 cos y) is conƟnuous every-
where. ..

Notes:
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Chapter 12 FuncƟons of Several Variables

FuncƟons of Three Variables

The definiƟons and theorems given in this secƟon can be extended in a natu-
ral way to definiƟons and theorems about funcƟons of three (ormore) variables.
We cover the key concepts here; some terms from DefiniƟons 79 and 81 are not
redefined but their analogous meanings should be clear to the reader.

..
DefiniƟon 82 Open Balls, Limit, ConƟnuous

1. An open ball in R3 centered at (x0, y0, z0) with radius r is the set of all
points (x, y, z) such that

√
(x− x0)2 + (y− y0)2 + (z− z0)2 = r.

2. Let f(x, y, z) be a funcƟon of three variables and let (x0, y0, z0) be a
point in the domain of f. The limit of f(x, y, z) as (x, y, z) approaches
(x0, y0, z0) is L, denoted

lim
(x,y,z)→(x0,y0,z0)

f(x, y, z) = L,

if, for every ε > 0 there is a δ > 0 such that if (x, y, z) is in the open
ball centered at (x0, y0, z0) with radius δ, then |f(x, y, z)− L| < ε.

3. Let f(x, y, z) be defined on an open ball B containing (x0, y0, z0). f is
conƟnuous at (x0, y0, z0) if lim

(x,y,z)→(x0,y0,z0)
f(x, y, z) = f(x0, y0, z0).

These definiƟons can also be extended naturally to apply to funcƟons of four
or more variables. Theorem 102 also applies to funcƟon of three or more vari-
ables, allowing us to say that the funcƟon

f(x, y, z) =
ex

2+y
√

y2 + z2 + 3
sin(xyz) + 5

is conƟnuous everywhere.

Notes:
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Exercises 12.2
Terms and Concepts
1. Describe in your ownwords the difference between bound-

ary and interior point of a set.

2. Use your own words to describe (informally) what
lim

(x,y)→(1,2)
f(x, y) = 17 means.

3. Give an example of a closed, bounded set.

4. Give an example of a closed, unbounded set.

5. Give an example of a open, bounded set.

6. Give an example of a open, unbounded set.

Problems
Exercises 7 – 10, give one boundary point and one interior
point, when possible, of the given set S. State whether S is an
open or a closed set.

7. S =
{
(x, y)

∣∣∣∣ (x− 1)2

4
+

(y− 3)2

9
≤ 1

}
8. S =

{
(x, y) | y ̸= x2

}
9. S =

{
(x, y) | x2 + y2 = 1

}
10. S = {(x, y)|y > sin x}

Exercises 11 – 14, give the domain of the given funcƟon and
state whether it is an open or closed set.

11. f(x, y) =
x2 + y
y− 2x

12. f(x, y) =
√

y− x2

13. f(x, y) =
1√

y− x2

14. f(x, y) =
x2 − y2

x2 + y2

Exercises 15 – 20, a limit is given. Evaluate the limit along the
paths given, then state why these results showwhy the given
limit does not exist.

15. lim
(x,y)→(0,0)

x2 − y2

x2 + y2

(a) Along the path y = 0.

(b) Along the path x = 0.

16. lim
(x,y)→(0,0)

x+ y
x− y

(a) Along the path y = mx.

17. lim
(x,y)→(0,0)

xy− y2

y2 + x

(a) Along the path y = mx.

(b) Along the path x = 0.

18. lim
(x,y)→(0,0)

sin(x2)
y

(a) Along the path y = mx.

(b) Along the path y = x2.

19. lim
(x,y)→(1,2)

x+ y− 3
x2 − 1

(a) Along the path y = 2.

(b) Along the path y = x+ 1.

20. lim
(x,y)→(π,π/2)

sin x
cos y

(a) Along the path x = π.

(b) Along the path y = x− π/2.
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Figure 12.11: By fixing y = 2, the surface
f(x, y) = x2 + 2y2 is a curve in space.

Alternate notaƟons for fx(x, y) include:

∂

∂x
f(x, y),

∂f
∂x

,
∂z
∂x

, and zx,

with similar notaƟons for fy(x, y). For
ease of notaƟon, fx(x, y) is oŌen abbre-
viated fx.

Chapter 12 FuncƟons of Several Variables

12.3 ParƟal DerivaƟves

Let y be a funcƟon of x. We have studied in great detail the derivaƟve of y with
respect to x, that is, dy

dx , whichmeasures the rate at which y changes with respect
to x. Consider now z = f(x, y). It makes sense to want to know how z changes
with respect to x and/or y. This secƟon begins our invesƟgaƟon into these rates
of change.

Consider the funcƟon z = f(x, y) = x2 + 2y2, as graphed in Figure 12.11(a).
By fixing y = 2, we focus our aƩenƟon to all points on the surface where the
y-value is 2, shown in both parts (a) and (b) of the figure. These points form a
curve in space: z = f(x, 2) = x2 + 8 which is a funcƟon of just one variable. We
can take the derivaƟve of zwith respect to x along this curve and find equaƟons
of tangent lines, etc.

The key noƟon to extract from this example is: by treaƟng y as constant (it
does not vary) we can consider how z changes with respect to x. In a similar
fashion, we can hold x constant and consider how z changes with respect to
y. This is the underlying principle of parƟal derivaƟves. We state the formal,
limit–based definiƟon first, then show how to compute these parƟal derivaƟves
without directly taking limits.

..
DefiniƟon 83 ParƟal DerivaƟve

Let z = f(x, y) be a conƟnuous funcƟon on an open set S in R2.

1. The parƟal derivaƟve of f with respect to x is:

fx(x, y) = lim
h→0

f(x+ h, y)− f(x, y)
h

.

2. The parƟal derivaƟve of f with respect to y is:

fy(x, y) = lim
h→0

f(x, y+ h)− f(x, y)
h

.

.. Example 402 ..CompuƟng parƟal derivaƟves with the limit definiƟon
Let f(x, y) = x2y+ 2x+ y3. Find fx(x, y) using the limit definiƟon.

Notes:
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12.3 ParƟal DerivaƟves

SÊ½çã®ÊÄ Using DefiniƟon 83, we have:

fx(x, y) = lim
h→0

f(x+ h, y)− f(x, y)
h

= lim
h→0

(x+ h)2y+ 2(x+ h) + y3 − (x2y+ 2x+ y3)
h

= lim
h→0

(x2y+ 2xhy+ h2y+ 2x+ 2h+ y3 − (x2y+ 2x+ y3)
h

= lim
h→0

2xhy+ h2y+ 2h
h

= lim
h→0

2xy+ hy+ 2

= 2xy+ 2.

We have found fx(x, y) = 2xy+ 2. ...

Example 402 found a parƟal derivaƟve using the formal, limit–based defi-
niƟon. Using limits is not necessary, though, as we can rely on our previous
knowledge of derivaƟves to compute parƟal derivaƟves easily. When comput-
ing fx(x, y), we hold y fixed – it does not vary. Therefore we can compute the
derivaƟve with respect to x by treaƟng y as a constant or coefficient.

Just as d
dx

(
5x2
)
= 10x, we compute ∂

∂x

(
x2y
)
= 2xy. Here we are treaƟng y

as a coefficient.
Just as d

dx

(
53
)
= 0, we compute ∂

∂x

(
y3
)
= 0. Here we are treaƟng y as a

constant. More examples will help make this clear.

.. Example 403 ..Finding parƟal derivaƟves
Find fx(x, y) and fy(x, y) in each of the following.

1. f(x, y) = x3y2 + 5y2 − x+ 7

2. f(x, y) = cos(xy2) + sin x

3. f(x, y) = ex
2y3
√
x2 + 1

SÊ½çã®ÊÄ

1. We have f(x, y) = x3y2 + 5y2 − x+ 7.
Begin with fx(x, y). Keep y fixed, treaƟng it as a constant or coefficient, as
appropriate:

fx(x, y) = 3x2y2 − 1.

Note how the 5y2 and 7 terms go to zero.

Notes:
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To compute fy(x, y), we hold x fixed:

fy(x, y) = 2x3y+ 10y.

Note how the−x and 7 terms go to zero.

2. We have f(x, y) = cos(xy2) + sin x.
Begin with fx(x, y). We need to apply the Chain Rule with the cosine term;
y2 is the coefficient of the x-term inside the cosine funcƟon.

fx(x, y) = − sin(xy2)(y2) + cos x = −y2 sin(xy2) + cos x.

To find fy(x, y), note that x is the coefficient of the y2 term inside of the
cosine term; also note that since x is fixed, sin x is also fixed, and we treat
it as a constant.

fy(x, y) = − sin(xy2)(2xy) = −2xy sin(xy2).

3. We have f(x, y) = ex
2y3
√
x2 + 1.

Beginning with fx(x, y), note how we need to apply the Product Rule.

fx(x, y) = ex
2y3(2xy3)

√
x2 + 1+ ex

2y3 1
2
(
x2 + 1

)−1/2

= 2xy3ex
2y3 +

ex
2y3

2
√
x2 + 1

.

Note that when finding fy(x, y)we do not have to apply the Product Rule;
since

√
x2 + 1 does not contain y, we treat it as fixed and hence becomes

a coefficient of the ex
2y3 term.

fy(x, y) = ex
2y3(3x2y2)

√
x2 + 1 = 3x2y2ex

2y3
√

x2 + 1.
...

We have shown how to compute a parƟal derivaƟve, but it may sƟll not be
clear what a parƟal derivaƟve means. Given z = f(x, y), fx(x, y) measures the
rate at which z changes as only x varies: y is held constant.

Imagine standing in a rolling meadow, then beginning to walk due east. De-
pending on your locaƟon, you might walk up, sharply down, or perhaps not
change elevaƟon at all. This is similar to measuring zx: you are moving only east
(in the “x”-direcƟon) and not north/south at all. Going back to your original lo-
caƟon, imagine now walking due north (in the “y”-direcƟon). Perhaps walking
due north does not change your elevaƟon at all. This is analogous to zy = 0: z
does not change with respect to y. We can see that zx and zy do not have to be
the same, or even similar, as it is easy to imagine circumstances where walking
east means you walk downhill, though walking north makes you walk uphill.

Notes:
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Figure 12.12: IllustraƟng the meaning of
parƟal derivaƟves.

12.3 ParƟal DerivaƟves

The following example helps us visualize this more.

.. Example 404 EvaluaƟng parƟal derivaƟves
Let z = f(x, y) = −x2 − 1

2y
2 + xy + 10. Find fx(2, 1) and fy(2, 1) and interpret

their meaning.

SÊ½çã®ÊÄ We begin by compuƟng fx(x, y) = −2x + y and fy(x, y) =
−y+ x. Thus

fx(2, 1) = −3 and fy(2, 1) = 1.

It is also useful to note that f(2, 1) = 7.5. What does each of these numbers
mean?

Consider fx(2, 1) = −3, along with Figure 12.12(a). If one “stands” on the
surface at the point (2, 1, 7.5) and moves parallel to the x-axis (i.e., only the x-
value changes, not the y-value), then the instantaneous rate of change is −3.
Increasing the x-value will decrease the z-value; decreasing the x-value will in-
crease the z-value.

Now consider fy(2, 1) = 1, illustrated in Figure 12.12(b). Moving along the
curve drawn on the surface, i.e., parallel to the y-axis and not changing the x-
values, increases the z-value instantaneously at a rate of 1. Increasing the y-
value by 1 would increase the z-value by approximately 1.

Since the magnitude of fx is greater than the magnitude of fy at (2, 1), it is
“steeper” in the x-direcƟon than in the y-direcƟon. ..

Second ParƟal DerivaƟves

Let z = f(x, y). We have learned to find the parƟal derivaƟves fx(x, y) and
fy(x, y), which are each funcƟons of x and y. Thereforewe can take parƟal deriva-
Ɵves of them, each with respect to x and y. We define these “second parƟals”
along with the notaƟon, give examples, then discuss their meaning.

Notes:
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Note: The terms in DefiniƟon 84 all de-
pend on limits, so each definiƟon comes
with the caveat “where the limit exists.”

Chapter 12 FuncƟons of Several Variables

..
DefiniƟon 84 Second ParƟal DerivaƟve, Mixed ParƟal DerivaƟve

Let z = f(x, y) be conƟnuous on an open set S.

1. The second parƟal derivaƟve of f with respect to x then x is

∂

∂x

(
∂f
∂x

)
=

∂2f
∂x2

=
(
fx
)
x = fxx

2. The second parƟal derivaƟve of f with respect to x then y is

∂

∂y

(
∂f
∂x

)
=

∂2f
∂y∂x

=
(
fx
)
y = fxy

Similar definiƟons hold for
∂2f
∂y2

= fyy and
∂2f
∂x∂y

= fyx.

The second parƟal derivaƟves fxy and fyx aremixed parƟal derivaƟves.

The notaƟon of second parƟal derivaƟves gives some insight into the nota-
Ɵon of the second derivaƟve of a funcƟon of a single variable. If y = f(x), then

f ′′(x) =
d2y
dx2

. The “d2y” porƟon means “take the derivaƟve of y twice,” while
“dx2” means “with respect to x both Ɵmes.” When we only know of funcƟons of
a single variable, this laƩer phrase seems silly: there is only one variable to take
the derivaƟve with respect to. Now that we understand funcƟons of mulƟple
variables, we see the importance of specifying which variables we are referring
to.

.. Example 405 ..Second parƟal derivaƟves
For each of the following, find all six first and second parƟal derivaƟves. That is,
find

fx, fy, fxx, fyy, fxy and fyx .

1. f(x, y) = x3y2 + 2xy3 + cos x

2. f(x, y) =
x3

y2

3. f(x, y) = ex sin(x2y)

SÊ½çã®ÊÄ In each, we give fx and fy immediately and then spend Ɵme de-
riving the second parƟal derivaƟves.

Notes:
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1. f(x, y) = x3y2 + 2xy3 + cos x
fx(x, y) = 3x2y2 + 2y3 − sin x
fy(x, y) = 2x3y+ 6xy2

fxx(x, y) =
∂

∂x
(
fx
)
=

∂

∂x
(
3x2y2 + 2y3 − sin x

)
= 6xy2 − cos x

fyy(x, y) =
∂

∂y
(
fy
)
=

∂

∂y
(
2x3y+ 6xy2

)
= 2x3 + 12xy

fxy(x, y) =
∂

∂y
(
fx
)
=

∂

∂y
(
3x2y2 + 2y3 − sin x

)
= 6x2y+ 6y2

fyx(x, y) =
∂

∂x
(
fx
)
=

∂

∂x
(
2x3y+ 6xy2

)
= 6x2y+ 6y2

2. f(x, y) =
x3

y2
= x3y−2

fx(x, y) =
3x2

y2

fy(x, y) = −2x3

y3

fxx(x, y) =
∂

∂x
(
fx
)
=

∂

∂x
(3x2
y2
)
=

6x
y2

fyy(x, y) =
∂

∂y
(
fy
)
=

∂

∂y
(
− 2x3

y3
)
=

6x3

y4

fxy(x, y) =
∂

∂y
(
fx
)
=

∂

∂y
(3x2
y2
)
= −6x2

y3

fyx(x, y) =
∂

∂x
(
fx
)
=

∂

∂x
(
− 2x3

y3
)
= −6x2

y3

3. f(x, y) = ex sin(x2y)
Because the following parƟal derivaƟves get rather long, weomit the extra
notaƟon and just give the results. In several cases, mulƟple applicaƟons
of the Product and Chain Rules will be necessary, followed by some basic
combinaƟon of like terms.

fx(x, y) = ex sin(x2y) + 2xyex cos(x2y)
fy(x, y) = x2ex cos(x2y)
fxx(x, y) = ex sin(x2y)+ 4xyex cos(x2y)+ 2yex cos(x2y)− 4x2y2ex sin(x2y)
fyy(x, y) = −x4ex sin(x2y)
fxy(x, y) = x2ex cos(x2y) + 2xex cos(x2y)− 2x3yex sin(x2y)
fyx(x, y) = x2ex cos(x2y) + 2xex cos(x2y)− 2x3yex sin(x2y)...

Notes:

673
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NoƟce how in each of the three funcƟons in Example 405, fxy = fyx. Due to
the complexity of the examples, this likely is not a coincidence. The following
theorem states that it is not.

..
Theorem 103 Mixed ParƟal DerivaƟves

Let f be defined such that fxy and fyx are conƟnuous on an open set S.
Then for each point (x, y) in S, fxy(x, y) = fyx(x, y).

Finding fxy and fyx independently and comparing the results provides a con-
venient way of checking our work.

Understanding Second ParƟal DerivaƟves

Now that we know how to find second parƟals, we invesƟgatewhat they tell
us.

Again we refer back to a funcƟon y = f(x) of a single variable. The second
derivaƟve of f is “the derivaƟve of the derivaƟve,” or “the rate of change of the
rate of change.” The second derivaƟve measures how much the derivaƟve is
changing. If f ′′(x) < 0, then the derivaƟve is geƫng smaller (so the graph of f is
concave down); if f ′′(x) > 0, then the derivaƟve is growing, making the graph
of f concave up.

Now consider z = f(x, y). Similar statements can be made about fxx and fyy
as could be made about f ′′(x) above. When taking derivaƟves with respect to
x twice, we measure how much fx changes with respect to x. If fxx(x, y) < 0,
it means that as x increases, fx decreases, and the graph of f will be concave
down in the x-direcƟon. Using the analogy of standing in the rolling meadow
used earlier in this secƟon, fxx measures whether one’s path is concave up/down
when walking due east.

Similarly, fyy measures the concavity in the y-direcƟon. If fyy(x, y) > 0, then
fy is increasing with respect to y and the graph of f will be concave up in the y-
direcƟon. Appealing to the rollingmeadow analogy again, fyy measures whether
one’s path is concave up/down when walking due north.

We now consider the mixed parƟals fxy and fyx. The mixed parƟal fxy mea-
sures howmuch fx changeswith respect to y. Once again using the rollingmeadow
analogy, fx measures the slope if one walks due east. Looking east, begin walk-
ing north (side–stepping). Is the path towards the east geƫng steeper? If so,
fxy > 0. Is the path towards the east not changing in steepness? If so, then
fxy = 0. A similar thing can be said about fyx: consider the steepness of paths
heading north while side–stepping to the east.

The following example examines these ideas with concrete numbers and

Notes:
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Figure 12.13: Understanding the second
parƟal derivaƟves in Example 406.

12.3 ParƟal DerivaƟves

graphs.

.. Example 406 Understanding second parƟal derivaƟves
Let z = x2 − y2 + xy. Evaluate the 6 first and second parƟal derivaƟves at
(−1/2, 1/2) and interpret what each of these numbers mean.

SÊ½çã®ÊÄ We find that:
fx(x, y) = 2x+ y, fy(x, y) = −2y+ x, fxx(x, y) = 2, fyy(x, y) = −2 and

fxy(x, y) = fyx(x, y) = 1. Thus at (−1/2, 1/2) we have

fx(−1/2, 1/2) = −1/2, fy(−1/2, 1/2) = −3/2.

The slope of the tangent line at (−1/2, 1/2,−1/4) in the direcƟon of x is−1/2:
if one moves from that point parallel to the x-axis, the instantaneous rate of
change will be−1/2. The slope of the tangent line at this point in the direcƟon
of y is−3/2: if onemoves from this point parallel to the y-axis, the instantaneous
rate of change will be−3/2. These tangents lines are graphed in Figure 12.13(a)
and (b), respecƟvely, where the tangent lines are drawn in a solid line.

Now consider only Figure 12.13(a). Three directed tangent lines are drawn
(two are dashed), each in the direcƟon of x; that is, each has a slope determined
by fx. Note how as y increases, the slope of these lines get closer to 0. Since the
slopes are all negaƟve, geƫng closer to 0 means the slopes are increasing. The
slopes given by fx are increasing as y increases, meaning fxy must be posiƟve.

Since fxy = fyx, we also expect fy to increase as x increases. Consider Figure
12.13(b) where again three directed tangent lines are drawn, this Ɵme each in
the direcƟon of y with slopes determined by fy. As x increases, the slopes be-
come less steep (closer to 0). Since these are negaƟve slopes, this means the
slopes are increasing.

Thus far we have a visual understanding of fx, fy, and fxy = fyx. We now inter-
pret fxx and fyy. In Figure 12.13(a), we see a curve drawnwhere x is held constant
at x = −1/2: only y varies. This curve is clearly concave down, corresponding
to the fact that fyy < 0. In part (b) of the figure, we see a similar curve where y
is constant and only x varies. This curve is concave up, corresponding to the fact
that fxx > 0. ..

ParƟal DerivaƟves and FuncƟons of Three Variables

The concepts underlying parƟal derivaƟves can be easily extend to more
than two variables. We give some definiƟons and examples in the case of three
variables and trust the reader can extend these definiƟons to more variables if
needed.

Notes:
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..
DefiniƟon 85 ParƟal DerivaƟves with Three Variables

Let w = f(x, y, z) be a conƟnuous funcƟon on an open set S in R3.
The parƟal derivaƟve of f with respect to x is:

fx(x, y, z) = lim
h→0

f(x+ h, y, z)− f(x, y, z)
h

.

Similar definiƟons hold for fy(x, y, z) and fz(x, y, z).

By taking parƟal derivaƟves of parƟal derivaƟves, we can find second parƟal
derivaƟves of f with respect to z then y, for instance, just as before.

.. Example 407 ParƟal derivaƟves of funcƟons of three variables
For each of the following, find fx, fy, fz, fxz, fyz, and fzz.

1. f(x, y, z) = x2y3z4 + x2y2 + x3z3 + y4z4

2. f(x, y, z) = x sin(yz)

SÊ½çã®ÊÄ

1. fx = 2xy3z4 + 2xy2 + 3x2z3; fy = 3x2y2z4 + 2x2y+ 4y3z4;
fz = 4x2y3z3 + 3x3z2 + 4y4z3; fxz = 8xy3z3 + 9x2z2;
fyz = 12x2y2z3 + 16y3z3; fzz = 12x2y3z2 + 6x3z+ 12y4z2

2. fx = sin(yz); fy = xz cos(yz); fz = xy cos(yz);
fxz = y cos(yz); fyz = x cos(yz)− xyz sin(yz); fzz = −xy2 sin(xy)..

Higher Order ParƟal DerivaƟves

We can conƟnue taking parƟal derivaƟves of parƟal derivaƟves of parƟal
derivaƟves of …; we do not have to stop with second parƟal derivaƟves. These
higher order parƟal derivaƟves do not have a Ɵdy graphical interpretaƟon; nev-
ertheless they are not hard to compute and worthy of some pracƟce.

We do not formally define each higher order derivaƟve, but rather give just
a few examples of the notaƟon.

fxyx(x, y) =
∂

∂x

(
∂

∂y

(
∂f
∂x

))
and

fxyz(x, y, z) =
∂

∂z

(
∂

∂y

(
∂f
∂x

))
.
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12.3 ParƟal DerivaƟves

.. Example 408 Higher order parƟal derivaƟves

1. Let f(x, y) = x2y2 + sin(xy). Find fxxy and fyxx.

2. Let f(x, y, z) = x3exy + cos(z). Find fxyz.

SÊ½çã®ÊÄ

1. To find fxxy, we first find fx, then fxx, then fxxy:

fx = 2xy2 + y cos(xy) fxx = 2y2 − y2 sin(xy)

fxxy = 4y− 2y sin(xy)− xy2 cos(xy).

To find fyxx, we first find fy, then fyx, then fyxx:

fy = 2x2y+ x cos(xy) fyx = 4xy+ cos(xy)− xy sin(xy)

fyxx = 4y− y sin(xy)−
(
y sin(xy) + xy2 cos(xy)

)
= 4y− 2y sin(xy)− xy2 cos(xy).

Note how fxxy = fyxx.

2. To find fxyz, we find fx, then fxy, then fxyz:

fx = 3x2exy + x3yexy fxy = 3x3exy + x3exy + x4yexy = 4x3exy + x4yexy

fxyz = 0.
..

In the previous example we saw that fxxy = fyxx; this is not a coincidence.
While we do not state this as a formal theorem, as long as each parƟal derivaƟve
is conƟnuous, it does not maƩer the order in which the parƟal derivaƟves are
taken. For instance, fxxy = fxyx = fyxx.

This can be useful at Ɵmes. Had we known this, the second part of Exam-
ple 408 would have been much simpler to compute. Instead of compuƟng fxyz
in the x, y then z orders, we could have applied the z, then x then y order (as
fxyz = fzxy). It is easy to see that fz = − sin z; then fzx and fzxy are clearly 0 as fz
does not contain an x or y.
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A brief review of this secƟon: parƟal derivaƟves measure the instantaneous
rate of change of a mulƟvariable funcƟon with respect to one variable. With
z = f(x, y), the parƟal derivaƟves fx and fy measure the instantaneous rate of
change of z when moving parallel to the x- and y-axes, respecƟvely. How do we
measure the rate of change at a point when we do not move parallel to one of
these axes? What if we move in the direƟon given by the vector ⟨2, 1⟩? Can
we measure that rate of change? The answer is, of course, yes, we can. This is
the topic of the secƟon aŌer next. First, we need to define what it means for a
funcƟon of two variables to be differenƟable.

Notes:
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Exercises 12.3
Terms and Concepts
1. What is the difference between a constant and a coeffi-

cient?

2. Given a funcƟon z = f(x, y), explain in your ownwords how
to compute fx.

3. In the mixed parƟal fracƟon fxy, which is computed first, fx
or fy?

4. In the mixed parƟal fracƟon
∂2f
∂x∂y

, which is computed first,

fx or fy?

Problems
Exercises 5 – 8, evaluate fx(x, y) and fy(x, y) at the indicated
point.

5. f(x, y) = x2y− x+ 2y+ 3 at (1, 2)

6. f(x, y) = x3 − 3x+ y2 − 6y at (−1, 3)

7. f(x, y) = sin y cos x at (π/3, π/3)

8. f(x, y) = ln(xy) at (−2,−3)

Exercises 9 – 26, find fx, fy, fxx, fyy, fxy and fyx.

9. f(x, y) = x2y+ 3x2 + 4y− 5

10. f(x, y) = y3 + 3xy2 + 3x2y+ x3

11. f(x, y) =
x
y

12. f(x, y) =
4
xy

13. f(x, y) = ex
2+y2

14. f(x, y) = ex+2y

15. f(x, y) = sin x cos y

16. f(x, y) = (x+ y)3

17. f(x, y) = cos(5xy3)

18. f(x, y) = sin(5x2 + 2y3)

19. f(x, y) =
√

4xy2 + 1

20. f(x, y) = (2x+ 5y)
√
y

21. f(x, y) =
1

x2 + y2 + 1

22. f(x, y) = 5x− 17y

23. f(x, y) = 3x2 + 1

24. f(x, y) = ln(x2 + y)

25. f(x, y) =
ln x
4y

26. f(x, y) = 5ex sin y+ 9

Exercises 27 – 30, form a funcƟon z = f(x, y) such that fx and
fy match those given.

27. fx = sin y+ 1, fy = x cos y

28. fx = x+ y, fy = x+ y

29. fx = 6xy− 4y2, fy = 3x2 − 8xy+ 2

30. fx =
2x

x2 + y2
, fy =

2y
x2 + y2

Exercises 31 – 34, find fx, fy, fz, fyz and fzy.

31. f(x, y, z) = x2e2y−3z

32. f(x, y, z) = x3y2 + x3z+ y2z

33. f(x, y, z) =
3x
7y2z

34. f(x, y, z) = ln(xyz)
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12.4 DifferenƟability and the Total DifferenƟal
WestudieddifferenƟals in SecƟon 4.4, whereDefiniƟon 18 states that if y = f(x)
and f is differenƟable, then, dy = f ′(x)dx. One important use of this differenƟal
is in IntegraƟon by SubsƟtuƟon. Another important applicaƟon is approxima-
Ɵon. Let ∆x = dx represent a change in x. When dx is small, dy ≈ ∆y, the
change in y resulƟng from the change in x. Fundamental in this understanding
is this: as dx gets small, the difference between ∆y and dy goes to 0. Another
way of staƟng this: as dx goes to 0, the error in approximaƟng∆y with dy goes
to 0.

We extend this idea to funcƟons of two variables. Let z = f(x, y), and let
∆x = dx and ∆y = dy represent changes in x and y, respecƟvely. Let ∆z =
f(x+dx, y+dy)− f(x, y) be the change in z over the change in x and y. Recalling
that fx and fy give the instantaneous rates of z-change in the x- and y-direcƟons,
respecƟvely, we can approximate∆z with dz = fxdx + fydy; in words, the total
change in z is approximately the change caused by changing x plus the change
caused by changing y. In a moment we give an indicaƟon of whether or not this
approximaƟon is any good. First we give a name to dz.

..
DefiniƟon 86 Total DifferenƟal

Let z = f(x, y) be conƟnuous on an open set S. Let dx and dy represent
changes in x and y, respecƟvely. Where the parƟal derivaƟves fx and fy
exist, the total differenƟal of z is

dz = fx(x, y)dx+ fy(x, y)dy.

.. Example 409 Finding the total differenƟal
Let z = x4e3y. Find dz.

SÊ½çã®ÊÄ We compute the parƟal derivaƟves: fx = 4x3e3y and fy =
3x4e3y. Following DefiniƟon 86, we have

dz = 4x3e3ydx+ 3x4e3ydy...

We can approximate ∆z with dz, but as with all approximaƟons, there is
error involved. A good approximaƟon is one in which the error is small. At a
given point (x0, y0), let Ex and Ey be funcƟons of dx and dy such that Exdx+Eydy
describes this error. Then

∆z = dz+ Exdx+ Eydy
= fx(x0, y0)dx+ fy(x0, y0)dy+ Exdx+ Eydy.

Notes:
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If the approximaƟon of ∆z by dz is good, then as dx and dy get small, so does
Exdx+ Eydy. The approximaƟon of∆z by dz is even beƩer if, as dx and dy go to
0, so do Ex and Ey. This leads us to our definiƟon of differenƟability.

..
DefiniƟon 87 MulƟvariable DifferenƟability

Let z = f(x, y) be defined on an open set S containing (x0, y0) where
fx(x0, y0) and fy(x0, y0) exist. Let dzbe the total differenƟal of z at (x0, y0),
let∆z = f(x0 + dx, y0 + dy)− f(x0, y0), and let Ex and Ey be funcƟons of
dx and dy such that

∆z = dz+ Exdx+ Eydy.

1. f is differenƟable at (x0, y0) if, given ε > 0, there is a δ > 0 such
that if || ⟨dx, dy⟩ || < δ, then || ⟨Ex, Ey⟩ || < ε. That is, as dx and dy
go to 0, so do Ex and Ey.

2. f is differenƟable on S if f is differenƟable at every point in S. If f is
differenƟable on R2, we say that f is differenƟable everywhere.

.. Example 410 ..Showing a funcƟon is differenƟable
Show f(x, y) = xy+ 3y2 is differenƟable using DefiniƟon 87.

SÊ½çã®ÊÄ We begin by finding f(x+ dx, y+ dy),∆z, fx and fy.

f(x+ dx, y+ dy) = (x+ dx)(y+ dy) + 3(y+ dy)2

= xy+ xdy+ ydx+ dxdy+ 3y2 + 6ydy+ 3dy2.

∆z = f(x+ dx, y+ dy)− f(x, y), so

∆z = xdy+ ydx+ dxdy+ 6ydy+ 3dy2.

It is straighƞorward to compute fx = y and fy = x+6y. Consider once more∆z:

∆z = xdy+ ydx+ dxdy+ 6ydy+ 3dy2 (now reorder)

= ydx+ xdy+ 6ydy+ dxdy+ 3dy2

= (y)︸︷︷︸
fx

dx+ (x+ 6y)︸ ︷︷ ︸
fy

dy+ (dy)︸︷︷︸
Ex

dx+ (3dy)︸ ︷︷ ︸
Ey

dy

= fxdx+ fydy+ Exdx+ Eydy.

With Ex = dy and Ey = 3dy, it is clear that as dx and dy go to 0, Ex and Ey also go
to 0. Since this did not depend on a specific point (x0, y0), we can say that f(x, y)

Notes:
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is differenƟable for all pairs (x, y) in R2, or, equivalently, that f is differenƟable
everywhere. ...

Our intuiƟve understanding of differenƟability of funcƟons y = f(x) of one
variable was that the graph of f was “smooth.” A similar intuiƟve understand-
ing of funcƟons z = f(x, y) of two variables is that the surface defined by f is
also “smooth,” not containing cusps, edges, breaks, etc. The following theorem
states that differenƟable funcƟons are conƟnuous, followed by another theo-
rem that provides a more tangible way of determining whether a great number
of funcƟon are differenƟable or not.

..
Theorem 104 ConƟnuity and DifferenƟability of MulƟvariable
FuncƟons

Let z = f(x, y) be defined on an open set S containing (x0, y0). If f is
differenƟable at (x0, y0), then f is conƟnuous at (x0, y0).

..
Theorem 105 DifferenƟability of MulƟvariable FuncƟons

Let z = f(x, y) be defined on an open set S containing (x0, y0). If fx and
fy are both conƟnuous on S, then f is differenƟable on S.

The theorems assure us that essenƟally all funcƟons thatwe see in the course
of our studies here are differenƟable (and hence conƟnuous) on their natural do-
mains. There is a difference between DefiniƟon 87 and Theorem 105, though: it
is possible for a funcƟon f to be differenƟable yet fx and/or fy is not conƟnuous.
Such strange behavior of funcƟons is a source of delight for many mathemaƟ-
cians.

When fx and fy exist at a point but are not conƟnuous at that point, we need
to use other methods to determine whether or not f is differenƟable at that
point.

For instance, consider the funcƟon

f(x, y) =
{ xy

x2+y2 (x, y) ̸= (0, 0)
0 (x, y) = (0, 0)
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We can find fx(0, 0) and fy(0, 0) using DefiniƟon 83:

fx(0, 0) = lim
h→0

f(0+ h, 0)− f(0, 0)
h

= lim
h→0

0
h2

= 0;

fy(0, 0) = lim
h→0

f(0, 0+ h)− f(0, 0)
h

= lim
h→0

0
h2

= 0.

Both fx and fy exist at (0, 0), but they are not conƟnuous at (0, 0), as

fx(x, y) =
y(y2 − x2)
(x2 + y2)2

and fy(x, y) =
x(x2 − y2)
(x2 + y2)2

are not conƟnuous at (0, 0). (Take the limit of fx as (x, y) → (0, 0) along the
x- and y-axes; they give different results.) So even though fx and fy exist at ev-
ery point in the x-y plane, they are not conƟnuous. Therefore it is possible, by
Theorem 105, for f to not be differenƟable.

Indeed, it is not. One can show that f is not conƟnuous at (0, 0) (see Exam-
ple 398), and by Theorem 104, this means f is not differenƟable at (0, 0).

ApproximaƟng with the Total DifferenƟal

By the definiƟon, when f is differenƟable dz is a good approximaƟon for∆z
when dx and dy are small. We give some simple examples of how this is used
here.

.. Example 411 ..ApproximaƟng with the total differenƟal
Let z =

√
x sin y. Approximate f(4.1, 0.8).

SÊ½çã®ÊÄ Recognizing that π/4 ≈ 0.785 ≈ 0.8, we can approximate
f(4.1, 0.8) using f(4, π/4). We can easily compute f(4, π/4) =

√
4 sin(π/4) =

2
(√

2
2

)
=

√
2 ≈ 1.414. Without calculus, this is the best approximaƟon we

could reasonably come up with. The total differenƟal gives us a way of adjusƟng
this iniƟal approximaƟon to hopefully get a more accurate answer.

We let∆z = f(4.1, 0.8)−f(4, π/4). The total differenƟal dz is approximately
equal to∆z, so

f(4.1, 0.8)− f(4, π/4) ≈ dz ⇒ f(4.1, 0.8) ≈ dz+ f(4, π/4). (12.1)

To find dz, we need fx and fy.

Notes:
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fx(x, y) =
sin y
2
√
x

⇒ fx(4, π/4) =
sin π/4
2
√
4

=

√
2/2
4

=
√
2/8.

fy(x, y) =
√
x cos y ⇒ fy(4, π/4) =

√
4
√
2
2

=
√
2.

ApproximaƟng 4.1 with 4 gives dx = 0.1; approximaƟng 0.8 with π/4 gives
dy ≈ 0.015. Thus

dz(4, π/4) = fx(4, π/4)(0.1) + fy(4, π/4)(0.015)

=

√
2
8

(0.1) +
√
2(0.015)

≈ 0.039.

Returning to EquaƟon (12.1), we have

f(4.1, 0.8) ≈ 0.039+ 1.414 = 1.4531.

We, of course, can compute the actual value of f(4.1, 0.8)with a calculator; the
actual value, accurate to 5 places aŌer the decimal, is 1.45254. Obviously our
approximaƟon is quite good. ...

The point of the previous example was not to develop an approximaƟon
method for known funcƟons. AŌer all, we can very easily compute f(4.1, 0.8)
using readily available technology. Rather, it serves to illustrate how well this
method of approximaƟon works, and to reinforce the following concept:

“New posiƟon = old posiƟon+ amount of change,” so
“New posiƟon≈ old posiƟon + approximate amount of change.”

In the previous example, we could easily compute f(4, π/4) and could ap-
proximate the amount of z-change when compuƟng f(4.1, 0.8), leƫng us ap-
proximate the new z-value.

It may be surprising to learn that it is not uncommon to know the values of
f, fx and fy at a parƟcular point without actually knowing f. The total differenƟal
gives a good method of approximaƟng f at nearby points.

.. Example 412 ..ApproximaƟng an unknown funcƟon
Given that f(2,−3) = 6, fx(2,−3) = 1.3 and fy(2,−3) = −0.6, approximate
f(2.1,−3.03).
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SÊ½çã®ÊÄ The total differenƟal approximates howmuch f changes from
the point (2,−3) to the point (2.1,−3.03). With dx = 0.1 and dy = −0.03, we
have

dz = fx(2,−3)dx+ fy(2,−3)dy
= 1.3(0.1) + (−0.6)(−0.03)
= 0.148.

The change in z is approximately 0.148, so we approximate f(2.1,−3.03) ≈
6.148. ...

Error/SensiƟvity Analysis

The total differenƟal gives an approximaƟon of the change in z given small
changes in x and y. We can use this to approximate error propagaƟon; that is,
if the input is a liƩle off from what it should be, how far from correct will the
output be? We demonstrate this in an example.

.. Example 413 SensiƟvity analysis
A cylindrical steel storage tank is to be built that is 10Ō tall and 4Ō across in diam-
eter. It is known that the steel will expand/contract with temperature changes;
is the overall volume of the tank more sensiƟve to changes in the diameter or in
the height of the tank?

SÊ½çã®ÊÄ A cylindrical solid with height h and radius r has volume V =
πr2h. We can view V as a funcƟon of two variables, r and h. We can compute
parƟal derivaƟves of V:

∂V
∂r

= Vr(r, h) = 2πrh and
∂V
∂h

= Vh(r, h) = πr2.

The total differenƟal is dV = (2πrh)dr + (πr2)dh.When h = 10 and r = 2, we
have dV = 40πdr + 4πdh. Note that the coefficient of dr is 40π ≈ 125.7; the
coefficient of dh is a tenth of that, approximately 12.57. A small change in radius
will be mulƟplied by 125.7, whereas a small change in height will be mulƟplied
by 12.57. Thus the volume of the tank is more sensiƟve to changes in radius
than in height. ..

The previous example showed that the volume of a parƟcular tank wasmore
sensiƟve to changes in radius than in height. Keep in mind that this analysis only
applies to a tank of those dimensions. A tank with a height of 1Ō and radius of
5Ō would be more sensiƟve to changes in height than in radius.

Notes:
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One could make a chart of small changes in radius and height and find exact
changes in volume given specific changes. While this provides exact numbers, it
does not give as much insight as the error analysis using the total differenƟal.

DifferenƟability of FuncƟons of Three Variables

The definiƟon of differenƟability for funcƟons of three variables is very simi-
lar to that of funcƟons of two variables. We again start with the total differenƟal.

..
DefiniƟon 88 Total DifferenƟal

Let w = f(x, y, z) be conƟnuous on an open set S. Let dx, dy and dz rep-
resent changes in x, y and z, respecƟvely. Where the parƟal derivaƟves
fx, fy and fz exist, the total differenƟal of w is

dz = fx(x, y, z)dx+ fy(x, y, z)dy+ fz(x, y, z)dz.

This differenƟal can be a good approximaƟon of the change in w when w =
f(x, y, z) is differenƟable.

..
DefiniƟon 89 MulƟvariable DifferenƟability

Let w = f(x, y, z) be defined on an open ball B containing (x0, y0, z0)
where fx(x0, y0, z0), fy(x0, y0, z0) and fz(x0, y0, z0) exist. Let dw be the
total differenƟal of w at (x0, y0, z0), let ∆w = f(x0 + dx, y0 + dy, z0 +
dz)− f(x0, y0, z0), and let Ex, Ey and Ez be funcƟons of dx, dy and dz such
that

∆w = dw+ Exdx+ Eydy+ Ezdz.

1. f is differenƟable at (x0, y0, z0) if, given ε > 0, there is a δ > 0
such that if || ⟨dx, dy, dz⟩ || < δ, then || ⟨Ex, Ey, Ez⟩ || < ε.

2. f is differenƟable on B if f is differenƟable at every point in B. If f
is differenƟable onR3, we say that f is differenƟable everywhere.

Just as before, this definiƟon gives a rigorous statement about what it means
to be differenƟable that is not very intuiƟve. We follow it with a theorem similar
to Theorem 105.
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..
Theorem 106 ConƟnuity and DifferenƟability of FuncƟons of Three
Variables

Let w = f(x, y, z) be defined on an open ball B containing (x0, y0, z0).

1. If f is differenƟable at (x0, y0, z0), then f is conƟnuous at (x0, y0, z0).

2. If fx, fy and fz are conƟnuous on B, then f is differenƟable on B.

This set of definiƟon and theorem extends to funcƟons of any number of
variables. The theorem again gives us a simple way of verifying that most func-
Ɵons that we enounter are differenƟable on their natural domains.

Summary

This secƟon has given us a formal definiƟon of what it means for a funcƟons
to be “differenƟable,” along with a theorem that gives a more accessible un-
derstanding. The following secƟons return to noƟons prompted by our study of
parƟal derivaƟves that make use of the fact that most funcƟons we encounter
are differenƟable.

Notes:
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Exercises 12.4
Terms and Concepts
1. T/F: If f(x, y) is differenƟable on S, the f is conƟnuous on S.

2. T/F: If fx and fy are conƟnuous on S, then f is differenƟable
on S.

3. T/F: If z = f(x, y) is differenƟable, then the change in z over
small changes dx and dy in x and y is approximately dz.

4. Finish the sentence: “The new z-value is approximately the
old z-value plus the approximate .”

Problems
Exercises 5 – 8, find the total differenƟal dz.

5. z = x sin y+ x2

6. z = (2x2 + 3y)2

7. z = 5x− 7y

8. z = xex+y

Exercises 9 – 12, a funcƟon z = f(x, y) is given. Give the indi-
cated approximaƟon using the total differenƟal.

9. f(x, y) =
√
x2 + y. Approximate f(2.95, 7.1) knowing

f(3, 7) = 4.

10. f(x, y) = sin x cos y. Approximate f(0.1,−0.1) knowing
f(0, 0) = 0.

11. f(x, y) = x2y − xy2. Approximate f(2.04, 3.06) knowing
f(2, 3) = −6.

12. f(x, y) = ln(x − y). Approximate f(5.1, 3.98) knowing
f(5, 4) = 0.

Exercises 13 – 16 ask a variety of quesƟons dealing with ap-
proximaƟng error and sensiƟvity analysis.

13. A cylindrical storage tank is to be 2Ō tall with a radius of 1Ō.
Is the volume of the tank more sensiƟve to changes in the
radius or the height?

14. ProjecƟle MoƟon: The x-value of an object moving un-
der the principles of projecƟle moƟon is x(θ, v0, t) =
(v0 cos θ)t. A parƟcular projecƟle is fired with an iniƟal ve-
locity of v0 = 250Ō/s and an angle of elevaƟon of θ = 60◦.
It travels a distance of 375Ō in 3 seconds.

Is the projecƟle more sensiƟve to errors in iniƟal speed or
angle of elevaƟon?

15. The length ℓ of a long wall is to be approximated. The angle
θ, as shown in the diagram (not to scale), is measured to
be 85◦, and the distance x is measured to be 30’. Assume
that the triangle formed is a right triangle.

Is the measurement of the length of ℓmore sensiƟve to er-
rors in the measurement of x or in θ?

.. ℓ =?.

θ

.

x

16. It is “common sense” that it is far beƩer to measure a long
distance with a long measuring tape rather than a short
one. A measured distance D can be viewed as the prod-
uct of the length ℓ of a measuring tape Ɵmes the number
n of Ɵmes it was used. For instance, using a 3’ tape 10
Ɵmes gives a length of 30’. To measure the same distance
with a 12’ tape, we would use the tape 2.5 Ɵmes. (I.e.,
30 = 12× 2.5.) Thus D = nℓ.

Suppose each Ɵme a measurement is taken with the tape,
the recorded distance is within 1/16” of the actual distance.
(I.e., dℓ = 1/16′′ ≈ 0.005Ō). Using differenƟals, show
why common sense proves correct in that it is beƩer to use
a long tape to measure long distances.

Exercises 17 – 18, find the total differenƟal dw.

17. w = x2yz3

18. w = ex sin y ln z

Exercises 19 – 22, use the informaƟon provided and the total
differenƟal to make the given approximaƟon.

19. f(3, 1) = 7, fx(3, 1) = 9, fy(3, 1) = −2. Approximate
f(3.05, 0.9).

20. f(−4, 2) = 13, fx(−4, 2) = 2.6, fy(−4, 2) = 5.1. Ap-
proximate f(−4.12, 2.07).

21. f(2, 4, 5) = −1, fx(2, 4, 5) = 2, fy(2, 4, 5) = −3,
fz(2, 4, 5) = 3.7. Approximate f(2.5, 4.1, 4.8).

22. f(3, 3, 3) = 5, fx(3, 3, 3) = 2, fy(3, 3, 3) = 0, fz(3, 3, 3) =
−2. Approximate f(3.1, 3.1, 3.1).
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Figure 12.14: Understanding the applica-
Ɵon of the MulƟvariable Chain Rule.

12.5 The MulƟvariable Chain Rule

12.5 The MulƟvariable Chain Rule

TheChain Rule, as learned in SecƟon 2.5, states that
d
dx

(
f
(
g(x)

))
= f ′

(
g(x)

)
g′(x).

If t = g(x), we can express the Chain Rule as
df
dx

=
df
dt

dt
dx

.

In this secƟon we extend the Chain Rule to funcƟons of more than one variable.

..
Theorem 107 MulƟvariable Chain Rule, Part I

Let z = f(x, y), x = g(t) and y = h(t), where f, g and h are differenƟable
funcƟons. Then z = f(x, y) = f

(
g(t), h(t)

)
is a funcƟon of t, and

dz
dt

=
df
dt

= fx(x, y)
dx
dt

+ fy(x, y)
dy
dt

=
∂f
∂x

dx
dt

+
∂f
∂y

dy
dt

.

It is good to understand what the situaƟon of z = f(x, y), x = g(t) and
y = h(t) describes. We know that z = f(x, y) describes a surface; we also
recognize that x = g(t) and y = h(t) are parametric equaƟons for a curve in
the x-y plane. Combining these together, we are describing a curve that lies on
the surface described by f. The parametric equaƟons for this curve are x = g(t),
y = h(t) and z = f

(
g(t), h(t)

)
.

Consider Figure 12.14 in which a surface is drawn, along with a dashed curve
in the x-y plane. RestricƟng f to just the points on this circle gives the curve
shown on the surface. The derivaƟve df

dt gives the instantaneous rate of change
of f with respect to t.

We now pracƟce applying the MulƟvariable Chain Rule.

.. Example 414 ..Using the MulƟvariable Chain Rule

Let z = x2y+ x, where x = sin t and y = e5t. Find
dz
dt

using the Chain Rule.

SÊ½çã®ÊÄ Following Theorem 107, we find

fx(x, y) = 2xy+ 1 fy(x, y) = x2
dx
dt

= cos t
dy
dt

= 5e5t.

Applying the theorem, we have
dz
dt

= (2xy+ 1) cos t+ 5x2e5t.

Notes:
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Figure 12.15: Ploƫng the path of a parƟ-
cle on a surface in Example 415.

Chapter 12 FuncƟons of Several Variables

This may look odd, as it seems that dz
dt is a funcƟon of x, y and t. Since x and y

are funcƟons of t, dz
dt is really just a funcƟon of t, and we can replace x with sin t

and y with e5t:

dz
dt

= (2xy+ 1) cos t+ 5x2e5t = (2 sin(t)e5t + 1) cos t+ 5e5t sin2 t....

The previous example can make us wonder: if we subsƟtuted for x and y at
the end to show that dz

dt is really just a funcƟon of t, why not subsƟtute before
differenƟaƟng, showing clearly that z is a funcƟon of t?

That is, z = x2y + x = (sin t)2e5t + sin t. Applying the Chain and Product
Rules, we have

dz
dt

= 2 sin t cos t e5t + 5 sin2 t e5t + cos t,

which matches the result from the example.
This may nowmake one wonder “What’s the point? If we could already find

the derivaƟve, why learn another way of finding it?” In some cases, applying
this rule makes deriving simpler, but this is hardly the power of the Chain Rule.
Rather, in the case where z = f(x, y), x = g(t) and y = h(t), the Chain Rule is
extremely powerful whenwe do not knowwhat f, g and/or h are. It may be hard
to believe, but oŌen in “the real world” we know rate–of–change informaƟon
(i.e., informaƟon about derivaƟves) without explicitly knowing the underlying
funcƟons. The Chain Rule allows us to combine several rates of change to find
another rate of change. The Chain Rule also as theoreƟc use, giving us insight
into the behavior of certain construcƟons (as we’ll see in the next secƟon).

We apply the Chain Rule once more to solve a max/min problem.

.. Example 415 ..Applying the MulƟvariable Chain Rule
Consider the surface z = x2 + y2 − xy, on which a parƟcle moves with x and y
coordinates given by x = cos t and y = sin t. Find dz

dt when t = 0, and findwhere
the parƟcle reaches its maximum/minimum z-values.

SÊ½çã®ÊÄ It is straighƞorward to compute

fx(x, y) = 2x− y fy(x, y) = 2y− x
dx
dt

= − sin t
dy
dt

= cos t.

Combining these according to the Chain Rule gives:

dz
dt

= −(2x− y) sin t+ (2y− x) cos t.

Notes:
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12.5 The MulƟvariable Chain Rule

When t = 0, x = 1 and y = 0. Thus
dz
dt

= −(2)(0) + (−1)(1) = −1. When
t = 0, the parƟcle is moving down, as shown in Figure 12.15.

To find where z-value is maximized/minimized on the parƟcle’s path, we set
dz
dt = 0 and solve for t:

dz
dt

= 0 = −(2x− y) sin t+ (2y− x) cos t

0 = −(2 cos t− sin t) sin t+ (2 sin t− cos t) cos t

0 = sin2 t− cos2 t

cos2 t = sin2 t

t = n
π

4
(for odd n)

We can use the First DerivaƟve Test to find that on [0, 2π], z has reaches its
absolute maximum at t = π/4 and 5π/4; it reaches its absolute minimum at
t = 3π/4 and 7π/4, as shown in Figure 12.15. ...

We can extend the Chain Rule to include the situaƟon where z is a funcƟon
of more than one variable, and each of these variables is also a funcƟon of more
than one variable. The basic case of this is where z = f(x, y), and x and y are
funcƟons of two variables, say s and t.

..
Theorem 108 MulƟvariable Chain Rule, Part II

1. Let z = f(x, y), x = g(s, t) and y = h(s, t), where f, g and h are
differenƟable funcƟons. Then z is a funcƟon of s and t, and

•
∂z
∂s

=
∂f
∂x

∂x
∂s

+
∂f
∂y

∂y
∂s

, and

•
∂z
∂t

=
∂f
∂x

∂x
∂t

+
∂f
∂y

∂y
∂t

.

2. Let z = f(x1, x2, . . . , xm)be a differenƟable funcƟonofm variables,
where each of the xi is a differenƟable funcƟon of the variables
t1, t2, . . . , tn. Then z is a funcƟon of the ti, and

∂z
∂ti

=
∂f
∂x1

∂x1
∂ti

+
∂f
∂x2

∂x2
∂ti

+ · · ·+ ∂f
∂xm

∂xm
∂ti

.

Notes:
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Chapter 12 FuncƟons of Several Variables

.. Example 416 Using the MulƟvarible Chain Rule, Part II
Let z = x2y+ x, x = s2 + 3t and y = 2s− t. Find ∂z

∂s and
∂z
∂t , and evaluate each

when s = 1 and t = 2.

SÊ½çã®ÊÄ Following Theorem 108, we compute the following parƟal
derivaƟves:

∂f
∂x

= 2xy+ 1
∂f
∂y

= x2,

∂x
∂s

= 2s
∂x
∂t

= 3
∂y
∂s

= 2
∂y
∂t

= −1.

Thus
∂z
∂s

= (2xy+ 1)(2s) + (x2)(2) = 4xys+ 2s+ 2x2, and

∂z
∂t

= (2xy+ 1)(3) + (x2)(−1) = 6xy− x2 + 3.

When s = 1 and t = 2, x = 7 and y = 0, so

∂z
∂s

= 100 and
∂z
∂t

= −46...

.. Example 417 Using the MulƟvarible Chain Rule, Part II
Letw = xy+ z2, where x = t2es, y = t cos s, and z = s sin t. Find ∂w

∂t when s = 0
and t = π.

SÊ½çã®ÊÄ Following Theorem 108, we compute the following parƟal
derivaƟves:

∂f
∂x

= y
∂f
∂y

= x
∂f
∂z

= 2z,

∂x
∂t

= 2tes
∂y
∂t

= cos s
∂z
∂t

= s cos t.

Thus
∂w
∂t

= y(2tes) + x(cos s) + 2z(s cos t).

When s = 0 and t = π, we have x = π2, y = π and z = 0. Thus

∂w
∂t

= π(2π) + π2 = 3π2...

Implicit DifferenƟaƟon

We studied finding dy
dx when y is given as an implicit funcƟon of x in detail

in SecƟon 2.6. We find here that the MulƟvariable Chain Rule gives a simpler
method of finding dy

dx .

Notes:
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12.5 The MulƟvariable Chain Rule

For instance, consider the implicit funcƟon x2y−xy3 = 3.We learned to use
the following steps to find dy

dx :

d
dx

(
x2y− xy3

)
=

d
dx

(
3
)

2xy+ x2
dy
dx

− y3 − 3xy2
dy
dx

= 0

dy
dx

= − 2xy− y3

x2 − 3xy2
. (12.2)

Instead of using this method, consider z = x2y − xy3. The implicit funcƟon
above describes the level curve z = 3. Considering x and y as funcƟons of x, the
MulƟvariable Chain Rule states that

dz
dx

=
∂z
∂x

dx
dx

+
∂z
∂y

dy
dx

. (12.3)

Since z is constant (in our example, z = 3), dz
dx = 0. We also know dx

dx = 1.
EquaƟon (12.3) becomes

0 =
∂z
∂x

(1) +
∂z
∂y

dy
dx

⇒

dy
dx

= −∂z
∂x

/∂z
∂y

= − fx
fy
.

Note how our soluƟon for dy
dx in EquaƟon (12.2) is just the parƟal derivaƟve

of z, with respect to x, divided by the parƟal derivaƟve of z with respect to y.
We state the above as a theorem.

..
Theorem 109 Implicit DifferenƟaƟon

Let f be a differenƟable funcƟon of x and y, where f(x, y) = c defines y
as an implicit funcƟon of x, for some constant c. Then

dy
dx

= − fx(x, y)
fy(x, y)

.

WepracƟce using Theorem 109 by applying it to a problem from SecƟon 2.6.

Notes:
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Chapter 12 FuncƟons of Several Variables

.. Example 418 Implicit DifferenƟaƟon
Given the implicitly defined funcƟon sin(x2y2) + y3 = x + y, find y′. Note: this
is the same problem as given in Example 68 of SecƟon 2.6, where the soluƟon
took about a full page to find.

SÊ½çã®ÊÄ Let f(x, y) = sin(x2y2) + y3 − x − y; the implicitly defined
funcƟon above is equivalent to f(x, y) = 0. We find dy

dx by applying Theorem 109.
We find

fx(x, y) = 2xy2 cos(x2y2)− 1 and fy(x, y) = 2x2y cos(x2y2)− 1,

so
dy
dx

= −2xy2 cos(x2y2)− 1
2x2y cos(x2y2)− 1

,

which matches our soluƟon from Example 68. ..

Notes:
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Exercises 12.5
Terms and Concepts
1. Let a level curve of z = f(x, y) be described by x = g(t),

y = h(t). Explain why dz
dt = 0.

2. Fill in the blank: The single variable Chain Rule states
d
dx

(
f
(
g(x)

))
= f ′

(
g(x)

)
· .

3. Fill in the blank: The MulƟvariable Chain Rule states
df
dt

=
∂f
∂x

· + · dy
dt

.

4. If z = f(x, y), where x = g(t) and y = h(t), we can subsƟ-
tute and write z as an explicit funcƟon of t.
T/F: Using the MulƟvariable Chain Rule to find dz

dt is some-
Ɵmes easier than first subsƟtuƟng and then taking the
derivaƟve.

5. T/F: TheMulƟvariable Chain Rule is only useful when all the
related funcƟons are known explicitly.

6. The MulƟvariable Chain Rule allows us to compute im-
plicit derivaƟves by easily by just compuƟng two
derivaƟves.

Problems
In Exercises 7 – 12, funcƟons z = f(x, y), x = g(t) and
y = h(t) are given.

(a) Use the MulƟvariable Chain Rule to compute
dz
dt

.

(b) Evaluate
dz
dt

at the indicated t-value.

7. z = 3x+ 4y, x = t2, y = 2t; t = 1

8. z = x2 − y2, x = t, y = t2 − 1; t = 1

9. z = 5x + 2y, x = 2 cos t + 1, y = sin t − 3;
t = π/4

10. z =
x

y2 + 1
, x = cos t, y = sin t; t = π/2

11. z = x2 + 2y2, x = sin t, y = 3 sin t; t = π/4

12. z = cos x sin y, x = πt, y = 2πt+ π/2; t = 3

In Exercises 13 – 18, funcƟons z = f(x, y), x = g(t) and
y = h(t) are given. Find the values of t where dz

dt = 0. Note:
these are the same surfaces/curves as found in Exercises 7 –
12.

13. z = 3x+ 4y, x = t2, y = 2t

14. z = x2 − y2, x = t, y = t2 − 1

15. z = 5x+ 2y, x = 2 cos t+ 1, y = sin t− 3

16. z =
x

y2 + 1
, x = cos t, y = sin t

17. z = x2 + 2y2, x = sin t, y = 3 sin t

18. z = cos x sin y, x = πt, y = 2πt+ π/2

In Exercises 19 – 22, funcƟons z = f(x, y), x = g(s, t) and
y = h(s, t) are given.

(a) Use the MulƟvariable Chain Rule to compute
∂z
∂s

and
∂z
∂t

.

(b) Evaluate
∂z
∂s

and
∂z
∂t

at the indicated s and t values.

19. z = x2y, x = s− t, y = 2s+ 4t; s = 1, t = 0

20. z = cos
(
πx+

π

2
y
)
, x = st2, y = s2t; s = 1, t = 1

21. z = x2 + y2, x = s cos t, y = s sin t; s = 2, t = π/4

22. z = e−(x2+y2), x = t, y = st2; s = 1, t = 1

In Exercises 23 – 26, find
dy
dx

using Implicit DifferenƟaƟon and
Theorem 109.

23. x2 tan y = 50

24. (3x2 + 2y3)4 = 2

25.
x2 + y
x+ y2

= 17

26. ln(x2 + xy+ y2) = 1
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Chapter 12 FuncƟons of Several Variables

12.6 DirecƟonal DerivaƟves
ParƟal derivaƟves give us an understanding of how a surface changes when we
move in the x and y direcƟons. Wemade the comparison to standing in a rolling
meadow and heading due east: the amount of rise/fall in doing so is comparable
to fx. Likewise, the rise/fall in moving due north is comparable to fy. The steeper
the slope, the greater in magnitude fy.

But what if we didn’t move due north or east? What if we needed to move
northeast and wanted to measure the amount of rise/fall? Our parƟal deriva-
Ɵves alone cannot measure this. This secƟon invesƟgates direcƟonal deriva-
Ɵves, which are a measure of this.

We begin with a definiƟon.

..
DefiniƟon 90 DirecƟonal DerivaƟves

Let z = f(x, y) be conƟnuous on an open set S and let u⃗ = ⟨u1, u2⟩ be a
unit vector. For all points (x, y), the direcƟonal derivaƟve of f at (x, y) in
the direcƟon of u⃗ is

Du⃗ f(x, y) = lim
h→0

f(x+ hu1, y+ hu2)− f(x, y)
h

.

The parƟal derivaƟves fx and fy are defined with similar limits, but only x or
y varies with h, not both. Here both x and y vary with a weighted h, determined
by a parƟcular unit vector u⃗. This may look a bit inƟmidaƟng but in reality it is
not too difficult to deal with; it oŌen just requires extra algebra. However, the
following theorem reduces this algebraic load.

..
Theorem 110 DirecƟonal DerivaƟves

Let z = f(x, y) be differenƟable on an open set S containing (x0, y0), and
let u⃗ = ⟨u1, u2⟩ be a unit vector. The direcƟonal derivaƟve of f at (x0, y0)
in the direcƟon of u⃗ is

Du⃗ f(x0, y0) = fx(x0, y0)u1 + fy(x0, y0)u2.

.. Example 419 ..CompuƟng direcƟonal derivaƟves
Let z = 14− x2 − y2 and let P = (1, 2). Find the direcƟonal derivaƟve of f, at P,
in the following direcƟons:

1. toward the point Q = (3, 4),

2. in the direcƟon of ⟨2,−1⟩, and

Notes:
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Figure 12.16: Understanding the direc-
Ɵonal derivaƟve in Example 419.

12.6 DirecƟonal DerivaƟves

3. toward the origin.

SÊ½çã®ÊÄ The surface is ploƩed in Figure 12.16, where the point P =
(1, 2) is indicated in the x, y-plane as well as the point (1, 2, 9)which lies on the
surface of f. We find that fx(x, y) = −2x and fx(1, 2) = −2; fy(x, y) = −2y and
fy(1, 2) = −4.

1. Let u⃗1 be the unit vector that points from the point (1, 2) to the point
Q = (3, 4), as shown in the figure. The vector #  ‰PQ = ⟨2, 2⟩; the unit vector
in this direcƟon is u⃗1 =

⟨
1/

√
2, 1/

√
2
⟩
. Thus the direcƟonal derivaƟve of

f at (1, 2) in the direcƟon of u⃗1 is

Du⃗1 f(1, 2) = −2(1/
√
2) + (−4)(1/

√
2) = −6/

√
2 ≈ −4.24.

Thus the instantaneous rate of change in moving from the point (1, 2, 9)
on the surface in the direcƟon of u⃗1 (which points toward the point Q) is
about−4.24. Moving in this direcƟon moves one steeply downward.

2. We seek the direcƟonal derivaƟve in the direcƟon of ⟨2,−1⟩. The unit
vector in this direcƟon is u⃗2 =

⟨
2/

√
5,−1/

√
5
⟩
. Thus the direcƟonal

derivaƟve of f at (1, 2) in the direcƟon of u⃗2 is

Du⃗2 f(1, 2) = −2(2/
√
5) + (−4)(−1/

√
5) = 0.

StarƟng on the surface of f at (1, 2) andmoving in the direcƟon of ⟨2,−1⟩
(or u⃗2) results in no instantaneous change in z-value. This is analogous to
standing on the side of a hill and choosing a direcƟon towalk that does not
change the elevaƟon. One neither walks up nor down, rather just “along
the side” of the hill.
Finding these direcƟons of “no elevaƟon change” is important.

3. At P = (1, 2), the direcƟon towards the origin is given by the vector
⟨−1,−2⟩; the unit vector in this direcƟon is u⃗3 =

⟨
−1/

√
5,−2/

√
5
⟩
.

The direcƟonal derivaƟve of f at P in the direcƟon of the origin is

Du⃗3 f(1, 2) = −2(−1/
√
5) + (−4)(−2/

√
5) = 10/

√
5 ≈ 4.47.

Moving towards the origin means “walking uphill” quite steeply, with an
iniƟal slope of about 4.47....

As we study direcƟonal derivaƟves, it will help to make an important con-
necƟon between the unit vector u⃗ = ⟨u1, u2⟩ that describes the direcƟon and
the parƟal derivaƟves fx and fy. We start with a definiƟon and follow this with a
Key Idea.

Notes:
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Note: The symbol “∇” is named “nabla,”
derived from the Greek name of a Jewish
harp. Oddly enough, in mathemaƟcs the
expression∇f is pronounced “del f.”

Chapter 12 FuncƟons of Several Variables

..
DefiniƟon 91 Gradient

Let z = f(x, y) be differenƟable on an open set S that contains the point
(x0, y0).

1. The gradient of f is∇f(x, y) = ⟨fx(x, y), fy(x, y)⟩.

2. The gradient of f at (x0, y0) is∇f(x0, y0) = ⟨fx(x0, y0), fy(x0, y0)⟩.

To simplify notaƟon, we oŌen express the gradient as ∇f = ⟨fx, fy⟩. The
gradient allows us to compute direcƟonal derivaƟves in terms of a dot product.

..
Key Idea 55 The Gradient and DirecƟonal DerivaƟves

The direcƟonal derivaƟve of z = f(x, y) in the direcƟon of u⃗ is

Du⃗ f = ∇f · u⃗.

The properƟes of the dot product previously studied allow us to invesƟgate
the properƟes of the direcƟonal derivaƟve. Given that the direcƟonal derivaƟve
gives the instantaneous rate of change of z when moving in the direcƟon of u⃗,
three quesƟons naturally arise:

1. In what direcƟon(s) is the change in z the greatest (i.e., the “steepest up-
hill”)?

2. In what direcƟon(s) is the change in z the least (i.e., the “steepest down-
hill”)?

3. In what direcƟon(s) is there no change in z?

Using the key property of the dot product, we have

∇f · u⃗ = || ∇f || || u⃗ || cos θ = || ∇f || cos θ, (12.4)

where θ is the angle between the gradient and u⃗. (Since u⃗ is a unit vector, || u⃗ || =
1.) This equaƟon allows us to answer the three quesƟons stated previously.

1. EquaƟon 12.4 is maximized when cos θ = 1, i.e., when the gradient and u⃗
have the same direcƟon; the gradient points in the direcƟon of greatest z
change.

Notes:

698



12.6 DirecƟonal DerivaƟves

2. EquaƟon 12.4 is minimized when cos θ = −1, i.e., when the gradient and
u⃗ have opposite direcƟons; the gradient points in the opposite direcƟon
of the least z change.

3. EquaƟon 12.4 is 0 when cos θ = 0, i.e., when the gradient and u⃗ are or-
thogonal to each other; the gradient is orthogonal to direcƟons of no z
change.

This result is rather amazing. Once again imagine standing in a rollingmeadow
and face the direcƟon that leads you steepest uphill. Then the direcƟon that
leads steepest downhill is directly behind you, and side–stepping either leŌ or
right (i.e., moving perpendicularly to the direcƟon you face) does not change
your elevaƟon at all.

Recall that a level curve is defined by a path in the x-y plane along which the
z-values of a funcƟon do not change; the direcƟonal derivaƟve in the direcƟon of
a level curve is 0. This is analogous towalking along a path in the rollingmeadow
alongwhich the elevaƟon does not change. The gradient at a point is orthogonal
to the direcƟon where the z does not change; i.e., the gradient is orthogonal to
level curves.

We restate these ideas in a theorem, then use them in an example.

..
Theorem 111 The Gradient and DirecƟonal DerivaƟves

Let z = f(x, y) be differenƟable on an open set S with gradient ∇f and
let u⃗ be a unit vector.

1. The maximum value of Du⃗ f is || ∇f ||, obtained when the angle
between ∇f and u⃗ is 0, i.e., the direcƟon of maximal increase is
∇f.

2. The minimum value of Du⃗ f is −|| ∇f ||, obtained when the angle
between ∇f and u⃗ is π, i.e., the direcƟon of minimal increase is
−∇f.

3. Du⃗ f = 0 when∇f and u⃗ are orthogonal.

.. Example 420 ..Finding direcƟons of maximal and minimal increase
Let f(x, y) = sin x cos y and let P = (π/3, π/3). Find the direcƟons of max-
imal/minimal increase, and find a direcƟon where the instantaneous rate of z
change is 0.

SÊ½çã®ÊÄ We begin by finding the gradient. fx = cos x cos y and fy =

Notes:
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Figure 12.17: Graphing the surface and
important direcƟons in Example 420.
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Figure 12.18: At the top of a paraboloid,
all direcƟonal derivaƟves are 0.

Chapter 12 FuncƟons of Several Variables

− sin x sin y, thus

∇f = ⟨cos x cos y,− sin x sin y⟩ and, at P, ∇f
(π
3
,
π

3

)
=

⟨
1
4
,−3

4

⟩
.

Thus the direcƟon of maximal increase is ⟨1/4,−3/4⟩. In this direcƟon, the
instantaneous rate of z change is || ⟨1/4,−3/4⟩ || =

√
10/4 ≈ 0.79.

Figure 12.17 shows the surface ploƩed from two different perspecƟves. In
each, the gradient is drawn at P with a dashed line (because of the nature of
this surface, the gradient points “into” the surface). Let u⃗ = ⟨u1, u2⟩ be the
unit vector in the direcƟon of ∇f at P. Each graph of the figure also contains
the vector ⟨u1, u2, ||∇f ||⟩. This vector has a “run” of 1 (because in the x-y plane
it moves 1 unit) and a “rise” of ||∇f ||, hence we can think of it as a vector with
slope of ||∇f || in the direcƟonof∇f, helping us visualize how “steep” the surface
is in its steepest direcƟon.

The direcƟon ofminimal increase is ⟨−1/4, 3/4⟩; in this direcƟon the instan-
taneous rate of z change is−

√
10/4 ≈ −0.79.

Any direcƟon orthogonal to ∇f is a direcƟon of no z change. We have two
choices: the direcƟon of ⟨3, 1⟩ and the direcƟon of ⟨−3,−1⟩. The unit vector
in the direcƟon of ⟨3, 1⟩ is shown in each graph of the figure as well. The level
curve at z =

√
3/4 is drawn: recall that along this curve the z-values do not

change. Since ⟨3, 1⟩ is a direcƟon of no z-change, this vector is tangent to the
level curve at P. ...

.. Example 421 Understanding when∇f = 0⃗
Let f(x, y) = −x2 + 2x− y2 + 2y+ 1. Find the direcƟonal derivaƟve of f in any
direcƟon at P = (1, 1).

SÊ½çã®ÊÄ Wefind∇f = ⟨−2x+ 2,−2y+ 2⟩. AtP, wehave∇f(1, 1) =
⟨0, 0⟩. According to Theorem 111, this is the direcƟon of maximal increase.
However, ⟨0, 0⟩ is direcƟonless; it has no displacement. And regardless of the
unit vector u⃗ chosen, Du⃗ f = 0.

Figure 12.18 helps us understand what this means. We can see that P lies at
the top of a paraboloid. In all direcƟons, the instantaneous rate of change is 0.

So what is the direcƟon of maximal increase? It is fine to give an answer of
0⃗ = ⟨0, 0⟩, as this indicates that all direcƟonal derivaƟves are 0. ..

The fact that the gradient of a surface always points in the direcƟon of steep-
est increase/decrease is very useful, as illustrated in the following example.

.. Example 422 ..The flow of water downhill
Consider the surface given by f(x, y) = 20 − x2 − 2y2. Water is poured on the
surface at (1, 1/4). What path does it take as it flows downhill?

Notes:
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Figure 12.19: A graph of the surface de-
scribed in Example 422 along with the
path in the x-y planewith the level curves.
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SÊ½çã®ÊÄ Let r⃗(t) = ⟨x(t), y(t)⟩ be the vector–valued funcƟon de-
scribing the path of the water in the x-y plane; we seek x(t) and y(t). We know
that water will always flow downhill in the steepest direcƟon; therefore, at any
point on its path, it will be moving in the direcƟon of−∇f. (We ignore the phys-
ical effects of momentum on the water.) Thus r⃗ ′(t) will be parallel to ∇f, and
there is some constant c such that c∇f = r⃗ ′(t) = ⟨x′(t), y′(t)⟩.

We find∇f = ⟨−2x,−4y⟩ and write x′(t) as dx
dt and y′(t) as dy

dt . Then

c∇f = ⟨x′(t), y′(t)⟩

⟨−2cx,−4cy⟩ =
⟨
dx
dt

,
dy
dt

⟩
.

This implies

−2cx =
dx
dt

and − 4cy =
dy
dt

, i.e.,

c = − 1
2x

dx
dt

and c = − 1
4y

dy
dt

.

As c equals both expressions, we have ..

1
2x

dx
dt

=
1
4y

dy
dt

.

To find an explicit relaƟonship between x and y, we can integrate both sides with

respect to t. Recall from our study of differenƟals that
dx
dt

dt = dx. Thus:∫
1
2x

dx
dt

dt =
∫

1
4y

dy
dt

dt∫
1
2x

dx =
∫

1
4y

dy

1
2
ln |x|+ C =

1
4
ln |y|

2 ln |x|+ C = ln |y|
Cx2 = y,

where we skip some algebra in the last step. As the water started at the point
(1, 1/4), we can solve for C:

C(1)2 =
1
4

⇒ C =
1
4
.

Thus the water follows the curve y = x2/4 in the x-y plane. The surface and
the path of the water is graphed in Figure 12.19(a). In part (b) of the figure,

Notes:
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the level curves of the surface are ploƩed in the x-y plane, along with the curve
y = x2/4. NoƟce how the path intersects the level curves at right angles. As the
path follows the gradient downhill, this reinforces the fact that the gradient is
orthogonal to level curves. ...

FuncƟons of Three Variables

The concepts of direcƟonal derivaƟves and the gradient are easily extended
to three (and more) variables. We combine the concepts behind DefiniƟons 90
and 91 and Theorem 110 into one set of definiƟons.

..
DefiniƟon 92 DirecƟonal DerivaƟves and Gradient with Three Vari-
ables

Let w = F(x, y, z) be differenƟable on an open ball B and let u⃗ be a unit
vector in R3.

1. The gradient of F is∇F = ⟨Fx, Fy, Fz⟩.

2. The direcƟonal derivaƟve of F in the direcƟon of u⃗ is

Du⃗ F = ∇F · u⃗.

The same properƟes of the gradient given in Theorem 111, when f is a func-
Ɵon of two variables, hold for F, a funcƟon of three variables.

..
Theorem 112 The Gradient and DirecƟonal DerivaƟves with Three
Variables

Let w = F(x, y, z) be differenƟable on an open ball B, let∇F be the gra-
dient of F, and let u⃗ be a unit vector.

1. The maximum value of Du⃗ F is || ∇F ||, obtained when the angle
between ∇F and u⃗ is 0, i.e., the direcƟon of maximal increase is
∇F.

2. The minimum value of Du⃗ F is −|| ∇F ||, obtained when the angle
between ∇F and u⃗ is π, i.e., the direcƟon of minimal increase is
−∇F.

3. Du⃗ F = 0 when∇F and u⃗ are orthogonal.

Notes:
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We interpret the third statement of the theorem as “the gradient is orthog-
onal to level surfaces,” the three–variable analogue to level curves.

.. Example 423 Finding direcƟonal derivaƟves with funcƟons of three vari-
ables
If a point source S is radiaƟng energy, the intensity I at a given point P in space
is inversely proporƟonal to the square of the distance between S and P. That is,

when S = (0, 0, 0), I(x, y, z) =
k

x2 + y2 + z2
for some constant k.

Let k = 1, let u⃗ = ⟨2/3, 2/3, 1/3⟩ be a unit vector, and let P = (2, 5, 3).
Measure distances in inches. Find the direcƟonal derivaƟve of I at P in the di-
recƟon of u⃗, and find the direcƟon of greatest intensity increase at P.

SÊ½çã®ÊÄ Weneed the gradient∇I, meaningweneed Ix, Iy and Iz. Each
parƟal derivaƟve requires a simple applicaƟon of the QuoƟent Rule, giving

∇I =
⟨

−2x
(x2 + y2 + z2)2

,
−2y

(x2 + y2 + z2)2
,

−2z
(x2 + y2 + z2)2

⟩
∇I(2, 5, 3) =

⟨
−4
1444

,
−10
1444

,
−6
1444

⟩
≈ ⟨−0.003,−0.007,−0.004⟩

Du⃗ I = ∇I(2, 5, 3) · u⃗

= − 17
2166

≈ −0.0078.

The direcƟonal derivaƟve tells us that moving in the direcƟon of u⃗ from P re-
sults in a decrease in intensity of about −0.008 units per inch. (The intensity is
decreasing as u⃗moves one farther from the origin than P.)

The gradient gives the direcƟon of greatest intensity increase. NoƟce that

∇I(2, 5, 3) =
⟨

−4
1444

,
−10
1444

,
−6
1444

⟩
=

2
1444

⟨−2,−5,−3⟩ .

That is, the gradient at (2, 5, 3) is poinƟng in the direcƟon of ⟨−2,−5,−3⟩, that
is, towards the origin. That should make intuiƟve sense: the greatest increase
in intensity is found by moving towards to source of the energy. ..

Notes:
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Exercises 12.6
Terms and Concepts
1. What is the difference between a direcƟonal derivaƟve and

a parƟal derivaƟve?

2. For what u⃗ is D⃗u f = fx?

3. For what u⃗ is D⃗u f = fy?

4. The gradient is to level curves.

5. The gradient points in the direcƟon of increase.

6. It is generally more informaƟve to view the direcƟonal
derivaƟve not as the result of a limit, but rather as the result
of a product.

Problems
Exercises 7 – 12, a funcƟon z = f(x, y). Find∇f.

7. f(x, y) = −x2y+ xy2 + xy

8. f(x, y) = sin x cos y

9. f(x, y) =
1

x2 + y2 + 1

10. f(x, y) = −4x+ 3y

11. f(x, y) = x2 + 2y2 − xy− 7x

12. f(x, y) = x2y3 − 2x

Exercises 13 – 18, a funcƟon z = f(x, y) and a point P are
given. Find the direcƟonal derivaƟve of f in the indicated di-
recƟons. Note: these are the same funcƟons as in Exercises
7 through 12.

13. f(x, y) = −x2y+ xy2 + xy, P = (2, 1)

(a) In the direcƟon of v⃗ = ⟨3, 4⟩
(b) In the direcƟon toward the point Q = (1,−1).

14. f(x, y) = sin x cos y, P =
(π
4
,
π

3

)
(a) In the direcƟon of v⃗ = ⟨1, 1⟩.
(b) In the direcƟon toward the point Q = (0, 0).

15. f(x, y) =
1

x2 + y2 + 1
, P = (1, 1).

(a) In the direcƟon of v⃗ = ⟨1,−1⟩.
(b) In the direcƟon toward the point Q = (−2,−2).

16. f(x, y) = −4x+ 3y, P = (5, 2)

(a) In the direcƟon of v⃗ = ⟨3, 1⟩ .
(b) In the direcƟon toward the point Q = (2, 7).

17. f(x, y) = x2 + 2y2 − xy− 7x, P = (4, 1)

(a) In the direcƟon of v⃗ = ⟨−2, 5⟩
(b) In the direcƟon toward the point Q = (4, 0).

18. f(x, y) = x2y3 − 2x, P = (1, 1)

(a) In the direcƟon of v⃗ = ⟨3, 3⟩
(b) In the direcƟon toward the point Q = (1, 2).

Exercises 19 – 24, a funcƟon z = f(x, y) and a point P are
given.

(a) Find the direcƟon of maximal increase of f at P.

(b) What is the maximal value of D⃗u f at P?

(c) Find the direcƟon of minimal increase of f at P.

(d) Give a direcƟon u⃗ such that D⃗u f = 0 at P.

Note: these are the same funcƟons and points as in Exercises
13 through 18.

19. f(x, y) = −x2y+ xy2 + xy, P = (2, 1)

20. f(x, y) = sin x cos y, P =
(π
4
,
π

3

)
21. f(x, y) =

1
x2 + y2 + 1

, P = (1, 1).

22. f(x, y) = −4x+ 3y, P = (5, 4).

23. f(x, y) = x2 + 2y2 − xy− 7x, P = (4, 1)

24. f(x, y) = x2y3 − 2x, P = (1, 1)

Exercises 25 – 28, a funcƟon w = F(x, y, z), a vector v⃗ and a
point P are given.

(a) Find∇F(x, y, z).

(b) Find D⃗u F at P.

25. F(x, y, z) = 3x2z3 + 4xy− 3z2, v⃗ = ⟨1, 1, 1⟩, P = (3, 2, 1)

26. F(x, y, z) = sin(x) cos(y)ez, v⃗ = ⟨2, 2, 1⟩, P = (0, 0, 0)

27. F(x, y, z) = x2y2 − y2z2, v⃗ = ⟨−1, 7, 3⟩, P = (1, 0,−1)

28. F(x, y, z) =
2

x2 + y2 + z2
, v⃗ = ⟨1, 1,−2⟩, P = (1, 1, 1)
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Figure 12.20: Showing various lines tan-
gent to a surface.

12.7 Tangent Lines, Normal Lines, and Tangent Planes

12.7 Tangent Lines, Normal Lines, and Tangent Planes
DerivaƟves and tangent lines go hand–in–hand. Given y = f(x), the line tangent
to the graph of f at x = x0 is the line through

(
x0, f(x0)

)
with slope f ′(x0); that

is, the slope of the tangent line is the instantaneous rate of change of f at x0.
When dealing with funcƟons of two variables, the graph is no longer a curve

but a surface. At a given point on the surface, it seems there are many lines that
fit our intuiƟon of being “tangent” to the surface.

In Figures 12.20 we see lines that are tangent to curves in space. Since each
curve lies on a surface, it makes sense to say that the lines are also tangent to
the surface. The next definiƟon formally defines what it means to be “tangent
to a surface.”

..
DefiniƟon 93 DirecƟonal Tangent Line

Let z = f(x, y) be differenƟable on an open set S containing (x0, y0) and let
u⃗ = ⟨u1, u2⟩ be a unit vector.

1. The line ℓx through
(
x0, y0, f(x0, y0)

)
parallel to ⟨1, 0, fx(x0, y0)⟩ is the

tangent line to f in the direcƟon of x at (x0, y0).

2. The line ℓy through
(
x0, y0, f(x0, y0)

)
parallel to ⟨0, 1, fy(x0, y0)⟩ is the

tangent line to f in the direcƟon of y at (x0, y0).

3. The line ℓ⃗u through
(
x0, y0, f(x0, y0)

)
parallel to ⟨u1, u2,Du⃗ f(x0, y0)⟩

is the tangent line to f in the direcƟon of u⃗ at (x0, y0).

It is instrucƟve to consider each of three direcƟons given in the definiƟon in
terms of “slope.” The direcƟon of ℓx is ⟨1, 0, fx(x0, y0)⟩; that is, the “run” is one
unit in the x-direcƟon and the “rise” is fx(x0, y0) units in the z-direcƟon. Note
how the slope is just the parƟal derivaƟve with respect to x. A similar statement
can be made for ℓy. The direcƟon of ℓ⃗u is ⟨u1, u2,Du⃗ f(x0, y0)⟩; the “run” is one
unit in the u⃗ direcƟon (where u⃗ is a unit vector) and the “rise” is the direcƟonal
derivaƟve of z in that direcƟon.

DefiniƟon 93 leads to the following parametric equaƟons of direcƟonal tan-
gent lines:

ℓx(t) =

 x = x0 + t
y = y0
z = z0 + fx(x0, y0)t

, ℓy(t) =

 x = x0
y = y0 + t
z = z0 + fy(x0, y0)t

and ℓ⃗u(t) =

 x = x0 + u1t
y = y0 + u2t
z = z0 + Du⃗ f(x0, y0)t

.

Notes:
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Figure 12.21: A surface and direcƟonal
tangent lines in Example 424.
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.. Example 424 Finding direcƟonal tangent lines
Find the lines tangent to the surface z = sin x cos y at (π/2, π/2) in the x and y
direcƟons and also in the direcƟon of v⃗ = ⟨−1, 1⟩ .

SÊ½çã®ÊÄ The parƟal derivaƟves with respect to x and y are:

fx(x, y) = cos x cos y ⇒ fx(π/2, π/2) = 0
fy(x, y) = − sin x sin y ⇒ fy(π/2, π/2) = −1.

At (π/2, π/2), the z-value is 0.
Thus the parametric equaƟons of the line tangent to f at (π/2, π/2) in the

direcƟons of x and y are:

ℓx(t) =

 x = π/2+ t
y = π/2
z = 0

and ℓy(t) =

 x = π/2
y = π/2+ t
z = −t

.

The two lines are shown with the surface in Figure 12.21(a). To find the equa-
Ɵon of the tangent line in the direcƟon of v⃗, we first find the unit vector in the
direcƟon of v⃗: u⃗ =

⟨
−1/

√
2, 1/

√
2
⟩
. The direcƟonal derivaƟve at (π/2, π, 2) in

the direcƟon of u⃗ is

Du⃗ f(π/2, π, 2) = ⟨0,−1⟩ ·
⟨
−1/

√
2, 1/

√
2
⟩
= −1/

√
2.

Thus the direcƟonal tangent line is

ℓ⃗u(t) =


x = π/2− t/

√
2

y = π/2+ t/
√
2

z = −t/
√
2

.

The curve through (π/2, π/2, 0) in the direcƟon of v⃗ is shown in Figure 12.21(b)
along with ℓ⃗u(t). ..

.. Example 425 ..Finding direcƟonal tangent lines
Let f(x, y) = 4xy− x4 − y4. Find the equaƟons of all direcƟonal tangent lines to
f at (1, 1).

SÊ½çã®ÊÄ First note that f(1, 1) = 2. We need to compute direcƟonal
derivaƟves, so we need∇f. We begin by compuƟng parƟal derivaƟves.

fx = 4y− 4x3 ⇒ fx(1, 1) = 0; fy = 4x− 4y3 ⇒ fy(1, 1) = 0.

Thus ∇f(1, 1) = ⟨0, 0⟩. Let u⃗ = ⟨u1, u2⟩ be any unit vector. The direcƟonal
derivaƟve of f at (1, 1)will beDu⃗ f(1, 1) = ⟨0, 0⟩·⟨u1, u2⟩ = 0. It does notmaƩer
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Figure 12.22: Graphing f in Example 425.

12.7 Tangent Lines, Normal Lines, and Tangent Planes

what direcƟon we choose; the direcƟonal derivaƟve is always 0. Therefore

ℓ⃗u(t) =

 x = 1+ u1t
y = 1+ u2t
z = 2

.

Figure 12.22 shows a graph of f and the point (1, 1, 2). Note that this point
comes at the top of a “hill,” and therefore every tangent line through this point
will have a “slope” of 0.

That is, consider any curve on the surface that goes through this point. Each
curve will have a relaƟve maximum at this point, hence its tangent line will have
a slope of 0. The following secƟon invesƟgates the points on surfaces where all
tangent lines have a slope of 0. ...

Normal Lines

When dealing with a funcƟon y = f(x) of one variable, we stated that a line
through (c, f(c))was tangent to f if the line had a slope of f ′(c) and was normal
(or, perpendicular, orthogonal) to f if it had a slope of −1/f ′(c). We extend the
concept of normal, or orthogonal, to funcƟons of two variables.

Let z = f(x, y) be a differenƟable funcƟon of two variables. By DefiniƟon 93,
at (x0, y0), ℓx(t) is a line parallel to the vector d⃗x = ⟨1, 0, fx(x0, y0)⟩ and ℓy(t) is
a line parallel to d⃗y = ⟨0, 1, fy(x0, y0)⟩. Since lines in these direcƟons through(
x0, y0, f(x0, y0)

)
are tangent to the surface, a line through this point and orthog-

onal to these direcƟons would be orthogonal, or normal, to the surface. We can
use this direcƟon to create a normal line.

The direcƟon of the normal line is orthogonal to d⃗x and d⃗y, hence the direc-
Ɵon is parallel to d⃗n = d⃗x × d⃗y. It turns out this cross product has a very simple
form:

d⃗x × d⃗y = ⟨1, 0, fx⟩ × ⟨0, 1, fy⟩ = ⟨−fx,−fy, 1⟩ .

It is oŌen more convenient to refer to the opposite of this direcƟon, namely
⟨fx, fy,−1⟩. This leads to a definiƟon.

Notes:
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Figure 12.23: Graphing a surface with a
normal line from Example 426.
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..
DefiniƟon 94 Normal Line

Let z = f(x, y) be differenƟable on an open set S containing (x0, y0)
where

a = fx(x0, y0) and b = fy(x0, y0)

are defined.

1. A nonzero vector parallel to n⃗ = ⟨a, b,−1⟩ is orthogonal to f at
P =

(
x0, y0, f(x0, y0)

)
.

2. The line ℓn through Pwith direcƟon parallel to n⃗ is the normal line
to f at P.

Thus the parametric equaƟons of the normal line to a surface f at
(
x0, y0, f(x0, y0)

)
is:

ℓn(t) =

 x = x0 + at
y = y0 + bt
z = f(x0, y0)− t

.

.. Example 426 Finding a normal line
Find the equaƟon of the normal line to z = −x2 − y2 + 2 at (0, 1).

SÊ½çã®ÊÄ We find zx(x, y) = −2x and zy(x, y) = −2y; at (0, 1), we
have zx = 0 and zy = −2. We take the direcƟon of the normal line, following
DefiniƟon 94, to be n⃗ = ⟨0,−2,−1⟩. The line with this direcƟon going through
the point (0, 1, 1) is

ℓn(t) =

 x = 0
y = −2t+ 1
z = −t+ 1

or ℓn(t) = ⟨0,−2,−1⟩ t+ ⟨0, 1, 1⟩ .

The surface z = −x2 + y2, along with the found normal line, is graphed in
Figure 12.23. ..

The direcƟon of the normal line has many uses, one of which is the defini-
Ɵon of the tangent plane which we define shortly. Another use is in measuring
distances from the surface to a point. Given a point Q in space, it is general geo-
metric concept to define the distance from Q to the surface as being the length
of the shortest line segment PQ over all points P on the surface. This, in turn,
implies that #  ‰PQ will be orthogonal to the surface at P. Therefore we can mea-
sure the distance fromQ to the surface f by finding a point P on the surface such

Notes:
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that #  ‰PQ is parallel to the normal line to f at P.

.. Example 427 Finding the distance from a point to a surface
Let f(x, y) = 2 − x2 − y2 and let Q = (2, 2, 2). Find the distance from Q to the
surface defined by f.

SÊ½çã®ÊÄ This surface used in Example 425, so we know that at (x, y),
the direcƟon of the normal line will be d⃗n = ⟨−2x,−2y,−1⟩. A point P on the
surface will have coordinates (x, y, 2−x2−y2), so #  ‰PQ =

⟨
2− x, 2− y, x2 + y2

⟩
.

To find where #  ‰PQ is parallel to d⃗n, we need to find x, y and c such that c
#  ‰PQ = d⃗n.

c #  ‰PQ = d⃗n
c
⟨
2− x, 2− y, x2 + y2

⟩
= ⟨−2x,−2y,−1⟩ .

This implies

c(2− x) = −2x
c(2− y) = −2y

c(x2 + y2) = −1

In each equaƟon, we can solve for c:

c =
−2x
2− x

=
−2y
2− y

=
−1

x2 + y2
.

The first two fracƟons imply x = y, and so the last fracƟon can be rewriƩen as
c = −1/(2x2). Then

−2x
2− x

=
−1
2x2

−2x(2x2) = −1(2− x)

4x3 = 2− x

4x3 + x− 2 = 0.

This last equaƟon is a cubic, which is not difficult to solve with a numeric solver.
We find that x = 0.689, hence P = (0.689, 0.689, 1.051). We find the distance
from Q to the surface of f is

|| #  ‰PQ || =
√
(2− 0.689)2 + (2− 0.689)2 + (2− 1.051)2 = 2.083...

We can take the concept of measuring the distance from a point to a surface
to find a point Q a parƟcular distance from a surface at a given point P on the

Notes:
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surface.

.. Example 428 Finding a point a set distance from a surface
Let f(x, y) = x−y2+3. Let P =

(
2, 1, f(2, 1)

)
= (2, 1, 4). Find pointsQ in space

that is 4 units from the surface of f at P. That is, find Q such that || #  ‰PQ || = 4 and
#  ‰PQ is orthogonal to f at P.

SÊ½çã®ÊÄ We begin by finding parƟal derivaƟves:

fx(x, y) = 1 ⇒ fx(2, 1) = 1
fy(x, y) = −2y ⇒ fy(2, 1) = −2

The vector n⃗ = ⟨1,−2,−1⟩ is orthogonal to f at P. For reasons that will become
more clear in a moment, we find the unit vector in the direcƟon of n⃗:

u⃗ =
n⃗

|| n⃗ ||
=
⟨
1/

√
6,−2/

√
6,−1/

√
6
⟩
≈ ⟨0.408,−0.816,−0.408⟩ .

Thus a the normal line to f at P can be wriƩen as

ℓn(t) = ⟨2, 1, 4⟩+ t ⟨0.408,−0.816,−0.408⟩ .

An advantage of this parametrizaƟon of the line is that leƫng t = t0 gives a
point on the line that is |t0| units from P. (This is because the direcƟon of the
line is given in terms of a unit vector.) There are thus two points in space 4 units
from P:

Q1 = ℓn(4) Q2 = ℓn(−4)
≈ ⟨3.63,−2.27, 2.37⟩ ≈ ⟨0.37, 4.27, 5.63⟩

The surface is graphed along with points P, Q1, Q2 and a porƟon of the normal
line to f at P. ..

Tangent Planes

Wecan the direcƟonof the normal line to define a plane. With a = fx(x0, y0),
b = fy(x0, y0) and P =

(
x0, y0, f(x0, y0)

)
, the vector n⃗ = ⟨a, b,−1⟩ is orthogonal

to f at P. The plane through P with normal vector n⃗ is therefore tangent to f at
P.

Notes:
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..
DefiniƟon 95 Tangent Plane

Let z = f(x, y) be differenƟable on an open set S containing
(x0, y0), where a = fx(x0, y0), b = fy(x0, y0), n⃗ = ⟨a, b,−1⟩ and
P =

(
x0, y0, f(x0, y0)

)
.

The plane through P with normal vector n⃗ is the tangent plane to f at P.
The standard form of this plane is

a(x− x0) + b(y− y0)−
(
z− f(x0, y0)

)
= 0.

.. Example 429 Finding tangent planes
Find the equaƟon tangent plane to z = −x2 − y2 + 2 at (0, 1).

SÊ½çã®ÊÄ Note that this is the same surface and point used in Example
426. There we found n⃗ = ⟨0,−2,−1⟩ and P = (0, 1, 1). Therefore the equaƟon
of the tangent plane is

−2(y− 1)− (z− 1) = 0.

The surface z = −x2 + y2 and tangent plane are graphed in Figure 12.25. ..

.. Example 430 ..Using the tangent plane to approximate funcƟon values
The point (3,−1, 4) lies on the surface of an unknown differenƟable funcƟon f
where fx(3,−1) = 2 and fy(3,−1) = −1/2. Find the equaƟon of the tangent
plane to f at P, and use this to approximate the value of f(2.9,−0.8).

SÊ½çã®ÊÄ Knowing the parƟal derivaƟves at (3,−1) allows us to form
the normal vector to the tangent plane, n⃗ = ⟨2,−1/2,−1⟩. Thus the equaƟon
of the tangent line to f at P is:

2(x−3)−1/2(y+1)−(z−4) = 0 ⇒ z = 2(x−3)−1/2(y+1)+4. (12.5)

Just as tangent lines provide excellent approximaƟons of curves near their point
of intersecƟon, tangent planes provide excellent approximaƟons of surfaces near
their point of intersecƟon. So f(2.9,−0.8) ≈ z(2.9,−0.8) = 3.7.

This is not a newmethod of approximaƟon. Compare the right hand expres-
sion for z in EquaƟon (12.5) to the total differenƟal:

dz = fxdx+ fydy and z = 2︸︷︷︸
fx

(x− 3)︸ ︷︷ ︸
dx

+−1/2︸ ︷︷ ︸
fy

(y+ 1)︸ ︷︷ ︸
dy︸ ︷︷ ︸

dz

+4.
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Thus the “new z-value” is the sum of the change in z (i.e., dz) and the old z-
value (4). AsmenƟonedwhen studying the total differenƟal, it is not uncommon
to know parƟal derivaƟve informaƟon about a unknown funcƟon, and tangent
planes are used to give accurate approximaƟons of the funcƟon. ...

The Gradient and Normal Lines, Tangent Planes

The methods developed in this secƟon so far give a straighƞorward method
of finding equaƟons of normal lines and tangent planes for surfaces with explicit
equaƟons of the form z = f(x, y). However, they do not handle implicit equa-
Ɵons well, such as x2 + y2 + z2 = 1. There is a technique that allows us to find
vectors orthogonal to these surfaces based on the gradient.

..
DefiniƟon 96 Gradient

Let w = F(x, y, z) be differenƟable on an open ball B that contains the
point (x0, y0, z0).

1. The gradient of F is∇F(x, y, z) = ⟨fx(x, y, z), fy(x, y, z), fz(x, y, z)⟩.

2. The gradient of F at (x0, y0, z0) is

∇F(x0, y0, z0) = ⟨fx(x0, y0, z0), fy(x0, y0, z0), fz(x0, y0, z0)⟩ .

Recall that when z = f(x, y), the gradient∇f = ⟨fx, fy⟩ is orthogonal to level
curves of f. An analogous statement can bemade about the gradient∇F, where
w = F(x, y, z). Given a point (x0, y0, z0), let c = F(x0, y0, z0). Then F(x, y, z) =
c is a level surface that contains the point (x0, y0, z0). The following theorem
states that∇F(x0, y0, z0) is orthogonal to this level surface.

..
Theorem 113 The Gradient and Level Surfaces

Let w = F(x, y, z) be differenƟable on an open ball B containing
(x0, y0, z0) with gradient∇F, where F(x0, y0, z0) = c.

The vector∇F(x0, y0, z0) is orthogonal to the level surface F(x, y, z) = c
at (x0, y0, z0).

The gradient at a point gives a vector orthogonal to the surface at that point.
This direcƟon can be used to find tangent planes and normal lines.

Notes:
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.. Example 431 Using the gradient to find a tangent plane

Find the equaƟon of the plane tangent to the ellipsoid
x2

12
+

y2

6
+

z2

4
= 1 at

P = (1, 2, 1).

SÊ½çã®ÊÄ We consider the equaƟon of the ellipsoid as a level surface
of a funcƟon F of three variables, where F(x, y, z) = x2

12 +
y2
6 + z2

4 . The gradient
is:

∇F(x, y, z) = ⟨Fx, Fy, Fz⟩

=
⟨ x
6
,
y
3
,
z
2

⟩
.

At P, the gradient is ∇F(1, 2, 1) = ⟨1/6, 2/3, 1/2⟩. Thus the equaƟon of the
plane tangent to the ellipsoid at P is

1
6
(x− 1) +

2
3
(y− 2) +

1
2
(z− 1) = 0.

The ellipsoid and tangent plane are graphed in Figure 12.26. ..

Tangent lines and planes to surfaces have many uses, including the study of
instantaneous rates of changes and making approximaƟons. Normal lines also
have many uses. In this secƟon we focused on using them to measure distances
from a surface. Another interesƟng applicaƟon is in computer graphics, where
the effects of light on a surface are determined using normal vectors.

The next secƟon invesƟgates another use of parƟal derivaƟves: determining
relaƟve extrema. When dealing with funcƟons of the form y = f(x), we found
relaƟve extrema by finding x where f ′(x) = 0. We can start finding relaƟve
extrema of z = f(x, y) by seƫng fx and fy to 0, but it turns out that there is more
to consider.
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Exercises 12.7
Terms and Concepts
1. Explain how the vector v⃗ = ⟨1, 0, 3⟩ can be thought of as

having a “slope” of 3.

2. Explain how the vector v⃗ = ⟨0.6, 0.8,−2⟩ can be thought
of as having a “slope” of−2.

3. T/F: Let z = f(x, y) be differenƟable at P. If n⃗ is a normal
vector to the tangent plane of f at P, then n⃗ is orthogonal
to fx and fy at P.

4. Explain in your own words why we do not refer to the tan-
gent line to a surface at a point, but rather to direcƟonal
tangent lines to a surface at a point.

Problems
Exercises 5 – 8, a funcƟon z = f(x, y), a vector v⃗ and a point
P are given. Give the parametric equaƟons of the following
direcƟonal tangent lines to f at P:

(a) ℓx(t)

(b) ℓy(t)

(c) ℓ⃗u (t), where u⃗ is the unit vector in the direcƟon of v⃗.

5. f(x, y) = 2x2y− 4xy2, v⃗ = ⟨1, 3⟩, P = (2, 3).

6. f(x, y) = 3 cos x sin y, v⃗ = ⟨1, 2⟩, P = (π/3, π/6).

7. f(x, y) = 3x− 5y, v⃗ = ⟨1, 1⟩, P = (4, 2).

8. f(x, y) = x2 − 2x− y2 + 4y, v⃗ = ⟨1, 1⟩, P = (1, 2).

Exercises 9 – 12, a funcƟon z = f(x, y), a vector v⃗ and a point
P are given. Find the equaƟon of the normal line to f at P.
Note: these are the same funcƟons as in Exercises 5 – 8.

9. f(x, y) = 2x2y− 4xy2, v⃗ = ⟨1, 3⟩, P = (2, 3).

10. f(x, y) = 3 cos x sin y, v⃗ = ⟨1, 2⟩, P = (π/3, π/6).

11. f(x, y) = 3x− 5y, v⃗ = ⟨1, 1⟩, P = (4, 2).

12. f(x, y) = x2 − 2x− y2 + 4y, v⃗ = ⟨1, 1⟩, P = (1, 2).

Exercises 13 – 16, a funcƟon z = f(x, y), a vector v⃗ and a point
P are given. Find the two points that are 2 units from the sur-
face f at P. Note: these are the same funcƟons as in Exercises
5 – 8.

13. f(x, y) = 2x2y− 4xy2, v⃗ = ⟨1, 3⟩, P = (2, 3).

14. f(x, y) = 3 cos x sin y, v⃗ = ⟨1, 2⟩, P = (π/3, π/6).

15. f(x, y) = 3x− 5y, v⃗ = ⟨1, 1⟩, P = (4, 2).

16. f(x, y) = x2 − 2x− y2 + 4y, v⃗ = ⟨1, 1⟩, P = (1, 2).

Exercises 17 – 20, a funcƟon z = f(x, y), a point P is given.
Find the equaƟon of the tangent plane to f at P. Note: these
are the same funcƟons as in Exercises 5 – 8.

17. f(x, y) = 2x2y− 4xy2, v⃗ = ⟨1, 3⟩, P = (2, 3).

18. f(x, y) = 3 cos x sin y, v⃗ = ⟨1, 2⟩, P = (π/3, π/6).

19. f(x, y) = 3x− 5y, v⃗ = ⟨1, 1⟩, P = (4, 2).

20. f(x, y) = x2 − 2x− y2 + 4y, v⃗ = ⟨1, 1⟩, P = (1, 2).

Exercises 21 – 24, an implicitly defined funcƟon of x, y and z
is given along with a point P that lies on the surface. Use the
gradient∇F to:

(a) find the equaƟon of the normal line to the surface at
P, and

(b) find the equaƟon of the plane tangent to the surface
at P.

21.
x2

8
+

y2

4
+

z2

16
= 1, at P = (1,

√
2,
√
6)

22. z2 − x2

4
− y2

9
= 0, at P = (4,−3,

√
5)

23. xy2 − xz2 = 0, at P = (2, 1,−1)

24. sin(xy) + cos(yz) = 0, at P = (2, π/12, 4)
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12.8 Extreme Values

Given a funcƟon z = f(x, y), we are oŌen interested in points where z takes on
the largest or smallest values. For instance, if z represents a cost funcƟon, we
would likely want to know what (x, y) values minimize the cost. If z represents
the raƟo of a volume to surface area, we would likely want to know where z is
greatest. This leads to the following definiƟon.

..
DefiniƟon 97 RelaƟve and Absolute Extrema

Let z = f(x, y) be defined on a set S containing the point P = (x0, y0).

1. If there is an open disk D containing P such that f(x0, y0) ≥ f(x, y)
for all (x, y) in D, then f has a relaƟve maximum at P; if f(x0, y0) ≤
f(x, y) for all (x, y) in D, then f has a relaƟve minimum at P.

2. If f(x0, y0) ≥ f(x, y) for all (x, y) in S, then f has an absolute max-
imum at P; if f(x0, y0) ≤ f(x, y) for all (x, y) in S, then f has an
absolute minimum at P.

3. If f has a relaƟve maximum or minimum at P, then f has a relaƟve
extrema at P; if f has an absolutemaximum orminimum at P, then
f has a absolute extrema at P.

If f has a relaƟve or absolute maximum at P = (x0, y0), it means every curve
on the surface of f through Pwill also have a relaƟve or absolute maximum at P.
Recalling what we learned in SecƟon 3.1, the slopes of the tangent lines to these
curves at Pmust be 0 or undefined. Since direcƟonal derivaƟves are computed
using fx and fy, we are led to the following definiƟon and theorem.

..
DefiniƟon 98 CriƟcal Point

Let z = f(x, y) be conƟnuous on an open set S. A criƟcal point P =
(x0, y0) of f is a point in S such that

• fx(x0, y0) = 0 and fy(x0, y0) = 0, or

• fx(x0, y0) and/or fy(x0, y0) is undefined.

Notes:
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Figure 12.27: The surface in Example 432
with its absolute minimum indicated.
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Figure 12.28: The surface in Example 433
with its absolute maximum indicated.

Chapter 12 FuncƟons of Several Variables

..
Theorem 114 CriƟcal Points and RelaƟve Extrema

Let z = f(x, y) be defined on an open set S containing P = (x0, y0). If f
has a relaƟve extrema at P, then P is a criƟcal point of f.

Therefore, to find relaƟve extrema, we find the criƟcal points of f and de-
termine which correspond to relaƟve maxima, relaƟve minima, or neither. The
following examples demonstrate this process.

.. Example 432 Finding criƟcal points and relaƟve extrema
Let f(x, y) = x2 + y2 − xy− x− 2. Find the relaƟve extrema of f.

SÊ½çã®ÊÄ We start by compuƟng the parƟal derivaƟves of f:

fx(x, y) = 2x− y− 1 and fy(x, y) = 2y− x.

Each is never undefined. A criƟcal point occurswhen fx and fy are simultaneously
0, leading us to solve the following system of linear equaƟons:

2x− y− 1 = 0 and − x+ 2y = 0.

This soluƟon to this system is x = 2/3, y = 1/3. (Check that at (2/3, 1/3), both
fx and fy are 0.)

The graph in Figure 12.27 shows f alongwith this criƟcal point. It is clear from
the graph that this is a relaƟve minimum; further consideraƟon of the funcƟon
shows that this is actually the absolute minimum. ..

.. Example 433 Finding criƟcal points and relaƟve extrema
Let f(x, y) = −

√
x2 + y2 + 2. Find the relaƟve extrema of f.

SÊ½çã®ÊÄ We start by compuƟng the parƟal derivaƟves of f:

fx(x, y) =
−x√
x2 + y2

and fy(x, y) =
−y√
x2 + y2

.

It is clear that fx = 0 when x = 0 and that fy = 0 when y = 0. At (0, 0), both
fx and fy are not 0, but rather undefined. The point (0, 0) is sƟll a criƟcal point,
though, because the parƟal derivaƟves are undefined.

The surface of f is graphed in Figure 12.28 along with the point (0, 0, 2). The
graph shows that this point is the absolute maximum of f. ..

In each of the previous two examples, we found a criƟcal point of f and then
determinedwhether or not it was a relaƟve (or absolute)maximumorminimum

Notes:
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Figure 12.29: The surface in Example 434
with both criƟcal points marked.

12.8 Extreme Values

by graphing. It would be nice to be able to determine whether a criƟcal point
corresponded to amax or amin without a graph. Before we develop such a test,
we do one more example that sheds more light on the issues our test needs to
consider.

.. Example 434 Finding criƟcal points and relaƟve extrema
Let f(x, y) = x3 − 3x− y2 + 4y. Find the relaƟve extrema of f.

SÊ½çã®ÊÄ Once again we start by finding the parƟal derivaƟves of f:

fx(x, y) = 3x2 − 3 and fy(x, y) = −2y+ 4.

Each is always defined. Seƫng each equal to 0 and solving for x and y, we find

fx(x, y) = 0 ⇒ x = ±1
fy(x, y) = 0 ⇒ y = 2.

We have two criƟcal points: (−1, 2) and (1, 2). To determine if they correspond
to a relaƟve maximum or minimum, we consider the graph of f in Figure 12.29.

The criƟcal point (−1, 2) clearly corresponds to a relaƟve maximum. How-
ever, the criƟcal point at (1, 2) is neither a maximum nor a minimum, displaying
a different, interesƟng characterisƟc.

If one walks parallel to the y-axis towards this criƟcal point, then this point
becomes a relaƟvemaximumalong this path. But if onewalks towards this point
parallel to the x-axis, this point becomes a relaƟve minimum along this path. A
point that seems to act as both a max and a min is a saddle point. A formal
definiƟon follows. ..

..
DefiniƟon 99 Saddle Point

Let P = (x0, y0) be in the domain of f where fx = 0 and fy = 0 at
P. P is a saddle point of f if, for every open disk D containing P, there
are points (x1, y1) and (x2, y2) in D such that f(x0, y0) > f(x1, y1) and
f(x0, y0) < f(x2, y2).

At a saddle point, the instantaneous rate of change in all direcƟons is 0 and
there are points nearbywith z-values both less than and greater than the z-value
of the saddle point.

Before Example 434 we menƟoned the need for a test to differenƟate be-
tween relaƟve maxima and minima. We now recognize that our test also needs

Notes:

717



Chapter 12 FuncƟons of Several Variables

to account for saddle points. To do so, we consider the second parƟal derivaƟves
of f.

Recall that with single variable funcƟons, such as y = f(x), if f ′′(c) > 0, then
f is concave up at c, and if f ′(c) = 0, then f has a relaƟveminimum at x = c. (We
called this the Second DerivaƟve Test.) Note that at a saddle point, it seems the
graph is “both” concave up and concave down, depending on which direcƟon
you are considering.

It would be nice if the following were true:

fxx and fyy > 0 ⇒ relaƟve minimum
fxx and fyy < 0 ⇒ relaƟve maximum

fxx and fyy have opposite signs ⇒ saddle point.

However, this is not the case. FuncƟons f exist where fxx and fyy are both
posiƟve but a saddle point sƟll exists. In such a case, while the concavity in the
x-direcƟon is up (i.e., fxx > 0) and the concavity in the y-direcƟon is also up (i.e.,
fyy > 0), the concavity switches somewhere in between the x- and y-direcƟons.

To account for this, consider D = fxxfyy − fxyfyx. Since fxy and fyx are equal
when conƟnuous (refer back to Theorem103), we can rewrite this asD = fxxfyy−
f2xy. D can be used to test whether the concavity at a point changes depending on
direcƟon. If D > 0, the concavity does not switch (i.e., at that point, the graph
is concave up or down in all direcƟons). If D < 0, the concavity does switch. If
D = 0, our test fails to determine whether concavity switches or not. We state
the use of D in the following theorem.

..
Theorem 115 Second DerivaƟve Test

Let z = f(x, y) be differenƟable on an open set containing P = (x0, y0),
and let

D = fxx(x0, y0)fyy(x0, y0)− f2xy(x0, y0).

1. If D > 0 and fxx(x0, y0) > 0, then P is a relaƟve minimum of f.

2. If D > 0 and fxx(x0, y0) < 0, then P is a relaƟve maximum of f.

3. If D < 0, then P is a saddle point of f.

4. If D = 0, the test is inconclusive.

We first pracƟce using this test with the funcƟon in the previous example,
where we visually determined we had a relaƟve maximum and a saddle point.

Notes:
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12.8 Extreme Values

.. Example 435 Using the Second DerivaƟve Test
Let f(x, y) = x3−3x−y2+4y as in Example 434. Determinewhether the funcƟon
has a relaƟve minimum, maximum, or saddle point at each criƟcal point.

SÊ½çã®ÊÄ We determined previously that the criƟcal points of f are
(−1, 2) and (1, 2). To use the Second DerivaƟve Test, we must find the second
parƟal derivaƟves of f:

fxx = 6x; fyy = −2; fxy = 0.

Thus D(x, y) = −12x.
At (−1, 2): D(−1, 2) = 12 > 0, and fxx(−1, 2) = −6. By the Second Deriva-

Ɵve Test, f has a relaƟve maximum at (−1, 2).
At (1, 2): D(1, 2) = −12 < 0. The Second DerivaƟve Test states that f has a

saddle point at (1, 2).
The Second DerivaƟve Test confirmed what we determined visually. ..

.. Example 436 ..Using the Second DerivaƟve Test
Find the relaƟve extrema of f(x, y) = x2y+ y2 + xy.

SÊ½çã®ÊÄ We start by finding the first and second parƟal derivaƟves of
f:

fx = 2xy+ y fy = x2 + 2y+ x
fxx = 2y fyy = 2

fxy = 2x+ 1 fyx = 2x+ 1.

We find the criƟcal points by finding where fx and fy are simultaneously 0 (they
are both never undefined). Seƫng fx = 0, we have:

fx = 0 ⇒ 2xy+ y = 0 ⇒ y(2x+ 1) = 0.

This implies that for fx = 0, either y = 0 or 2x+ 1 = 0.
Assume y = 0 then consider fy = 0:

fy = 0

x2 + 2y+ x = 0, and since y = 0, we have

x2 + x = 0
x(x+ 1) = 0.

Thus if y = 0, we have either x = 0 or x = −1, giving two criƟcal points: (−1, 0)
and (0, 0).

Notes:
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Figure 12.30: Graphing f from Example
436 and its relaƟve extrema.

Chapter 12 FuncƟons of Several Variables

Going back to fx, now assume 2x+1 = 0, i.e., that x = −1/2, then consider
fy = 0:

fy = 0

x2 + 2y+ x = 0, and since x = −1/2, we have
1/4+ 2y− 1/2 = 0

y = 1/8.

Thus if x = −1/2, y = 1/8 giving the criƟcal point (−1/2, 1/8).
With D = 4y−(2x+1)2, we apply the Second DerivaƟve Test to each criƟcal

point.
At (−1, 0), D < 0, so (−1, 0) is a saddle point.
At (0, 0), D < 0, so (0, 0) is also a saddle point.
At (−1/2, 1/8), D > 0 and fxx > 0, so (−1/2, 1/8) is a relaƟve minimum.
Figure 12.30 shows a graph of f and the three criƟcal points. Note how this

funcƟon does not vary much near the criƟcal points – that is, visually it is diffi-
cult to determinewhether a point is a saddle point or relaƟveminimum (or even
a criƟcal point at all!). This is one reason why the Second DerivaƟve Test is so
important to have. ...

Constrained OpƟmizaƟon

When opƟmizing funcƟons of one variable such as y = f(x), we made use
of Theorem 25, the Extreme Value Theorem, that said that over a closed inter-
val I, a conƟnuous funcƟon has both a maximum and minimum value. To find
these maximum and minimum values, we evaluated f at all criƟcal points in the
interval, as well as at the endpoints (the “boundary”) of the interval.

A similar theorem and procedure applies to funcƟons of two variables. A
conƟnuous funcƟon over a closed set also aƩains a maximum and minimum
value (see the following theorem). We can find these values by evaluaƟng the
funcƟon at the criƟcal values in the set and over the boundary of the set. AŌer
formally staƟng this extreme value theorem, we give examples.

..
Theorem 116 Extreme Value Theorem

Let z = f(x, y) be a conƟnuous funcƟon on a closed, bounded set S. Then
f has a maximum and minimum value on S.

.. Example 437 ..Finding extrema on a closed set
Let f(x, y) = x2 − y2 + 5 and let S be the triangle with verƟces (−1,−2), (0, 1)
and (2,−2). Find the maximum and minimum values of f on S.

Notes:
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Figure 12.31: Ploƫng the surface of f
along with the restricted domain S.

12.8 Extreme Values

SÊ½çã®ÊÄ It can help to see a graph of f along with the set S. In Figure
12.31(a) the triangle defining S is shown in the x-y plane in a dashed line. Above
it is the surface of f; we are only concerned with the porƟon of f enclosed by the
“triangle” on its surface.

We begin by finding the criƟcal points of f. With fx = 2x and fy = −2y, we
find only one criƟcal point, at (0, 0).

We now find the maximum and minimum values that f aƩains along the
boundary of S, that is, along the edges of the triangle. In Figure 12.31(b) we
see the triangle sketched in the plane with the equaƟons of the lines forming its
edges labeled.

Start with the boƩom edge, along the line y = −2. If y is −2, then on
the surface, we are considering points f(x,−2); that is, our funcƟon reduces to
f(x,−2) = x2 − (−2)2 + 5 = x2 + 1 = f1(x). We want to maximize/minimize
f1(x) = x2 + 1 on the interval [−1, 2]. To do so, we evaluate f1(x) at its criƟcal
points and at the endpoints. ..

The criƟcal points of f1 are found by seƫng its derivaƟve equal to 0:

f ′1(x) = 0 ⇒ x = 0.

EvaluaƟng f1 at this criƟcal point, and at the endpoints of [−1, 1] gives:

f1(−1) = 2 ⇒ f(−1,−2) = 2
f1(0) = 1 ⇒ f(0,−2) = 1
f1(2) = 5 ⇒ f(2,−2) = 5.

NoƟce how evaluaƟng f1 at a point is the same as evaluaƟng f at its correspond-
ing point.

We need to do this process twice more, for the other two edges of the tri-
angle.

Along the leŌ edge, along the line y = 3x + 1, we subsƟtute 3x + 1 in for y
in f(x, y):

f(x, y) = f(x, 3x+ 1) = x2 − (3x+ 1)2 + 5 = −8x2 − 6x+ 4 = f2(x).

We want the maximum and minimum values of f2 on the interval [−1, 0], so we
evaluate f2 at its criƟcal points and the endpoints of the interval. We find the
criƟcal points:

f ′2(x) = −16x− 6 = 0 ⇒ x = −3/8.

Evaluate f2 at its criƟcal point and the endpoints of [−1, 0]:

f2(−1) = 2 ⇒ f(−1,−2) = 2
f2(−3/8) = 41/8 = 5.125 ⇒ f(−3/8,−0.125) = 5.125

f2(0) = 1 ⇒ f(0, 1) = 4.

Notes:
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Chapter 12 FuncƟons of Several Variables

Finally, we evaluate f along the right edgeof the triangle, where y = −3/2x+
1.

f(x, y) = f(x,−3/2x+ 1) = x2 − (−3/2x+ 1)2 + 5 = −5
4
x2 + 3x+ 4 = f3(x).

The criƟcal points of f3(x) are:

f ′3(x) = 0 ⇒ x = 6/5 = 1.2.

We evaluate f3 at this criƟcal point and at the endpoints of the interval [0, 2]:

f3(0) = 4 ⇒ f(0, 1) = 4
f3(1.2) = 5.8 ⇒ f(1.2,−0.8) = 5.8

f3(2) = 5 ⇒ f(2,−2) = 5.

One last point to test: the criƟcal point of f, (0, 0). We find f(0, 0) = 5.
We have evaluated f at a total of 7 different places, all shown in Figure 12.32.

We checked each vertex of the triangle twice, as each showed up as the end-
point of an interval twice. Of all the z-values found, the maximum is 5.8, found
at (1.2,−0.8); the minimum is 1, found at (0,−2). ...

This porƟon of the text is enƟtled “Constrained OpƟmizaƟon” because we
want to opƟmize a funcƟon (i.e., find its maximum and/or minimum values)
subject to a constraint – some limit to what values the funcƟon can aƩain. In
the previous example, we constrained ourselves to considering a funcƟon only
within the boundary of a triangle. This was largely arbitrary; the funcƟon and
the boundary were chosen just as an example, with no real “meaning” behind
the funcƟon or the chosen constraint.

However, solving constrainedopƟmizaƟonproblems is a very important topic
in appliedmathemaƟcs. The techniques developed here are the basis for solving
larger problems, where more than two variables are involved.

We illustrate the technique once more with a classic problem.

.. Example 438 ..Constrained OpƟmizaƟon
The U.S. Postal Service states that the girth+length of Standard Post Package
must not exceed 130”. Given a rectangular box, the “length” is the longest side,
and the “girth” is twice the width+height.

Given a rectangular box where the width and height are equal, what are the
dimensions of the box that give the maximum volume subject to the constraint
of the size of a Standard Post Package?

SÊ½çã®ÊÄ Letw, h and ℓ denote the width, height and length of a rect-
angular box; we assume here thatw = h. The girth is then 2(w+ h) = 4w. The

Notes:
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12.8 Extreme Values

volume of the box is V(w, ℓ) = whℓ = w2ℓ. We wish to maximize this volume
subject to the constraint 4w+ ℓ ≤ 130, or ℓ ≤ 130− 4w. (Common sense also
indicates that ℓ > 0,w > 0.)

We begin by finding the criƟcal values of V. We find that Vw = 2wℓ and
Vℓ = w2; these are simultaneously 0 only at (0, 0). This gives a volume of 0, so
we can ignore this criƟcal point.

We now consider the volume along the constraint ℓ = 130− 4w. Along this
line, we have:

V(wℓ) = V(w, 130− 4w) = w2(130− 4w) = 130w2 − 4w3 = V1(w).

The constraint is applicable on the w-interval [0, 32.5] as indicated in the figure.
Thus we want to maximize V1 on [0, 32.5].

Finding the criƟcal values of V1, we take the derivaƟve and set it equal to 0:

V ′
1(w) = 260w−12w2 = 0 ⇒ w(260−12w) = 0 ⇒ w = 0,

260
12

≈ 21.67.

We found two criƟcal values: when w = 0 and when w = 21.67. We again
ignore the w = 0 soluƟon; the maximum volume, subject to the constraint,
comes at w = h = 21.67, ℓ = 130 − 4(21.6) = 43.33. This gives a volume of
V(21.67, 43.33) ≈ 19, 408in3.

The volume funcƟon V(w, ℓ) is shown in Figure 12.33 along with the con-
straint ℓ = 130 − 4w. As done previously, the constraint is drawn dashed in
the x-y plane and also along the surface of the funcƟon. The point where the
volume is maximized is indicated. ...

It is hard to overemphasize the importance of opƟmizaƟon. In “the real
world,” we rouƟnely seek to make something beƩer. By expressing the some-
thing as a mathemaƟcal funcƟon, “making something beƩer” means “opƟmize
some funcƟon.”

The techniques shownhere are only the beginning of an incredibly important
field. Many funcƟons that we seek to opƟmize are incredibly complex, making
the step of “find the gradient and set it equal to 0⃗” highly nontrivial. Mastery
of the principles here are key to being able to tackle these more complicated
problems.

Notes:
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Exercises 12.8
Terms and Concepts
1. T/F: Theorem 114 states that if f has a criƟcal point at P,

then f has a relaƟve extrema at P.

2. T/F: A point P is a criƟcal point of f if fx and fy are both 0 at
P.

3. T/F: A point P is a criƟcal point of f if fx or fy are undefined
at P.

4. Explain what it means to “solve a constrained opƟmizaƟon”
problem.

Problems
Exercises 5 – 14, find the criƟcal points of the given funcƟon.
Use the Second DerivaƟve Test to determine if each criƟcal
point corresponds to a relaƟve maximum, minimum, or sad-
dle point.

5. f(x, y) = 1
2 x

2 + 2y2 − 8y+ 4x

6. f(x, y) = x2 + 4x+ y2 − 9y+ 3xy

7. f(x, y) = x2 + 3y2 − 6y+ 4xy

8. f(x, y) =
1

x2 + y2 + 1

9. f(x, y) = x2 + y3 − 3y+ 1

10. f(x, y) =
1
3
x3 − x+

1
3
y3 − 4y

11. f(x, y) = x2y2

12. f(x, y) = x4 − 2x2 + y3 − 27y− 15

13. f(x, y) =
√

16− (x− 3)2 − y2

14. f(x, y) =
√

x2 + y2

Exercises 15 – 18, find the absolute maximum and minimum
of the funcƟon subject to the given constraint.

15. f(x, y) = x2 + y2 + y + 1, constrained to the triangle with
verƟces (0, 1), (−1,−1) and (1,−1).

16. f(x, y) = 5x − 7y, constrained to the region bounded by
y = x2 and y = 1.

17. f(x, y) = x2 + 2x + y2 + 2y, constrained to the region
bounded by the circle x2 + y2 = 4.

18. f(x, y) = 3y − 2x2, constrained to the region bounded by
the parabola y = x2 + x− 1 and the line y = x.
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13.1 Iterated Integrals and Area
In Chapter 12 we found that it was useful to differenƟate funcƟons of several
variables with respect to one variable, while treaƟng all the other variables as
constants or coefficients. We can integrate funcƟons of several variables in a
similar way. For instance, if we are told that fx(x, y) = 2xy, we can treat y as
staying constant and integrate to obtain f(x, y):

f(x, y) =
∫

fx(x, y) dx

=

∫
2xy dx

= x2y+ C.

Make a careful note about the constant of integraƟon, C. This “constant” is
something with a derivaƟve of 0 with respect to x, so it could be any expres-
sion that contains only constants and funcƟons of y. For instance, if f(x, y) =
x2y+ sin y+ y3 + 17, then fx(x, y) = 2xy. To signify that C is actually a funcƟon
of y, we write:

f(x, y) =
∫

fx(x, y) dx = x2y+ C(y).

Using this process we can even evaluate definite integrals.

.. Example 439 IntegraƟng funcƟons of more than one variable

Evaluate the integral
∫ 2y

1
2xy dx.

SÊ½çã®ÊÄ Wefind the indefinite integral as before, then apply the Fun-
damental Theorem of Calculus to evaluate the definite integral:∫ 2y

1
2xy dx = x2y

∣∣∣2y
1

= (2y)2y− 2(1)y

= 4y3 − 2y...



Chapter 13 MulƟple IntegraƟon

We can also integrate with respect to y. In general,∫ h2(y)

h1(y)
fx(x, y) dx = f(x, y)

∣∣∣h2(y)
h1(y)

= f
(
h2(y), y

)
− f
(
h1(y), y

)
,

and ∫ g2(x)

g1(x)
fy(x, y) dy = f(x, y)

∣∣∣g2(x)
g1(x)

= f
(
x, g2(x)

)
− f
(
x, g1(x)

)
.

Note that when integraƟng with respect to x, the bounds are funcƟons of y
(of the form x = h1(y) and x = h2(y)) and the final result is also a funcƟon of y.
When integraƟng with respect to y, the bounds are funcƟons of x (of the form
y = g1(x) and y = g2(x)) and the final result is a funcƟon of x. Another example
will help us understand this.

.. Example 440 IntegraƟng funcƟons of more than one variable

Evaluate
∫ x

1

(
5x3y−3 + 6y2

)
dy.

SÊ½çã®ÊÄ We consider x as staying constant and integratewith respect
to y: ∫ x

1

(
5x3y−3 + 6y2

)
dy =

(
5x3y−2

−2
+

6y3

3

) ∣∣∣∣∣
x

1

=

(
−5
2
x3x−2 + 2x3

)
−
(
−5
2
x3 + 2

)
=

9
2
x3 − 5

2
x− 2.

Note how the bounds of the integral are from y = 1 to y = x and that the final
answer is a funcƟon of x. ..

In the previous example, we integrated a funcƟon with respect to y and
ended up with a funcƟon of x. We can integrate this as well. This process is
known as iterated integraƟon, ormulƟple integraƟon.

.. Example 441 ..IntegraƟng an integral

Evaluate
∫ 2

1

(∫ x

1

(
5x3y−3 + 6y2

)
dy
)

dx.

SÊ½çã®ÊÄ We follow a standard “order of operaƟons” and perform the
operaƟons inside parentheses first (which is the integral evaluated in Example

Notes:
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440.) ∫ 2

1

(∫ x

1

(
5x3y−3 + 6y2

)
dy
)

dx =
∫ 2

1

([
5x3y−2

−2
+

6y3

3

] ∣∣∣∣∣
x

1

)
dx

=

∫ 2

1

(
9
2
x3 − 5

2
x− 2

)
dx

=

(
9
8
x4 − 5

4
x2 − 2x

) ∣∣∣∣∣
2

1

=
89
8
.

Note how the bounds of x were x = 1 to x = 2 and the final result was a num-
ber. ...

The previous example showed how we could perform something called an
iterated integral; we do not yet know why we would be interested in doing so
nor what the result, such as the number 89/8, means. Before we invesƟgate
these quesƟons, we offer some definiƟons.

..
DefiniƟon 100 Iterated IntegraƟon

Iterated integraƟon is the process of repeatedly integraƟng the results
of previous integraƟons. IntegraƟng one integral is denoted as follows.

Let a, b, c and d be numbers and let g1(x), g2(x), h1(y) and h2(y) be
funcƟons of x and y, respecƟvely. Then:

1.
∫ d

c

∫ h2(y)

h1(y)
f(x, y) dx dy =

∫ d

c

(∫ h2(y)

h1(y)
f(x, y) dx

)
dy.

2.
∫ b

a

∫ g2(x)

g1(x)
f(x, y) dy dx =

∫ b

a

(∫ g2(x)

g1(x)
f(x, y) dy

)
dx.

Again make note of the bounds of these iterated integrals.

With
∫ d

c

∫ h2(y)

h1(y)
f(x, y) dx dy, x varies from h1(y) to h2(y), whereas y varies from

c to d. That is, the bounds of x are curves, the curves x = h1(y) and x = h2(y),
whereas the bounds of y are constants, y = c and y = d. It is useful to remember
that when seƫng up and evaluaƟng such iterated integrals, we integrate “from

Notes:
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Figure 13.1: CalculaƟng the area of a
plane region R with an iterated integral.
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Figure 13.2: CalculaƟng the area of a
plane region R with an iterated integral.
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curve to curve, then from point to point.”

We now begin to invesƟgate why we are interested in iterated integrals and
what they mean.

Area of a plane region

Consider the plane region R bounded by a ≤ x ≤ b and g1(x) ≤ y ≤ g2(x),
shown in Figure 13.1. We learned in SecƟon 7.1 that the area of R is given by

∫ b

a

(
g2(x)− g1(x)

)
dx.

We can also view the expression
(
g2(x)− g1(x)

)
as

(
g2(x)− g1(x)

)
=

∫ g2(x)

g1(x)
1 dy =

∫ g2(x)

g1(x)
dy,

meaning we can express the area of R as an iterated integral:

area of R =

∫ b

a

(
g2(x)− g1(x)

)
dx =

∫ b

a

(∫ g2(x)

g1(x)
dy

)
dx =

∫ b

a

∫ g2(x)

g1(x)
dy dx.

In short: a certain iterated integral can be viewed as giving the area of a
plane region.

A region R could also be defined by c ≤ y ≤ d and h1(y) ≤ x ≤ h2(x), as
shown in Figure 13.2. Using a process similar to that above, we have

the area of R =

∫ d

c

∫ h2(y)

h1(y)
dx dy.

We state this formally in a theorem.

Notes:
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Figure 13.3: CalculaƟng the area of a rect-
angle with an iterated integral in Example
442.

.....

y = 1

.

y
=

2x
−

5

.

y =
x

.

R

. 4. 5. 1. 2. 3.

1

.

2

.

3

.

4

.

5

.
x

.

y

Figure 13.4: CalculaƟng the area of a tri-
angle with iterated integrals in Example
443.

13.1 Iterated Integrals and Area

..
Theorem 117 Area of a plane region

1. Let R be a plane region bounded by a ≤ x ≤ b and g1(x) ≤ y ≤
g2(x), where g1 and g2 are conƟnuous funcƟons on [a, b]. The area
A of R is

A =

∫ b

a

∫ g2(x)

g1(x)
dy dx.

2. Let R be a plane region bounded by c ≤ y ≤ d and h1(y) ≤ x ≤
h2(y), where h1 and h2 are conƟnuous funcƟons on [c, d]. The area
A of R is

A =

∫ d

c

∫ h2(y)

h1(y)
dx dy.

The following examples should help us understand this theorem.

.. Example 442 Area of a rectangle
Find the area A of the rectangle with corners (−1, 1) and (3, 3), as shown in
Figure 13.3.

SÊ½çã®ÊÄ MulƟple integraƟon is obviously overkill in this situaƟon, but
we proceed to establish its use.

The region R is bounded by x = −1, x = 3, y = 1 and y = 3. Choosing to
integrate with respect to y first, we have

A =

∫ 3

−1

∫ 3

1
1 dy dx =

∫ 3

−1

(
y
∣∣∣3
1

)
dx =

∫ 3

−1
2 dx = 2x

∣∣∣3
−1

= 8.

We could also integrate with respect to x first, giving:

A =

∫ 3

1

∫ 3

−1
1 dx dy =

∫ 3

1

(
x
∣∣∣3
−1

)
dy =

∫ 3

1
4 dy = 4y

∣∣∣3
1
= 8.

Clearly there are simpler ways to find this area, but it is interesƟng to note
that this method works. ..

.. Example 443 ..Area of a triangle
Find the area A of the triangle with verƟces at (1, 1), (3, 1) and (5, 5), as shown
in Figure 13.4.

SÊ½çã®ÊÄ The triangle is bounded by the lines as shown in the figure.
Choosing to integrate with respect to x first gives that x is bounded by x = y

Notes:
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Figure 13.5: CalculaƟng the area of a
plane region with iterated integrals in Ex-
ample 444.
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to x = y+5
2 , while y is bounded by y = 1 to y = 5. (Recall that since x-values

increase from leŌ to right, the leŌmost curve, x = y, is the lower bound and the
rightmost curve, x = (y+ 5)/2, is the upper bound.) The area is

A =

∫ 5

1

∫ y+5
2

y
dx dy

=

∫ 5

1

(
x
∣∣∣ y+5

2

y

)
dy

=

∫ 5

1

(
−1
2
y+

5
2

)
dy

=

(
−1
4
y2 +

5
2
y
) ∣∣∣5

1

= 4.

We can also find the area by integraƟng with respect to y first. In this situa-
Ɵon, though, we have two funcƟons that act as the lower bound for the region
R, y = 1 and y = 2x − 5. This requires us to use two iterated integrals. Note
how the x-bounds are different for each integral:

A =

∫ 3

1

∫ x

1
1 dy dx +

∫ 5

3

∫ x

2x−5
1 dy dx

=

∫ 3

1

(
y
)∣∣∣x

1
dx +

∫ 5

3

(
y
)∣∣∣x

2x−5
dx

=

∫ 3

1

(
x− 1

)
dx +

∫ 5

3

(
− x+ 5

)
dx

= 2 + 2
= 4.

As expected, we get the same answer both ways. ...

.. Example 444 ..Area of a plane region
Find the area of the region enclosed by y = 2x and y = x2, as shown in Figure
13.5.

SÊ½çã®ÊÄ Once again we’ll find the area of the region using both or-
ders of integraƟon.

Using dy dx:∫ 2

0

∫ 2x

x2
1 dy dx =

∫ 2

0
(2x− x2) dx =

(
x2 − 1

3
x3
)∣∣∣2

0
=

4
3
.
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Figure 13.6: Sketching the region R de-
scribed by the iterated integral in Exam-
ple 445.

13.1 Iterated Integrals and Area

Using dx dy:∫ 4

0

∫ √
y

y/2
1 dx dy =

∫ 4

0
(
√
y− y/2) dy =

(
2
3
y3/2 − 1

4
y2
) ∣∣∣4

0
=

4
3
....

Changing Order of IntegraƟon

In each of the previous examples, we have been given a region R and found
the bounds needed to find the area of R using both orders of integraƟon. We
integrated using both orders of operaƟon to demonstrate their equality.

We now approach the skill of describing a region using both orders of inte-
graƟon from a different perspecƟve. Instead of starƟng with a region and cre-
aƟng iterated integrals, we will start with an iterated integral and rewrite it in
the other integraƟon order. To do so, we’ll need to understand the region over
which we are integraƟng.

The simplest of all cases is when both integrals are bound by constants. The
region described by these bounds is a rectangle (see Example 442), and so:∫ b

a

∫ d

c
1 dy dx =

∫ d

c

∫ b

a
1 dx dy.

When the inner integral’s bounds are not constants, it is generally very useful
to sketch the bounds to determinewhat the regionwe are integraƟng over looks
like. From the sketch we can then rewrite the integral with the other order of
integraƟon.

Examples will help us develop this skill.

.. Example 445 Changing the order of integraƟon

Rewrite the iterated integral
∫ 6

0

∫ x/3

0
1 dy dxwith the order of integraƟon dx dy.

SÊ½çã®ÊÄ We need to use the bounds of integraƟon to determine the
region we are integraƟng over.

The bounds tell us that y is bounded by 0 and x/3; x is bounded by 0 and 6.
We plot these four curves: y = 0, y = x/3, x = 0 and x = 6 to find the region
described by the bounds. Figure 13.6 shows these curves, indicaƟng that R is a
triangle.

To change the order of integraƟon, we need to consider the curves that
bound the x-values. We see that the lower bound is x = 3y and the upper
bound is x = 6. The bounds on y are 0 to 2. Thus we can rewrite the integral as∫ 2

0

∫ 6

3y
1 dx dy.

..
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Figure 13.7: Drawing the region deter-
mined by the bounds of integraƟon in Ex-
ample 446.

Chapter 13 MulƟple IntegraƟon

.. Example 446 Changing the order of integraƟon

Change the order of integraƟon of
∫ 4

0

∫ (y+4)/2

y2/4
1 dx dy.

SÊ½çã®ÊÄ We sketch the region described by the bounds to help us
change the integraƟon order. x is bounded below and above (i.e., to the leŌ and
right) by x = y2/4 and x = (y+ 4)/2 respecƟvely, and y is bounded between 0
and 4. Graphing the previous curves, we find the region R to be that shown in
Figure 13.7.

To change the order of integraƟon, we need to establish curves that bound
y. The figure makes it clear that there are two lower bounds for y: y = 0 on
0 ≤ x ≤ 2, and y = 2x − 4 on 2 ≤ x ≤ 4. Thus we need two double integrals.
The upper bound for each is y = 2

√
x. Thus we have∫ 4

0

∫ (y+4)/2

y2/4
1 dx dy =

∫ 2

0

∫ 2
√
x

0
1 dy dx+

∫ 4

2

∫ 2
√
x

2x−4
1 dy dx.

..

This secƟon has introduced a new concept, the iterated integral. We devel-
oped one applicaƟon for iterated integraƟon: area between curves. However,
this is not new, for we already know how to find areas bounded by curves.

In the next secƟon we apply iterated integraƟon to solve problems we cur-
rently do not know how to handle.
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Exercises 13.1
Terms and Concepts
1. When integraƟng fx(x, y) with respect to x, the constant of

integraƟon C is really which: C(x) or C(y)? What does this
mean?

2. IntegraƟng an integral is called .

3. When evaluaƟng an iterated integral, we integrate from
to , then from to .

4. One understanding of an iterated integral is that∫ b

a

∫ g2(x)

g1(x)
dy dx gives the of a plane region.

Problems
In Exercises 5 – 10, evaluate the integral and subsequent it-
erated integral.

5. (a)
∫ 5

2

(
6x2 + 4xy− 3y2

)
dy

(b)
∫ −2

−3

∫ 5

2

(
6x2 + 4xy− 3y2

)
dy dx

6. (a)
∫ π

0

(
2x cos y+ sin x

)
dx

(b)
∫ π/2

0

∫ π

0

(
2x cos y+ sin x

)
dx dy

7. (a)
∫ x

1

(
x2y− y+ 2

)
dy

(b)
∫ 2

0

∫ x

1

(
x2y− y+ 2

)
dy dx

8. (a)
∫ y2

y

(
x− y

)
dx

(b)
∫ 1

−1

∫ y2

y

(
x− y

)
dx dy

9. (a)
∫ y

0

(
cos x sin y

)
dx

(b)
∫ π

0

∫ y

0

(
cos x sin y

)
dx dy

10. (a)
∫ x

0

(
1

1+ x2

)
dy

(b)
∫ 2

1

∫ x

0

(
1

1+ x2

)
dy dx

In Exercises 11 – 16, a graph of a planar region R is given. Give
the iterated integrals, with both orders of integraƟon dy dx
and dx dy, that give the area of R. Evaluate one the iterated
integrals to find the area.
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In Exercises 17 – 22, iterated integrals are given that compute
the area of a region R in the x-y plane. Sketch the region R,
and give the iterated integral(s) that give the area of R with
the opposite order of integraƟon.

17.
∫ 2

−2

∫ 4−x2

0
dy dx

18.
∫ 1

0

∫ 5−5x2

5−5x
dy dx

19.
∫ 2

−2

∫ 2
√

4−y2

0
dx dy

20.
∫ 3

−3

∫ √
9−x2

−
√

9−x2
dy dx

21.
∫ 1

0

∫ √
y

−√
y
dx dy+

∫ 4

1

∫ √
y

y−2
dx dy

22.
∫ 1

−1

∫ (1−x)/2

(x−1)/2
dy dx
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Figure 13.8: Developing a method for
finding signed volume under a surface.

13.2 Double IntegraƟon and Volume

13.2 Double IntegraƟon and Volume

The definite integral of f over [a, b],
∫ b
a f(x) dx, was introduced as “the signed

area under the curve.” We approximated the value of this area by first subdivid-
ing [a, b] into n subintervals, where the i th subinterval has length∆xi, and leƫng
ci be any value in the i th subinterval. We formed rectangles that approximated
part of the area under the curve with width ∆xi, height f(ci), and hence with
area f(ci)∆xi. Summing up all rectangles gave an approximaƟon of the definite
integral, and Theorem 38 stated that∫ b

a
f(x) dx = lim

∥∆x∥→0

∑
f(ci)∆xi,

connecƟng sums of rectangles to area under the curve.

We use a similar approach in this secƟon to find volume under a surface.

Let R be a closed, bounded region in the x-y plane and let z = f(x, y) be
a conƟnuous funcƟon defined on R. We wish to find the signed volume under
the surface of f over R. (We use the term “signed volume” to denote that space
above the x-y plane, under f, will have a posiƟve volume; space above f and
under the x-y planewill have a “negaƟve” volume, similar to the noƟon of signed
area used before.)

We start by parƟƟoning R into n rectangular subregions as shown in Figure
13.8(a). For simplicity’s sake, we let all widths be ∆x and all heights be ∆y.
Note that the sum of the areas of the rectangles is not equal to the area of R,
but rather is a close approximaƟon. Arbitrarily number the rectangles 1 through
n, and pick a point (xi, yi) in the i th subregion.

The volume of the rectangular solid whose base is the i th subregion and
whose height is f(xi, yi) is Vi = f(xi, yi)∆x∆y. Such a solid is shown in Figure
13.8(b). Note how this rectangular solid only approximates the true volume un-
der the surface; part of the solid is above the surface and part is below.

For each subregion Ri used to approximate R, create the rectangular solid
with base area∆x∆y and height f(xi, yi). The sum of all rectangular solids is

n∑
i=1

f(xi, yi)∆x∆y.

This approximates the signed volume under f over R. As we have done before,
to get a beƩer approximaƟon we can use more rectangles to approximate the
region R.

In general, each rectangle could have a different width∆xj and height∆yk,
giving the i th rectangle an area ∆Ai = ∆xj∆yk and the i th rectangular solid a

Notes:

735



Chapter 13 MulƟple IntegraƟon

volume of f(xi, yi)∆Ai. Let |∆A| denote the length of the longest diagonal of all
rectangles in the subdivision of R; |∆A| → 0 means each rectangle’s width and
height are both approaching 0. If f is a conƟnuous funcƟon, as∆A shrinks (and

hence n → ∞) the summaƟon
n∑

i=1

f(xi, yi)∆Ai approximates the signed volume

beƩer and beƩer. This leads to a definiƟon.

..
DefiniƟon 101 Double Integral, Signed Volume

Let z = f(x, y) be a conƟnuous funcƟon defined over a closed region R
in the x-y plane. The signed volume V under f over R is denoted by the
double integral

V =

∫∫
R
f(x, y) dA.

Alternate notaƟons for the double integral are∫∫
R
f(x, y) dA =

∫∫
R
f(x, y) dx dy =

∫∫
R
f(x, y) dy dx.

The definiƟon above does not state how to find the signed volume, though
the notaƟon offers a hint. We need the next two theorems to evaluate double
integrals to find volume.

..
Theorem 118 Double Integrals and Signed Volume

Let z = f(x, y) be a conƟnuous funcƟon defined over a closed region R
in the x-y plane. Then the signed volume V under f over R is

V =

∫∫
R
f(x, y) dA = lim

|∆A|→0

n∑
i=1

f(xi, yi)∆Ai.

This theorem states that we can find the exact signed volume using a limit
of sums. The parƟƟon of the region R is not specified, so any parƟƟoning where
the diagonal of each rectangle shrinks to 0 results in the same answer.

This does not offer a very saƟsfying way of compuƟng area, though. Our
experience has shown that evaluaƟng the limits of sums can be tedious. We
seek a more direct method.

Recall Theorem 54 in SecƟon 7.2. This stated that if A(x) gives the cross-
secƟonal area of a solid at x, then

∫ b
a A(x) dx gave the volume of that solid over

Notes:
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Figure 13.9: Finding volume under a sur-
face by sweeping out a cross–secƟonal
area.

13.2 Double IntegraƟon and Volume

[a, b].
Consider Figure 13.9, where a surface z = f(x, y) is drawn over a region R.

Fixing a parƟcular x value, we can consider the area under f over R where x has
that fixed value. That area can be found with a definite integral, namely

A(x) =
∫ g2(x)

g1(x)
f(x, y) dy.

Remember that though the integrand contains x, we are viewing x as fixed.
Also note that the bounds of integraƟon are funcƟons of x: the bounds depend
on the value of x.

As A(x) is a cross-secƟonal area funcƟon, we can find the signed volume V
under f by integraƟng it:

V =

∫ b

a
A(x) dx =

∫ b

a

(∫ g2(x)

g1(x)
f(x, y) dy

)
dx =

∫ b

a

∫ g2(x)

g1(x)
f(x, y) dy dx.

This gives a concrete method for finding signed volume under a surface. We
could do a similar procedurewherewe startedwith y fixed, resulƟng in a iterated
integral with the order of integraƟon dx dy. The following theorem states that
both methods give the same result, which is the value of the double integral. It
is such an important theorem it has a name associated with it.

..
Theorem 119 Fubini’s Theorem

Let R be a closed, bounded region in the x-y plane and let z = f(x, y) be
a conƟnuous funcƟon on R.

1. If R is bounded by a ≤ x ≤ b and g1(x) ≤ y ≤ g2(x), where g1
and g2 are conƟnuous funcƟons on [a, b], then∫∫

R
f(x, y) dA =

∫ b

a

∫ g2(x)

g1(x)
f(x, y) dy dx.

2. If R is bounded by c ≤ y ≤ d and h1(y) ≤ x ≤ h2(y), where h1
and h2 are conƟnuous funcƟons on [c, d], then∫∫

R
f(x, y) dA =

∫ d

c

∫ h2(y)

h1(y)
f(x, y) dx dy.

Notes:
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Figure 13.10: Finding the signed volume
under a surface in Example 447.

Chapter 13 MulƟple IntegraƟon

Note that once again the bounds of integraƟon follow the “curve to curve,
point to point” paƩern discussed in the previous secƟon. In fact, one of the
main points of the previous secƟon is developing the skill of describing a region
R with the bounds of an iterated integral. Once this skill is developed, we can
use double integrals to compute many quanƟƟes, not just signed volume under
a surface.

.. Example 447 EvaluaƟng a double integral
Let f(x, y) = xy+ey. Find the signed volume under f on the region R, which is the
rectangle with corners (3, 1) and (4, 2) pictured in Figure 13.10, using Fubini’s
Theorem and both orders of integraƟon.

SÊ½çã®ÊÄ We wish to evaluate
∫∫

R

(
xy + ey

)
dA. As R is a rectangle,

the bounds are easily described as 3 ≤ x ≤ 4 and 1 ≤ y ≤ 2.

Using the order dy dx:∫∫
R

(
xy+ ey

)
dA =

∫ 4

3

∫ 2

1

(
xy+ ey

)
dy dx

=

∫ 4

3

([
1
2
xy2 + ey

]∣∣∣∣2
1

)
dx

=

∫ 4

3

(
3
2
x+ e2 − e

)
dx

=

(
3
4
x2 +

(
e2 − e

)
x
)∣∣∣∣2

1

=
21
4

+ e2 − e ≈ 9.92.

Now we check the validity of Fubini’s Theorem by using the order dx dy:∫∫
R

(
xy+ ey

)
dA =

∫ 2

1

∫ 4

3

(
xy+ ey

)
dx dy

=

∫ 2

1

([
1
2
x2y+ xey

]∣∣∣∣4
3

)
dy

=

∫ 2

1

(
7
2
y+ ey

)
dy

=

(
7
4
y2 + ey

)∣∣∣∣2
1

=
21
4

+ e2 − e ≈ 9.92.

Both orders of integraƟon return the same result, as expected. ..

Notes:
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Figure 13.11: Finding the signed volume
under the surface in Example 448.

13.2 Double IntegraƟon and Volume

.. Example 448 EvaluaƟng a double integral
Evaluate

∫∫
R

(
3xy− x2 − y2 + 6

)
dA, where R is the triangle bounded by x = 0,

y = 0 and x/2+ y = 1, as shown in Figure 13.11.

SÊ½çã®ÊÄ While it is not specified which order we are to use, we will
evaluate the double integral using both orders to help drive home the point that
it does not maƩer which order we use.

Using the order dy dx: The bounds on y go from “curve to curve,” i.e., 0 ≤
y ≤ 1− x/2, and the bounds on x go from “point to point,” i.e., 0 ≤ x ≤ 2.∫∫

R
(3xy− x2 − y2 + 6

)
dA =

∫ 2

0

∫ − x
2+1

0
(3xy− x2 − y2 + 6

)
dy dx

=

∫ 2

0

(
3
2
xy2 − x2y− 1

3
y3 + 6y

)∣∣∣∣− x
2+1

0
dx

=

∫ 2

0

(
11
12

x3 − 11
4
x2 − x− 17

3

)
dx

=

(
11
48

x4 − 11
12

x3 − 1
2
x2 − 17

3
x
)∣∣∣∣2

0

=
17
3

= 5.6.

Now lets consider the order dx dy. Here x goes from “curve to curve,” 0 ≤
x ≤ 2− 2y, and y goes from “point to point,” 0 ≤ y ≤ 1:∫∫

R
(3xy− x2 − y2 + 6

)
dA =

∫ 1

0

∫ 2−2y

0
(3xy− x2 − y2 + 6

)
dx dy

=

∫ 1

0

(
3
2
x2y− 1

3
x3 − xy2 + 6x

)∣∣∣∣2−2y

0
dy

=

∫ 1

0

(
32
3
y3 − 22y2 + 2y+

28
3

)
dy

=

(
8
3
y4 − 22

3
y3 + y2 +

28
3
y
)∣∣∣∣1

0

=
17
3

= 5.6.

We obtained the same result using both orders of integraƟon. ..

Note how in these two examples that the bounds of integraƟon depend only
on R; the bounds of integraƟon have nothing to do with f(x, y). This is an impor-
tant concept, so we include it as a Key Idea.

Notes:
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Figure 13.13: Finding the signed volume
under a surface in Example 449.

Chapter 13 MulƟple IntegraƟon

..
Key Idea 56 Double IntegraƟon Bounds

When evaluaƟng
∫∫

R f(x, y) dA using an iterated integral, the bounds of
integraƟon depend only on R. The surface f does not determine the
bounds of integraƟon.

Before doing another example, we give some properƟes of double integrals.
Each should make sense if we view them in the context of finding signed volume
under a surface, over a region.

..
Theorem 120 ProperƟes of Double Integrals

Let f and g be conƟnuous funcƟons over a closed, bounded plane region
R, and let c be a constant.

1.
∫∫

R
cf(x, y) dA = c

∫∫
R
f(x, y) dA.

2.
∫∫

R

(
f(x, y)± g(x, y)

)
dA =

∫∫
R
f(x, y) dA±

∫∫
R
g(x, y) dA

3. If f(x, y) ≥ 0 on R, then
∫∫

R
f(x, y) dA ≥ 0.

4. If f(x, y) ≥ g(x, y) on R, then
∫∫

R
f(x, y) dA ≥

∫∫
R
g(x, y) dA.

5. Let R be the union of two nonoverlapping regions, R = R1
∪

R2
(see Figure 13.12). Then∫∫

R
f(x, y) dA =

∫∫
R1
f(x, y) dA+

∫∫
R2
f(x, y) dA.

.. Example 449 ..EvaluaƟng a double integral
Let f(x, y) = sin x cos y and R be the triangle with verƟces (−1, 0), (1, 0) and
(0, 1) (see Figure 13.13). Evaluate the double integral

∫∫
R f(x, y) dA.

SÊ½çã®ÊÄ If we aƩempt to integrate using an iterated integral with the
order dy dx, note how there are two upper bounds on Rmeaning we’ll need to
use two iterated integrals. We can split the triangle into to regions along the

Notes:

740



...

..
2

.

4

.
2

.

4

.

2

.

4

.

x

.

y

.

z

Figure 13.14: Finding the volume under
the surface in Example 450.

13.2 Double IntegraƟon and Volume

y-axis, then use Theorem 120, part 5.
Instead, let’s use the order dx dy. The curves bounding x are y − 1 ≤ x ≤

1− y; the bounds on y are 0 ≤ y ≤ 1. This gives us:∫∫
R
f(x, y) dA =

∫ 1

0

∫ 1−y

y−1
sin x cos y dx dy

=

∫ 1

0

(
− cos x cos y

)∣∣∣1−y

y−1
dy

=

∫ 1

0
cos y

(
− cos(1− y) + cos(y− 1)

)
dy.

Recall that the cosine funcƟon is an even funcƟon; that is, cos x = cos(−x).
Therefore, from the last integral above, we have cos(y− 1) = cos(1− y). Thus
the integrand simplifies to 0, and we have∫∫

R
f(x, y) dA =

∫ 1

0
0 dy

= 0.

It turns out that over R, there is just as much volume above the x-y plane as be-
low (look again at Figure 13.13), giving a final signed volume of 0. ...

.. Example 450 ..EvaluaƟng a double integral
Evaluate

∫∫
R(4−y) dA, where R is the region bounded by the parabolas y2 = 4x

and x2 = 4y, graphed in Figure 13.14.

SÊ½çã®ÊÄ Graphing each curve can help us find their points of inter-
secƟon; analyƟcally, the second equaƟon tells us that y = x2/4. SubsƟtuƟng
this value in for y in the first equaƟon gives us x4/16 = 4x. Solving for x:

x4

16
= 4x

x4 − 64x = 0

x(x3 − 64) = 0
x = 0, 4.

Thus we’ve found analyƟcally what was easy to approximate graphically: the
regions intersect at (0, 0) and (4, 4), as shown in Figure 13.14.

We now choose an order of integraƟon: dy dx or dx dy? Either order works;
since the integrand does not contain x, choosing dx dy might be simpler – at
least, the first integral is very simple.

Notes:
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Chapter 13 MulƟple IntegraƟon

Thus we have the following “curve to curve, point to point” bounds: y2/4 ≤
x ≤ 2

√
y, and 0 ≤ y ≤ 4.∫∫

R
(4− y) dA =

∫ 4

0

∫ 2
√
y

y2/4
(4− y) dx dy

=

∫ 4

0

(
x(4− y)

)∣∣∣2√y

y2/4
dy

=

∫ 4

0

((
2
√
y− y2

4
)(
4− y)

)
dy =

∫ 4

0

(y3
4

− y2 − 2y3/2 + 8y1/2
)
dy

=

(
y4

16
− y3

3
− 4y5/2

5
+

16y3/2

3

)∣∣∣∣4
0

=
176
15

= 11.73.

The signed volume under the surface f is about 11.7 cubic units. ...

In the previous secƟon we pracƟced changing the order of integraƟon of a
given iterated integral, where the region R was not explicitly given. Changing
the bounds of an integral is more than just an test of understanding. Rather,
there are cases where integraƟng in one order is really hard, if not impossible,
whereas integraƟng with the other order is feasible.

.. Example 451 ..Changing the order of integraƟon

Rewrite the iterated integral
∫ 3

0

∫ 3

y
e−x2 dx dy with the order dy dx. Comment

on the feasibility to evaluate each integral.

SÊ½çã®ÊÄ Once again we make a sketch of the region over which we
are integraƟng to facilitate changing the order. The bounds on x are from x = y
to x = 3; the bounds on y are from y = 0 to y = 3. These curves are sketched
in Figure 13.15, enclosing the region R.

To change the bounds, note that the curves bounding y are y = 0 up to
y = x; the triangle is enclosed between x = 0 and x = 3. Thus the new
bounds of integraƟon are 0 ≤ y ≤ x and 0 ≤ x ≤ 3, giving the iterated in-

tegral
∫ 3

0

∫ x

0
e−x2 dy dx.

How easy is it to evaluate each iterated integral? Consider the order of in-
tegraƟng dx dy, as given in the original problem. The first indefinite integral we
need to evaluate is

∫
e−x2 dx; we have stated before (see SecƟon 5.5) that this

integral cannot be evaluated in terms of elementary funcƟons. We are stuck.
Changing the order of integraƟonmakes a big difference here. In the second

Notes:
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13.2 Double IntegraƟon and Volume

iterated integral, we are faced with
∫
e−x2 dy; integraƟng with respect to y gives

us ye−x2 + C, and the first definite integral evaluates to∫ x

0
e−x2 dy = xe−x2 .

Thus ∫ 3

0

∫ x

0
e−x2 dy dx =

∫ 3

0

(
xe−x2

)
dx.

This last integral is easy to evaluate with subsƟtuƟon, giving a final answer of
1
2 (1− e−9) ≈ 0.5. Figure 13.16 shows the surface over R.

In short, evaluaƟng one iterated integral is impossible; the other iterated in-
tegral is relaƟvely simple. ...

DefiniƟon 22 defines the average value of a single–variable funcƟon f(x) on
the interval [a, b] as

average value of f(x) on [a, b] =
1

b− a

∫ b

a
f(x) dx;

that is, it is the “area under f over an interval divided by the length of the inter-
val.” We make an analogous statement here: the average value of z = f(x, y)
over a region R is the volume under f over R divided by the area of R.

..
DefiniƟon 102 The Average Value of f on R

Let z = f(x, y) be a conƟnuous funcƟon defined over a closed region R
in the x-y plane. The average value of f on R is

average value of f on R =

∫∫
R
f(x, y) dA∫∫
R
dA

.

.. Example 452 ..Finding average value of a funcƟon over a region R
Find the average value of f(x, y) = 4− y over the region R, which is bounded by
the parabolas y2 = 4x and x2 = 4y. Note: this is the same funcƟon and region
as used in Example 450.

SÊ½çã®ÊÄ In Example 450 we found∫∫
R
f(x, y) dA =

∫ 4

0

∫ 2
√
y

y2/4
(4− y) dx dy =

176
15

.

Notes:
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Chapter 13 MulƟple IntegraƟon

We find the area of R by compuƟng
∫∫

R dA:∫∫
R
dA =

∫ 4

0

∫ 2
√
y

y2/4
dx dy =

16
3
.

Dividing the volume under the surface by the area gives the average value:

average value of f on R =
176/15
16/3

=
11
5

= 2.2.

While the surface, as shown in Figure 13.17, covers z-values from z = 0 to z = 4,
the “average” z-value on R is 2.2. ...

The previous secƟon introduced the iterated integral in the context of find-
ing the area of plane regions. This secƟon has extended our understanding of
iterated integrals; nowwe see they can be used to find the signed volume under
a surface.

This new understanding allows us to revisit what we did in the previous sec-
Ɵon. Given a region R in the plane, we computed

∫∫
R 1 dA; again, our under-

standing at the Ɵme was that we were finding the area of R. However, we can
now view the funcƟon z = 1 as a surface, a flat surface with constant z-value of
1. The double integral

∫∫
R 1 dA finds the volume, under z = 1, over R, as shown

in Figure 13.18. Basic geometry tells us that if the base of a general right cylinder
has area A, its volume is A · h, where h is the height. In our case, the height is
1. We were “actually” compuƟng the volume of a solid, though we interpreted
the number as an area.

The next secƟon extends our abiliƟes to find “volumes under surfaces.” Cur-
rently, some integrals are hard to compute because either the region R we are
integraƟng over is hard to define with rectangular curves, or the integrand it-
self is hard to deal with. Some of these problems can be solved by converƟng
everything into polar coordinates.

Notes:
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Exercises 13.2
Terms and Concepts
1. An integral can be interpreted as giving the signed area over

an interval; a double integral can be interpreted as giving
the signed over region.

2. Explain why the following statement is false: “Fu-

bini’s Theorem states that
∫ b

a

∫ g2(x)

g1(x)
f(x, y) dy dx =∫ b

a

∫ g2(y)

g1(y)
f(x, y) dx dy.”

3. Explain why if f(x, y) > 0 over a region R, then∫∫
R f(x, y) dA > 0.

4. If
∫∫

R f(x, y) dA =
∫∫

R g(x, y) dA, does this imply f(x, y) =
g(x, y)?

Problems
In Exercises 5 – 10, evaluate the given iterated integral. Also
rewrite the integral using the other order of integraƟon.

5.
∫ 2

1

∫ 1

−1

(
x
y
+ 3
)

dx dy

6.
∫ π/2

−π/2

∫ π

0
(sin x cos y) dx dy

7.
∫ 4

0

∫ −x/2+2

0

(
3x2 − y+ 2

)
dy dx

8.
∫ 3

1

∫ 3

y

(
x2y− xy2

)
dx dy

9.
∫ 1

0

∫ √
1−y

−
√

1−y
(x+ y+ 2) dx dy

10.
∫ 9

0

∫ √
y

y/3

(
xy2
)
dx dy

In Exercises 11 – 18, set up the iterated integrals, in both or-
ders, that evaluate the given double integral for the described
region R. Evaluate one of the iterated integrals.

11.
∫∫

R
x2y dA, where R is bounded by y =

√
x and y = x2.

12.
∫∫

R
x2y dA, where R is bounded by y = 3

√
x and y = x3.

13.
∫∫

R
x2 − y2 dA, where R is the rectangle with corners

(−1,−1), (1,−1), (1, 1) and (−1, 1).

14.
∫∫

R
yex dA, where R is bounded by x = 0, x = y2 and

y = 1.

15.
∫∫

R

(
6− 3x− 2y

)
dA, where R is bounded by x = 0, y = 0

and 3x+ 2y = 6.

16.
∫∫

R
ey dA, where R is bounded by y = ln x and

y =
1

e− 1
(x− 1).

17.
∫∫

R

(
x3y−x

)
dA, whereR is the half of the circle x2+y2 = 9

in the first and second quadrants.

18.
∫∫

R

(
4 − 3y

)
dA, where R is bounded by y = 0, y = x/e

and y = ln x.

In Exercises 19 – 22, state why it is difficult/impossible to in-
tegrate the iterated integral in the given order of integraƟon.
Change the order of integraƟon and evaluate the new iter-
ated integral.

19.
∫ 4

0

∫ 2

y/2
ex

2
dx dy

20.
∫ √

π/2

0

∫ √
π/2

x
cos
(
y2
)
dy dx

21.
∫ 1

0

∫ 1

y

2y
x2 + y2

dx dy

22.
∫ 1

−1

∫ 2

1

x tan2 y
1+ ln y

dy dx

In Exercises 23 – 26, find the average value of f over the re-
gion R. NoƟce how these funcƟons and regions are related to
the iterated integrals given in Exercises 5 – 8.

23. f(x, y) =
x
y
+ 3; R is the rectangle with opposite corners

(−1, 1) and (1, 2).

24. f(x, y) = sin x cos y; R is bounded by x = 0, x = π,
y = −π/2 and y = π/2.

25. f(x, y) = 3x2 − y + 2; R is bounded by the lines y = 0,
y = 2− x/2 and x = 0.

26. f(x, y) = x2y − xy2; R is bounded by y = x, y = 1 and
x = 3.

745



..... 0.5. 1.

0.5

.

1

.
0

.

π/2

(a)

..... ︸
︷︷

︸
r1

.

r 2

︷
︸︸

︷

.

∆θ

(b)

Figure 13.19: ApproximaƟng a region R
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13.3 Double IntegraƟon with Polar Coordinates
We have used iterated integrals to evaluate double integrals, which give the
signed volume under a surface, z = f(x, y), over a region R of the x-y plane.
The integrand is simply f(x, y), and the bounds of the integrals are determined
by the region R.

Some regions R are easy to describe using rectangular coordinates – that is,
with equaƟons of the form y = f(x), x = a, etc. However, some regions are
easier to handle if we represent their boundaries with polar equaƟons of the
form r = f(θ), θ = α, etc.

The basic form of the double integral is
∫∫

R f(x, y) dA. We interpret this in-
tegral as follows: over the region R, sum up lots of products of heights (given by
f(xi, yi)) and areas (given by∆Ai). That is, dA represents “a liƩle bit of area.” In
rectangular coordinates, we can describe a small rectangle as having area dx dy
or dy dx – the area of a rectangle is simply length×width – a small change in x
Ɵmes a small change in y. Thus we replace dA in the double integral with dx dy
or dy dx.

Now consider represenƟng a region R with polar coordinates. Consider Fig-
ure 13.19(a). Let R be the region in the first quadrant bounded by the curve.
We can approximate this region using the natural shape of polar coordinates:
porƟons of sectors of circles. In the figure, one such region is shaded, shown
again in part (b) of the figure.

As the area of a sector of a circle with radius r, subtended by an angle θ, is
A = 1

2 r
2θ, we can find the area of the shaded region. The whole sector has area

1
2 r

2
2∆θ, whereas the smaller, unshaded sector has area 1

2 r
2
1∆θ. The area of the

shaded region is the difference of these areas:

∆Ai =
1
2
r22∆θ − 1

2
r21∆θ =

1
2
(
r22 − r21

)(
∆θ
)
=

r2 + r1
2

(
r2 − r1

)
∆θ.

Note that (r2 + r1)/2 is just the average of the two radii.
To approximate the region R, we usemany such subregions; doing so shrinks

the difference r2− r1 between radii to 0 and shrinks the change in angle∆θ also
to 0. We represent these infinitesimal changes in radius and angle as dr and dθ,
respecƟvely. Finally, as dr is small, r2 ≈ r1, and so (r2 + r1)/2 ≈ r1. Thus, when
dr and dθ are small,

∆Ai ≈ ri dr dθ.

Taking a limit, where the number of subregions goes to infinity and both
r2 − r1 and∆θ go to 0, we get

dA = r dr dθ.

So to evaluate
∫∫

R f(x, y) dA, replace dA with r dr dθ. Convert the funcƟon
z = f(x, y) to a funcƟonwith polar coordinateswith the subsƟtuƟons x = r cos θ,

Notes:
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Figure 13.20: EvaluaƟng a double integral
with polar coordinates in Example 453.

13.3 Double IntegraƟon with Polar Coordinates

y = r sin θ. Finally, find bounds g1(θ) ≤ r ≤ g2(θ) and α ≤ θ ≤ β that describe
R. This is the key principle of this secƟon, so we restate it here as a Key Idea.

..
Key Idea 57 EvaluaƟng Double Integrals with Polar Coordinates

Let R be a plane region bounded by the polar equaƟons α ≤ θ ≤ β and
g1(θ) ≤ r ≤ g2(θ). Then∫∫

R
f(x, y) dA =

∫ β

α

∫ g2(θ)

g1(θ)
f
(
r cos θ, r sin θ

)
r dr dθ.

Examples will help us understand this Key Idea.

.. Example 453 EvaluaƟng a double integral with polar coordinates
Find the signed volume under the plane z = 4 − x − 2y over the circle with
equaƟon x2 + y2 = 1.

SÊ½çã®ÊÄ The bounds of the integral are determined solely by the re-
gion R over which we are integraƟng. In this case, it is a circle with equaƟon
x2+ y2 = 1. We need to find polar bounds for this region. It may help to review
SecƟon 9.4; the bounds for this circle are 0 ≤ r ≤ 1 and 0 ≤ θ ≤ 2π.

We replace f(x, y) with f(r cos θ, r sin θ). That means we make the following
subsƟtuƟons:

4− x− 2y ⇒ 4− r cos θ − 2r sin θ.

Finally, we replace dA in the double integral with r dr dθ. This gives the final
iterated integral, which we evaluate:∫∫

R
f(x, y) dA =

∫ 2π

0

∫ 1

0

(
4− r cos θ − 2r sin θ

)
r dr dθ

=

∫ 2π

0

∫ 1

0

(
4r− r2(cos θ − 2 sin θ)

)
dr dθ

=

∫ 2π

0

(
2r2 − 1

3
r3(cos θ − 2 sin θ)

)∣∣∣∣1
0
dθ

=

∫ 2π

0

(
2− 1

3
(
cos θ − 2 sin θ

))
dθ

=

(
2θ − 1

3
(
sin θ + 2 cos θ

))∣∣∣∣2π
0

= 4π ≈ 12.566.

The surface and region R are shown in Figure 13.20. ..

Notes:
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Figure 13.21: Showing the region R and
surface used in Example 454.

Chapter 13 MulƟple IntegraƟon

.. Example 454 ..EvaluaƟng a double integral with polar coordinates
Find the volume under the paraboloid z = 4 − (x − 2)2 − y2 over the region
bounded by the circles (x− 1)2 + y2 = 1 and (x− 2)2 + y2 = 4.

SÊ½çã®ÊÄ At first glance, this seems like a very hard volume to com-
pute as the region R (shown in Figure 13.21(a)) has a hole in it, cuƫng out a
strange porƟon of the surface, as shown in part (b) of the figure. However, by
describing R in terms of polar equaƟons, the volume is not very difficult to com-
pute. It is straighƞorward to show that the circle (x − 1)2 + y2 = 1 has polar
equaƟon r = 2 cos θ, and that the circle (x − 2)2 + y2 = 4 has polar equaƟon
r = 4 cos θ. Each of these circles is traced out on the interval 0 ≤ θ ≤ π. The
bounds on r are 2 cos θ ≤ r ≤ 4 cos θ.

Replacing x with r cos θ in the integrand, along with replacing y with r sin θ,
prepares us to evaluate the double integral

∫∫
R f(x, y) dA:∫∫

R
f(x, y) dA =

∫ π

0

∫ 4 cos θ

2 cos θ

(
4−

(
r cos θ − 2

)2 − (r sin θ)2)r dr dθ
=

∫ π

0

∫ 4 cos θ

2 cos θ

(
− r3 + 4r2 cos θ

)
dr dθ

=

∫ π

0

(
−1
4
r4 +

4
3
r3 cos θ

)∣∣∣∣4 cos θ
2 cos θ

dθ

=

∫ π

0

([
−1
4
(256 cos4 θ) +

4
3
(64 cos4 θ)

]
−[

−1
4
(16 cos4 θ) +

4
3
(8 cos4 θ)

])
dθ

=

∫ π

0

44
3

cos4 θ dθ.

To integrate cos4 θ, rewrite it as cos2 θ cos2 θ and employ the power-reducing
formula twice:

cos4 θ = cos2 θ cos2 θ

=
1
2
(
1+ cos(2θ)

)1
2
(
1+ cos(2θ)

)
=

1
4
(
1+ 2 cos(2θ) + cos2(2θ)

)
=

1
4

(
1+ 2 cos(2θ) +

1
2
(
1+ cos(4θ)

))
=

3
8
+

1
2
cos(2θ) +

1
8
cos(4θ).

Notes:
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Figure 13.22: The surface and region R
used in Example 455.

Note: Previous work has shown that
there is finite area under 1

x2+1 over the
enƟre x-axis. However, Example 455
shows that there is infinite volume under

1
x2+y2+1 over the enƟre x-y plane.

13.3 Double IntegraƟon with Polar Coordinates

Picking up from where we leŌ off above, we have

=

∫ π

0

44
3

cos4 θ dθ

=

∫ π

0

44
3

(
3
8
+

1
2
cos(2θ) +

1
8
cos(4θ)

)
dθ

=
44
3

(
3
8
θ +

1
4
sin(2θ) +

1
32

sin(4θ)
)∣∣∣∣π

0

=
11
2
π ≈ 17.279.

While this example was not trivial, the double integral would have been much
harder to evaluate had we used rectangular coordinates. ...

.. Example 455 EvaluaƟng a double integral with polar coordinates
Find the volume under the surface f(x, y) =

1
x2 + y2 + 1

over the sector of the

circlewith radius a centered at the origin in the first quadrant, as shown in Figure
13.22.

SÊ½çã®ÊÄ The region R we are integraƟng over is a circle with radius
a, restricted to the first quadrant. Thus, in polar, the bounds on R are 0 ≤ r ≤ a,
0 ≤ θ ≤ π/2. The integrand is rewriƩen in polar as

1
x2 + y2 + 1

⇒ 1
r2 cos2 θ + r2 sin2 θ + 1

=
1

r2 + 1
.

We find the volume as follows:∫∫
R
f(x, y) dA =

∫ π/2

0

∫ a

0

r
r2 + 1

dr dθ

=

∫ π/2

0

1
2
(
ln |r2 + 1|

)∣∣∣a
0
dθ

=

∫ π/2

0

1
2
ln(a2 + 1) dθ

=

(
1
2
ln(a2 + 1)θ

)∣∣∣∣π/2
0

=
π

4
ln(a2 + 1).

Figure 13.22 clearly shows that f shrinks to near 0 very quickly. Regardless, as a
grows, so does the volume, without bound. ..

Notes:
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Figure 13.23: Finding the volume of the
solid shown here from two perspecƟves.

Chapter 13 MulƟple IntegraƟon

.. Example 456 Finding the volume of a sphere
Find the volume of a sphere with radius a.

SÊ½çã®ÊÄ The sphere of radius a, centered at the origin, has equaƟon
x2+y2+z2 = a2; solving for z, we have z =

√
a2 − x2 − y2. This gives the upper

half of a sphere. We wish to find the volume under this top half, then double it
to find the total volume.

The region we need to integrate over is the circle of radius a, centered at the
origin. The polar bounds for this equaƟon are 0 ≤ r ≤ a, 0 ≤ θ ≤ 2π.

All together, the volume of a sphere with radius a is:

2
∫∫

R

√
a2 − x2 − y2 dA = 2

∫ 2π

0

∫ a

0

√
a2 − (r cos θ)2 − (r sin θ)2r dr dθ

= 2
∫ 2π

0

∫ a

0
r
√

a2 − r2 dr dθ.

We can evaluate this inner integral with subsƟtuƟon. With u = a2 − r2, du =
−2r dr. The new bounds of integraƟon are u(0) = a2 to u(a) = 0. Thus we
have:

=

∫ 2π

0

∫ 0

a2

(
− u1/2

)
du dθ

=

∫ 2π

0

(
−2
3
u3/2

)∣∣∣∣0
a2
dθ

=

∫ 2π

0

(
2
3
a3
)

dθ

=

(
2
3
a3θ
)∣∣∣∣2π

0

=
4
3
πa3.

Generally, the formula for the volumeof a spherewith radius r is given as 4/3πr3;
we have jusƟfied this formula with our calculaƟon. ..

.. Example 457 ..Finding the volume of a solid
A sculptor wants to make a solid bronze cast of the solid shown in Figure 13.23,
where the base of the solid has boundary, in polar coordinates, r = cos(3θ),
and the top is defined by the plane z = 1 − x + 0.1y. Find the volume of the
solid.

SÊ½çã®ÊÄ From the outset, we should recognize that knowing how to
set up this problem is probably more important than knowing how to compute

Notes:
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13.3 Double IntegraƟon with Polar Coordinates

the integrals. The iterated integral to come is not “hard” to evaluate, though it is
long, requiring lots of algebra. Once the proper iterated integral is determined,
one can use readily–available technology to help compute the final answer.

The region R that we are integraƟng over is bound by 0 ≤ r ≤ cos(3θ),
for 0 ≤ θ ≤ π (note that this rose curve is traced out on the interval [0, π], not
[0, 2π]). This gives us our bounds of integraƟon. The integrand is z = 1−x+0.1y;
converƟng to polar, we have that the volume V is:

V =

∫∫
R
f(x, y) dA =

∫ π

0

∫ cos(3θ)

0

(
1− r cos θ + 0.1r sin θ

)
r dr dθ.

DistribuƟng the r, the inner integral is easy to evaluate, leading to∫ π

0

(
1
2
cos2(3θ)− 1

3
cos3(3θ) cos θ +

0.1
3

cos3(3θ) sin θ
)

dθ.

This integral takes Ɵme to compute by hand; it is rather long and cumbersome.
The powers of cosine need to be reduced, and products like cos(3θ) cos θ need
to be turned to sums using the Product To Sum formulas in the back cover of
this text.

For instance, we rewrite 1
2 cos

2(3θ) as 1
4 (1+ cos(6θ)). We can also rewrite

1
3 cos

3(3θ) cos θ as:

1
3
cos3(3θ) cos θ =

1
3
cos2(3θ) cos(3θ) cos θ =

1
3
1+ cos(6θ)

2
(
cos(4θ)+cos(2θ)

)
.

This last expression sƟll needs simplificaƟon, but eventually all terms can be re-
duced to the form a cos(mθ) or a sin(mθ) for various values of a andm.

We forgo the algebra and recommend the reader employ technology, such
as WolframAlpha®, to compute the numeric answer. Such technology gives:∫ π

0

∫ cos(3θ)

0

(
1− r cos θ + 0.1r sin θ

)
r dr dθ =

π

4
≈ 0.785u3.

Since the units were not specified, we leave the result as almost 0.8 cubic units
(meters, feet, etc.) Should the arƟst want to scale the piece uniformly, so that
each rose petal had a length other than 1, she should keep in mind that scaling
by a factor of k scales the volume by a factor of k3. ...

We have used iterated integrals to find areas of plane regions and volumes
under surfaces. Just as a single integral can be used to computemuchmore than
“area under the curve,” iterated integrals can be used to compute much more
than we have thus far seen. The next two secƟons show two, among many,
applicaƟons of iterated integrals.

Notes:
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Exercises 13.3
Terms and Concepts
1. When evaluaƟng

∫∫
R f(x, y) dA using polar coordinates,

f(x, y) is replaced with and dA is replaced with
.

2. Why would one be interested in evaluaƟng a double inte-
gral with polar coordinates?

Problems
In Exercises 3 – 10, a funcƟon f(x, y) is given and a region R of
the x-y plane is described. Set up and evaluate

∫∫
R f(x, y) dA

using polar coordinates.

3. f(x, y) = 3x − y + 4; R is the region enclosed by the circle
x2 + y2 = 1.

4. f(x, y) = 4x + 4y; R is the region enclosed by the circle
x2 + y2 = 4.

5. f(x, y) = 8− y; R is the region enclosed by the circles with
polar equaƟons r = cos θ and r = 3 cos θ.

6. f(x, y) = 4; R is the region enclosed by the petal of the rose
curve r = sin(2θ) in the first quadrant.

7. f(x, y) = ln
(
x2 + y2); R is the annulus enclosed by the cir-

cles x2 + y2 = 1 and x2 + y2 = 4.

8. f(x, y) = 1− x2 − y2; R is the region enclosed by the circle
x2 + y2 = 1.

9. f(x, y) = x2 − y2; R is the region enclosed by the circle
x2 + y2 = 36 in the first and fourth quadrants.

10. f(x, y) = (x − y)/(x + y); R is the region enclosed by the
lines y = x, y = 0 and the circle x2 + y2 = 1 in the first
quadrant.

In Exercises 11 – 14, an iterated integral in rectangular coor-
dinates is given. Rewrite the integral using polar coordinates.

11.
∫ 5

0

∫ √
25−x2

−
√

25−x2

√
x2 + y2 dy dx

12.
∫ 4

−4

∫ 0

−
√

16−y2

(
2y− x

)
dx dy

13.
∫ 2

0

∫ √
8−y2

y

(
x+ y

)
dx dy

14.
∫ −1

−2

∫ √
4−x2

0

(
x+5

)
dy dx+

∫ 1

−1

∫ √
4−x2

√
1−x2

(
x+5

)
dy dx+∫ 2

1

∫ √
4−x2

0

(
x+ 5

)
dy dx

Hint: draw the region of each integral carefully and see how
they all connect.

In Exercises 15 – 16, special double integrals are presented
that are especially well suited for evaluaƟon in polar coordi-
nates.

15. Consider
∫∫

R
e−(x2+y2) dA.

(a) Why is this integral difficult to evaluate in rectangular
coordinates, regardless of the region R?

(b) Let R be the region bounded by the circle of radius a
centered at the origin. Evaluate the double integral
using polar coordinates.

(c) Take the limit of your answer from (b), as a → ∞.
What does this imply about the volume under the
surface of e−(x2+y2)?

16. The surface of a right circular cone with height h and
base radius a can be described by the equaƟon f(x, y) =

h− h
√

x2

a2
+

y2

a2
, where the Ɵp of the cone lies at (0, 0, h)

and the circular base lies in the x-y plane, centered at the
origin.

Confirm that the volume of a right circular cone with
height h and base radius a is V =

1
3
πa2h by evaluaƟng∫∫

R
f(x, y) dA in polar coordinates.
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Figure 13.24: IllustraƟng the concept of a
lamina.

Note: Mass and weight are different
measures. Since they are scalar mulƟ-
ples of each other, it is oŌen easy to
treat them as the same measure. In this
secƟon we effecƟvely treat them as the
same, as our technique for findingmass is
the same as for finding weight. The den-
sity funcƟons used will simply have differ-
ent units.

13.4 Center of Mass

13.4 Center of Mass

We have used iterated integrals to find areas of plane regions and signed vol-
umes under surfaces. A brief recap of these uses will be useful in this secƟon as
we apply iterated integrals to compute the mass and center of mass of planar
regions.

To find the area of a planar region, we evaluated the double integral
∫∫

R dA.
That is, summing up the areas of lots of liƩle subregions of R gave us the total
area. Informally, we think of

∫∫
R dA as meaning “sum up lots of liƩle areas over

R.”
To find the signed volume under a surface, we evaluated the double integral∫∫

R f(x, y) dA. Recall that the “dA” is not just a “bookend” at the end of an in-
tegral; rather, it is mulƟplied by f(x, y). We regard f(x, y) as giving a height, and
dA sƟll giving an area: f(x, y) dA gives a volume. Thus, informally,

∫∫
R f(x, y) dA

means “sum up lots of liƩle volumes over R.”
We now extend these ideas to other contexts.

Mass and Weight

Consider a thin sheet of material with constant thickness and finite area.
MathemaƟcians (and physicists and engineers) call such a sheet a lamina. So
consider a lamina, as shown in Figure 13.24(a), with the shape of some planar
region R, as shown in part (b).

We can write a simple double integral that represents the mass of the lam-
ina:

∫∫
R dm, where “dm” means “a liƩle mass.” That is, the double integral

states the total mass of the lamina can be found by “summing up lots of liƩle
masses over R.”

To evaluate this double integral, parƟƟon R into n subregions as we have
done in the past. The i th subregion has area ∆Ai. A fundamental property of
mass is that “mass=density×area.” If the lamina has a constant density δ, then
the mass of this i th subregion is∆mi = δ∆Ai. That is, we can compute a small
amount of mass by mulƟplying a small amount of area by the density.

If density is variable, with density funcƟon δ = δ(x, y), then we can approx-
imate the mass of the i th subregion of R by mulƟplying ∆Ai by δ(xi, yi), where
(xi, yi) is a point in that subregion. That is, for a small enough subregion of R,
the density across that region is almost constant.

The total mass M of the lamina is approximately the sum of approximate
masses of subregions:

M ≈
n∑

i=1

∆mi =

n∑
i=1

δ(xi, yi)∆Ai.

Notes:
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lamina in Example 458.
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Taking the limit as the size of the subregions shrinks to 0 gives us the actual
mass; that is, integraƟng δ(x, y) dA over R gives the mass of the lamina.

..
DefiniƟon 103 Mass of a Lamina with Vairable Density

Let δ(x, y) be a conƟnuous density funcƟon of a lamina corresponding to
a plane region R. The massM of the lamina is

massM =

∫∫
R
dm =

∫∫
R
δ(x, y) dA.

.. Example 458 Finding the mass of a lamina with constant density
Find the mass of a square lamina, with side length 1, with a density of δ =
3gm/cm2.

SÊ½çã®ÊÄ We represent the lamina with a square region in the plane
as shown in Figure 13.25. As the density is constant, it does not maƩer where
we place the square.

Following DefiniƟon 103, the massM of the lamina is

M =

∫∫
R
3 dA =

∫ 1

0

∫ 1

0
3 dx dy = 3

∫ 1

0

∫ 1

0
dx dy = 3gm.

This is all very straighƞorward; note that all we really did was find the area
of the lamina and mulƟply it by the constant density of 3gm/cm2. ..

.. Example 459 ..Finding the mass of a lamina with variable density
Find the mass of a square lamina, represented by the unit square with lower
leŌhand corner at the origin (see Figure 13.25), with variable density δ(x, y) =
(x+ y+ 2)gm/cm2.

SÊ½çã®ÊÄ The variable density δ, in this example, is very uniform, giv-
ing a density of 3 in the center of the square and changing linearly. A graph
of δ(x, y) can be seen in Figure 13.26; noƟce how “same amount” of density is
above z = 3 as below. We’ll comment on the significance of this momentarily.

The mass M is found by integraƟng δ(x, y) over R. The order of integraƟon

Notes:
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Figure 13.26: Graphing the density func-
Ɵon in Example 459.

13.4 Center of Mass

is not important; we choose dx dy arbitrarily. Thus:

M =

∫∫
R
(x+ y+ 2) dA =

∫ 1

0

∫ 1

0
(x+ y+ 2) dx dy

=

∫ 1

0

(
1
2
x2 + x(y+ 2)

)∣∣∣∣1
0
dy

=

∫ 1

0

(
5
2
+ y
)

dy

=

(
5
2
y+

1
2
y2
)∣∣∣∣1

0

= 3gm.

It turns out that since since the density of the lamina is so uniformly distributed
“above and below” z = 3 that the mass of the lamina is the same as if it had a
constant density of 3. ...

.. Example 460 ..Finding the weight of a lamina with variable density
Find the weight of the lamina represented by the circle with radius 2Ō, centered
at the origin, with density funcƟon δ(x, y) = (x2 + y2 + 1)lb/Ō2. Compare this
to the weight of the same lamina with density δ(x, y) = (2

√
x2 + y2 + 1)lb/Ō2.

SÊ½çã®ÊÄ A direct applicaƟon of DefiniƟon 103 states that the weight
of the lamina is

∫∫
R δ(x, y) dA. Since our lamina is in the shape of a circle, it

makes sense to approach the double integral using polar coordinates.
The density funcƟon δ(x, y) = x2 + y2 + 1 becomes δ(r, θ) = (r cos θ)2 +

(r sin θ)2 + 1 = r2 + 1. The circle is bounded by 0 ≤ r ≤ 2 and 0 ≤ θ ≤ 2π.
Thus the weightW is:

W =

∫ 2π

0

∫ 2

0
(r2 + 1)r dr dθ

=

∫ 2π

0

(
1
4
r4 +

1
2
r2
)∣∣∣∣2

0
dθ

=

∫ 2π

0
(6) dθ

= 12π ≈ 37.70lb.

Now compare this with the density funcƟon δ(x, y) = 2
√

x2 + y2 + 1. Con-
verƟng this to polar coordinates gives δ(r, θ) = 2

√
(r cos θ)2 + (r sin θ)2 + 1 =

Notes:
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2r+ 1. Thus the weightW is:

W =

∫ 2π

0

∫ 2

0
(2r+ 1)r dr dθ

=

∫ 2π

0
(
2
3
r3 +

1
2
r2)
∣∣∣2
0
dθ

=

∫ 2π

0

(
22
3

)
dθ

=
44
3
π ≈ 46.08lb.

One would expect different density funcƟons to return different weights, as we
have here. The density funcƟons were chosen, though, to be similar: each gives
a density of 1 at the origin and a density of 5 at the outside edge of the circle,
as seen in Figure 13.27.
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Figure 13.27: Graphing the density funcƟons in Example 460. In (a) is the density funcƟon
δ(x, y) = x2 + y2 + 1; in (b) is δ(x, y) = 2

√
x2 + y2 + 1.

NoƟce how x2 + y2 + 1 ≤ 2
√

x2 + y2 + 1 over the circle; this results in less
weight. ...

Ploƫng the density funcƟons can be useful as our understanding of mass
can be related to our understanding of “volume under a surface.” We inter-
preted

∫∫
R f(x, y) dA as giving the volume under f over R; we can understand∫∫

R δ(x, y) dA in the same way. The “volume” under δ over R is actually mass;

Notes:
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13.4 Center of Mass

by compressing the “volume” under δ onto the x-y plane, we get “more mass”
in some areas than others – i.e., areas of greater density.

Knowing themass of a lamina is one of several importantmeasures. Another
is the center of mass, which we discuss next.

Center of Mass

Consider a disk of radius 1 with uniform density. It is common knowledge
that the disk will balance on a point if the point is placed at the center of the
disk. What if the disk does not have a uniform density? Through trial-and-error,
we should sƟll be able to find a spot on the disk at which the disk will balance
on a point. This balance point is referred to as the center of mass, or center of
gravity. It is though all the mass is “centered” there. In fact, if the disk has a
mass of 3kg, the disk will behave physically as though it were a point-mass of
3kg located at its center of mass. For instance, the disk will naturally spin with
an axis through its center of mass (which is why it is important to “balance” the
Ɵres of your car: if they are “out of balance”, their center of mass will be outside
of the axle and it will shake terribly).

We find the center of mass based on the principle of a weighted average.
Consider a college class in which your homework average is 90%, your test av-
erage is 73%, and your final exam grade is an 85%. Experience tells us that our
final grade is not the average of these three grades: that is, it is not:

0.9+ 0.73+ 0.85
3

≈ 0.837 = 83.7%.

That is, you are probably not pulling a B in the course. Rather, your grades are
weighted. Let’s say the homework is worth 10% of the grade, tests are 60% and
the exam is 30%. Then your final grade is:

(0.1)(0.9) + (0.6)(0.73) + (0.3)(0.85) = 0.783 = 78.3%.

Each grade is mulƟplied by a weight.
In general, given values x1, x2, . . . , xn andweightsw1,w2, . . . ,wn, theweighted

average of the n values is
n∑

i=1

wixi

/
n∑

i=1

wi.

In the grading example above, the sum of the weights 0.1, 0.6 and 0.3 is 1,
so we don’t see the division by the sum of weights in that instance.

How this relates to center of mass is given in the following theorem.

Notes:
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Figure 13.28: IllustraƟng point masses
along a thin rod and the center of mass.

Chapter 13 MulƟple IntegraƟon

..
Theorem 121 Center of Mass of Discrete Linear System

Let point massesm1,m2, . . . ,mn be distributed along the x-axis at loca-
Ɵons x1, x2, . . . , xn, respecƟvely. The center of mass x of the system is
located at

x =
n∑

i=1

mixi

/
n∑

i=1

mi.

.. Example 461 Finding the center of mass of a discrete linear system

1. Point masses of 2gm are located at x = −1, x = 2 and x = 3 are con-
nected by a thin rod of negligible weight. Find the center of mass of the
system.

2. Point masses of 10gm, 2gm and 1gm are located at x = −1, x = 2 and
x = 3, respecƟvely, are connected by a thin rod of negligible weight. Find
the center of mass of the system.

SÊ½çã®ÊÄ

1. Following Theorem 121, we compute the center of mass as:

x =
2(−1) + 2(2) + 2(3)

2+ 2+ 2
=

4
3
= 1.3.

So the system would balance on a point placed at x = 4/3, as illustrated
in Figure 13.28(a).

2. Again following Theorem 121, we find:

x =
10(−1) + 2(2) + 1(3)

10+ 2+ 1
=

−3
13

≈ −0.23.

Placing a large weight at the leŌ hand side of the systemmoves the center
of mass leŌ, as shown in Figure 13.28(b)...

In a discrete system (i.e., mass is located at individual points, not along a
conƟnuum) we find the center of mass by dividing the mass into a moment of
the system. In general, a moment is a weighted measure of distance from a par-
Ɵcular point or line. In the case described by Theorem 121, we are finding a
weighted measure of distances from the y-axis, so we refer to this as the mo-
ment about the y-axis, represented by My. Leƫng M be the total mass of the
system, we have x = My/M.

Notes:
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Figure 13.29: IllustraƟng the center of
mass of a discrete planar system in Exam-
ple 462.

13.4 Center of Mass

We can extend the concept of the center of mass of discrete points along a
line to the center of mass of discrete points in the plane rather easily. To do so,
we define some terms then give a theorem.

..
DefiniƟon 104 Moments about the x- and y- Axes.

Let point masses m1, m2, . . . ,mn be located at points (x1, y1),
(x2, y2) . . . , (xn, yn), respecƟvely, in the x-y plane.

1. Themoment about the y-axis,My, isMy =

n∑
i=1

mixi.

2. Themoment about the x-axis,Mx, isMx =
n∑

i=1

miyi.

One can think that these definiƟons are “backwards” asMy sums up “x” dis-
tances. But remember, “x” distances are measurements of distance from the
y-axis, hence defining the moment about the y-axis.

We now define the center of mass of discrete points in the plane.

..
Theorem 122 Center of Mass of Discrete Planar System

Let point masses m1, m2, . . . ,mn be located at points (x1, y1),

(x2, y2) . . . , (xn, yn), respecƟvely, in the x-y plane, and letM =

n∑
i=1

mi.

The center of mass of the system is at (x, y), where

x =
My

M
and y =

Mx

M
.

.. Example 462 ..Finding the center of mass of a discrete planar system
Let pointmasses of 1kg, 2kg and 5kg be located at points (2, 0), (1, 1) and (3, 1),
respecƟvely, and are connected by thin rods of negligibleweight. Find the center
of mass of the system.

SÊ½çã®ÊÄ We follow Theorem 122 and DefiniƟon 104 to find M, Mx
andMy:

M = 1+ 2+ 5 = 8kg.

Notes:
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Chapter 13 MulƟple IntegraƟon

Mx =
n∑

i=1

miyi

= 1(0) + 2(1) + 5(1)
= 7.

My =
n∑

i=1

mixi

= 1(2) + 2(1) + 5(3)
= 19.

Thus the center ofmass is (x, y) =
(
My

M
,
Mx

M

)
=

(
19
8
,
7
8

)
= (2.375, 0.875),

illustrated in Figure 13.29. ...

We finally arrive at our true goal of this secƟon: finding the center ofmass of
a lamina with variable density. While the abovemeasurement of center of mass
is interesƟng, it does not directly answermore realisƟc situaƟonswhereweneed
to find the center of mass of a conƟguous region. However, understanding the
discrete case allows us to approximate the center of mass of a planar lamina;
using calculus, we can refine the approximaƟon to an exact value.

We begin by represenƟng a planar lamina with a region R in the x-y plane
with density funcƟon δ(x, y). ParƟƟon R into n subdivisions, each with area
∆Ai. As done before, we can approximate the mass of the i th subregion with
δ(xi, yi)∆Ai, where (xi, yi) is a point inside the i th subregion. We can approxi-
mate the moment of this subregion about the y-axis with xiδ(xi, yi)∆Ai – that is,
by mulƟplying the approximate mass of the region by its approximate distance
from the y-axis. Similarly, we can approximate the moment about the x-axis
with yiδ(xi, yi)∆Ai. By summing over all subregions, we have:

mass: M ≈
n∑

i=1

δ(xi, yi)∆Ai (as seen before)

moment about the x-axis: Mx ≈
n∑

i=1

yiδ(xi, yi)∆Ai

moment about the y-axis: My ≈
n∑

i=1

xiδ(xi, yi)∆Ai

By taking limits, where size of each subregion shrinks to 0 in both the x and
y direcƟons, we arrive at the double integrals given in the following theorem.

Notes:
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lamina in Example 458.

13.4 Center of Mass

..
Theorem 123 Center of Mass of a Planar Lamina, Moments

Let a planar lamina be represented by a region R in the x-y plane with
density funcƟon δ(x, y).

1. mass: M =

∫∫
R
δ(x, y) dA

2. moment about the x-axis: Mx =

∫∫
R
yδ(x, y) dA

3. moment about the y-axis: My =

∫∫
R
xδ(x, y) dA

4. The center of mass of the lamina is

(x, y) =
(
My

M
,
Mx

M

)
.

We start our pracƟce of finding centers of mass by revisiƟng some of the
lamina used previously in this secƟon when finding mass. We will mostly just
set up the integrals needed to compute M, Mx and My and leave the details of
the integraƟon to the reader.

.. Example 463 ..Finding the center of mass of a lamina
Find the center mass of a square lamina, with side length 1, with a density of
δ = 3gm/cm2. (Note: this is the lamina from Example 458.)

SÊ½çã®ÊÄ We represent the lamina with a square region in the plane
as shown in Figure 13.30 as done previously.

Following Theorem 123, we findM,Mx andMy:

M =

∫∫
R
3 dA =

∫ 1

0

∫ 1

0
3 dx dy = 3gm.

Mx =

∫∫
R
3y dA =

∫ 1

0

∫ 1

0
3y dx dy = 3/2 = 1.5.

My =

∫∫
R
3x dA =

∫ 1

0

∫ 1

0
3x dx dy = 3/2 = 1.5.

Thus the center of mass is (x, y) =
(
My

M
,
Mx

M

)
= (1.5/3, 1.5/3) = (0.5, 0.5).

Notes:

761



Chapter 13 MulƟple IntegraƟon

This is what we should have expected: the center of mass of a square with con-
stant density is the center of the square. ...

.. Example 464 Finding the center of mass of a lamina
Find the center of mass of a square lamina, represented by the unit square
with lower leŌhand corner at the origin (see Figure 13.30), with variable den-
sity δ(x, y) = (x+ y+ 2)gm/cm2. (Note: this is the lamina from Example 459.)

SÊ½çã®ÊÄ We follow Theorem 123, to findM,Mx andMy:

M =

∫∫
R
(x+ y+ 2) dA =

∫ 1

0

∫ 1

0
(x+ y+ 2) dx dy = 3gm.

Mx =

∫∫
R
y(x+ y+ 2) dA =

∫ 1

0

∫ 1

0
y(x+ y+ 2) dx dy =

19
12

.

My =

∫∫
R
x(x+ y+ 2) dA =

∫ 1

0

∫ 1

0
x(x+ y+ 2) dx dy =

19
12

.

Thus the center of mass is (x, y) =
(
My

M
,
Mx

M

)
=

(
19
36

,
19
36

)
≈ (0.528, 0.528).

While themass of this lamina is the same as the lamina in the previous example,
the greater density found with greater x and y values pulls the center of mass
from the center slightly towards the upper righthand corner. ..

.. Example 465 ..Finding the center of mass of a lamina
Find the center of mass of the lamina represented by the circle with radius 2Ō,
centered at the origin, with density funcƟon δ(x, y) = (x2+y2+1)lb/Ō2. (Note:
this is one of the lamina used in Example 460.)

SÊ½çã®ÊÄ As done in Example 460, it is best to describe R using polar
coordinates. Thus whenwe computeMy, we will integrate not xδ(x, y) = x(x2+
y2 + 1), but rather

(
r cos θ

)
δ(r cos θ, r sin θ) =

(
r cos θ

)(
r2 + 1

)
. We compute

M,Mx andMy:

M =

∫ 2π

0

∫ 2

0
(r2 + 1)r dr dθ = 12π ≈ 37.7lb.

Mx =

∫ 2π

0

∫ 2

0
(r sin θ)(r2 + 1)r dr dθ = 0.

My =

∫ 2π

0

∫ 2

0
(r cos θ)(r2 + 1)r dr dθ = 0.

Notes:

762



.....

(x, y)

.
−5

.
5

.

5

.

x

.

y

Figure 13.31: IllustraƟng the region R in
Example 466.

13.4 Center of Mass

Since R and the density of R are both symmetric about the x and y axes, it should
come as no big surprise that the moments about each axis is 0. Thus the center
of mass is (x, y) = (0, 0). ...

.. Example 466 Finding the center of mass of a lamina
Find the center of mass of the lamina represented by the region R shown in Fig-
ure 13.31, half an annulus with outer radius 6 and inner radius 5, with constant
density 2lb/Ō2.

SÊ½çã®ÊÄ Once again it will be useful to represent R in polar coor-
dinates. Using the descripƟon of R and/or the illustraƟon, we see that R is
bounded by 1 ≤ r ≤ 2 and 0 ≤ θ ≤ π. As the lamina is symmetric about
the y-axis, we should expectMy = 0. We computeM,Mx andMy:

M =

∫ π

0

∫ 6

5
(2)r dr dθ = 11πlb.

Mx =

∫ π

0

∫ 6

5
(r sin θ)(2)r dr dθ =

364
3

≈ 121.33.

My =

∫ π

0

∫ 6

5
(r cos θ)(2)r dr dθ = 0.

Thus the center of mass is (x, y) =
(
0, 364

33π

)
≈ (0, 3.51). The center of mass is

indicated in Figure 13.31; note how it lies outside of R! ..

This secƟon has shown us another use for iterated integrals beyond finding
area or signed volume under the curve. While there are many uses for iterated
integrals, we give one more applicaƟon in the following secƟon: compuƟng sur-
face area.

Notes:
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Exercises 13.4
Terms and Concepts
1. Why is it easy to use “mass” and “weight” interchangeably,

even though they are different measures?

2. Given a point (x, y), the value of x is a measure of distance
from the -axis.

3. We can think of
∫∫

R dm as meaning “sum up lots of
.

4. What is a “discrete planar system?”

5. Why doesMx use
∫∫

R yδ(x, y) dA instead of
∫∫

R xδ(x, y) dA;
that is, why do we use “y” and not “x”?

6. Describe a situaƟon where the center of mass of a lamina
does not lie within the region of the lamina itself.

Problems
In Exercises 7 – 10, point masses are given along a line or in
the plane. Find the center of mass x or (x, y), as appropriate.
(All masses are in grams and distances are in cm.)

7. m1 = 4 at x = 1; m2 = 3 at x = 3; m3 = 5 at x = 10

8. m1 = 2 at x = −3; m2 = 2 at x = −1;
m3 = 3 at x = 0; m4 = 3 at x = 7

9. m1 = 2 at (−2,−2); m2 = 2 at (2,−2);
m3 = 20 at (0, 4)

10. m1 = 1 at (−1,−1); m2 = 2 at (−1, 1);
m3 = 2 at (1, 1); m4 = 1 at (1,−1)

In Exercises 11 – 18, find the mass/weight of the lamina de-
scribed by the region R in the plane and its density funcƟon
δ(x, y).

11. R is the rectangle with corners (1,−3), (1, 2), (7, 2) and
(7,−3); δ(x, y) = 5gm/cm2

12. R is the rectangle with corners (1,−3), (1, 2), (7, 2) and
(7,−3); δ(x, y) = (x+ y2)gm/cm2

13. R is the triangle with corners (−1, 0), (1, 0), and (0, 1);
δ(x, y) = 2lb/in2

14. R is the triangle with corners (0, 0), (1, 0), and (0, 1);
δ(x, y) = (x2 + y2 + 1)lb/in2

15. R is the circle centered at the origin with radius 2; δ(x, y) =
(x+ y+ 4)kg/m2

16. R is the circle sector bounded by x2 + y2 = 25 in the first
quadrant; δ(x, y) = (

√
x2 + y2 + 1)kg/m2

17. R is the annulus in the first and second quadrants bounded
by x2 + y2 = 9 and x2 + y2 = 36; δ(x, y) = 4lb/Ō2

18. R is the annulus in the first and second quadrants bounded
by x2 + y2 = 9 and x2 + y2 = 36; δ(x, y) =

√
x2 + y2lb/Ō2

In Exercises 19 – 26, find the center of mass of the lamina de-
scribed by the region R in the plane and its density funcƟon
δ(x, y).
Note: these are the same lamina as in Exercises 11 to 18.

19. R is the rectangle with corners (1,−3), (1, 2), (7, 2) and
(7,−3); δ(x, y) = 5gm/cm2

20. R is the rectangle with corners (1,−3), (1, 2), (7, 2) and
(7,−3); δ(x, y) = (x+ y2)gm/cm2

21. R is the triangle with corners (−1, 0), (1, 0), and (0, 1);
δ(x, y) = 2lb/in2

22. R is the triangle with corners (0, 0), (1, 0), and (0, 1);
δ(x, y) = (x2 + y2 + 1)lb/in2

23. R is the circle centered at the origin with radius 2; δ(x, y) =
(x+ y+ 4)kg/m2

24. R is the circle sector bounded by x2 + y2 = 25 in the first
quadrant; δ(x, y) = (

√
x2 + y2 + 1)kg/m2

25. R is the annulus in the first and second quadrants bounded
by x2 + y2 = 9 and x2 + y2 = 36; δ(x, y) = 4lb/Ō2

26. R is the annulus in the first and second quadrants bounded
by x2 + y2 = 9 and x2 + y2 = 36; δ(x, y) =

√
x2 + y2lb/Ō2

Themoment of inerƟa I is ameasure of the tendency of a lam-
ina to resist rotaƟng about an axis or conƟnue to rotate about
an axis. Ix is the moment of inerƟa about the x-axis, Ix is the
moment of inerƟa about the x-axis, and IO is the moment of
inerƟa about the origin. These are computed as follows:

• Ix =
∫∫

R
y2 dm

• Iy =
∫∫

R
x2 dm

• IO =

∫∫
R

(
x2 + y2

)
dm

In Exercises 27 – 30, a lamina corresponding to a planar re-
gion R is given with a mass of 16 units. For each, compute Ix,
Iy and IO.

27. R is the 4 × 4 square with corners at (−2,−2) and (2, 2)
with density δ(x, y) = 1.

28. R is the 8×2 rectangle with corners at (−4,−1) and (4, 1)
with density δ(x, y) = 1.

29. R is the 4×2 rectangle with corners at (−2,−1) and (2, 1)
with density δ(x, y) = 2.

30. R is the circle with radius 2 centered at the origin with den-
sity δ(x, y) = 4/π.
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Figure 13.32: Developing a method of
compuƟng surface area.

13.5 Surface Area

13.5 Surface Area
In SecƟon 7.4 we used definite integrals to compute the arc length of plane
curves of the form y = f(x). We later extended these ideas to compute the
arc length of plane curves defined by parametric or polar equaƟons.

The natural extension of the concept of “arc length over an interval” to sur-
faces is “surface area over a region.”

Consider the surface z = f(x, y) over a region R in the x-y plane, shown in
Figure 13.32(a). Because of the domed shapeof the surface, the surface areawill
be greater than that of the area of the region R. We can find this area using the
samebasic techniquewehaveusedover andover: we’llmake an approximaƟon,
then using limits, we’ll refine the approximaƟon to the exact value.

As done to find the volume under a surface or the mass of a lamina, we
subdivide R into n subregions. Here we subdivide R into rectangles, as shown in
the figure. One such subregion is outlined in the figure, where the rectangle has
dimensions∆xi and∆yi, along with its corresponding region on the surface.

In part (b) of the figure, we zoom in on this porƟon of the surface. When∆xi
and∆yi are small, the funcƟon is approximated well by the tangent plane at any
point (xi, yi) in this subregion, which is graphed in part (b). In fact, the tangent
plane approximates the funcƟon so well that in this figure, it is virtually indis-
Ɵnguishable from the surface itself! Therefore we can approximate the surface
area Si of this region of the surface with the area Ti of the corresponding porƟon
of the tangent plane.

This porƟon of the tangent plane is a parallelogram, defined by sides u⃗ and
v⃗, as shown. One of the applicaƟons of the cross product from SecƟon 10.4 is
that the area of this parallelogram is || u⃗× v⃗ ||. Once we can determine u⃗ and v⃗,
we can determine the area.

u⃗ is tangent to the surface in the direcƟon of x, therefore, from SecƟon 12.7,
u⃗ is parallel to ⟨1, 0, fx(xi, yi)⟩. The x-displacement of u⃗ is∆xi, so we know that
u⃗ = ∆xi ⟨1, 0, fx(xi, yi)⟩. Similar logic shows that v⃗ = ∆yi ⟨0, 1, fy(xi, yi)⟩. Thus:

surface area Si ≈ area of Ti
= || u⃗× v⃗ ||
=
∣∣∣∣∆xi ⟨1, 0, fx(xi, yi)⟩ ×∆yi ⟨0, 1, fy(xi, yi)⟩

∣∣∣∣
=
√

1+ fx(xi, yi)2 + fy(xi, yi)2∆xi∆yi.

Note that∆xi∆yi = ∆Ai, the area of the i th subregion.
Summing up all n of the approximaƟons to the surface area gives

surface area over R ≈
n∑

i=1

√
1+ fx(xi, yi)2 + fy(xi, yi)2∆Ai.

Notes:
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Note: as done before, we think of
“
∫∫

R dS” as meaning “sum up lots of
liƩle surface areas.”

The concept of surface area is defined
here, for while we already have a noƟon
of the area of a region in the plane, we
did not yet have a solid grasp of what “the
area of a surface in space” means.
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Figure 13.33: Finding the area of a trian-
gle in space in Example 467.

Chapter 13 MulƟple IntegraƟon

Once again take a limit as all of the ∆xi and ∆yi shrink to 0; this leads to a
double integral.

..
DefiniƟon 105 Surface Area

Let z = f(x, y) where fx and fy are conƟnuous over a closed, bounded
region R. The surface area S over R is

S =
∫∫

R
dS

=

∫∫
R

√
1+ fx(x, y)2 + fy(x, y)2 dA.

We test this definiƟon by using it to compute surface areas of known sur-
faces. We start with a triangle.

.. Example 467 Finding the surface area of a plane over a triangle
Let f(x, y) = 4− x− 2y, and let R be the region in the plane bounded by x = 0,
y = 0 and y = 2− x/2, as shown in Figure 13.33. Find the surface area of f over
R.

SÊ½çã®ÊÄ We follow DefiniƟon 105. We start by noƟng that fx(x, y) =
−1 and fy(x, y) = −2. To define R, we use bounds 0 ≤ y ≤ 2 − x/2 and
0 ≤ x ≤ 4. Therefore

S =
∫∫

R
dS

=

∫ 4

0

∫ 2−x/2

0

√
1+ (−1)2 + (−2)2 dy dx

=

∫ 4

0

√
6
(
2− x

2

)
dx

= 4
√
6.

Because the surface is a triangle, we can figure out the area using geometry.
Considering the base of the triangle to be the side in the x-y plane, we find the
length of the base to be

√
20. We can find the height using our knowledge of

vectors: let u⃗ be the side in the x-z plane and let v⃗ be the side in the x-y plane.
The height is then || u⃗ − proj v⃗ u⃗ || = 4

√
6/5. Geometry states that the area is

thus
1
2
· 4
√

6/5 ·
√
20 = 4

√
6.

We affirm the validity of our formula. ..
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Note: The inner integral in EquaƟon
(13.1) is an improper integral, as the

integrand of
∫ a

0
r
√

a2

a2 − r2
dr dθ is

not defined at r = a. To properly
evaluate this integral, one must use the
techniques of SecƟon 6.8.

The reason this need arises is that the
funcƟon f(x, y) =

√
a2 − x2 − y2 fails the

requirements of DefiniƟon 105, as fx and
fy are not conƟnuous on the boundary of
the circle x2 + y2 = a2.

The computaƟon of the surface area is
sƟll valid. The definiƟon makes stronger
requirements than necessary in part to
avoid the use of improper integraƟon, as
when fx and/or fy are not conƟnuous, the
resulƟng improper integral may not con-
verge. Since the improper integral does
converge in this example, the surface area
is accurately computed.

13.5 Surface Area

It is “common knowledge” that the surface area of a sphere of radius r is
4πr2. We confirm this in the following example, which involves using our for-
mula with polar coordinates.

.. Example 468 The surface area of a sphere.
Find the surface area of the sphere with radius a centered at the origin, whose
top hemisphere has equaƟon f(x, y) =

√
a2 − x2 − y2.

SÊ½çã®ÊÄ We start by compuƟng parƟal derivaƟves and find

fx(x, y) =
−x√

a2 − x2 − y2
and fy(x, y) =

−y√
a2 − x2 − y2

.

As our funcƟon f only defines the top upper hemisphere of the sphere, we dou-
ble our surface area result to get the total area:

S = 2
∫∫

R

√
1+ fx(x, y)2 + fy(x, y)2 dA

= 2
∫∫

R

√
1+

x2 + y2

a2 − x2 − y2
dA.

The region R that we are integraƟng over is the circle, centered at the origin,
with radius a: x2+ y2 = a2. Because of this region, we are likely to have greater
success with our integraƟon by converƟng to polar coordinates. Using the sub-
sƟtuƟons x = r cos θ, y = r sin θ, dA = r dr dθ and bounds 0 ≤ θ ≤ 2π and
0 ≤ r ≤ a, we have:

S = 2
∫ 2π

0

∫ a

0

√
1+

r2 cos2 θ + r2 sin2 θ
a2 − r2 cos2 θ − r2 sin2 θ

r dr dθ

= 2
∫ 2π

0

∫ a

0
r
√

1+
r2

a2 − r2
dr dθ

= 2
∫ 2π

0

∫ a

0
r
√

a2

a2 − r2
dr dθ. (13.1)

Apply subsƟtuƟon u = a2 − r2and integrate the inner integral, giving

= 2
∫ 2π

0
a2 dθ

= 4πa2.

Our work confirms our previous formula. ..
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Figure 13.34: Finding the surface area of
a cone in Example 469.

Note: Note that once again fx and fy are
not conƟnuous on the domain of f, as
both are undefined at (0, 0). (A similar
problem occurred in the previous exam-
ple.) Once again the resulƟng improper
integral converges and the computaƟon
of the surface area is valid.

...

..

2

.

4

.−4.
−2

.

2

.

4

.
20

.

x

.

y

.

z

Figure 13.35: Graphing the surface in Ex-
ample 470.

Chapter 13 MulƟple IntegraƟon

.. Example 469 Finding the surface area of a cone
The general formula for a right cone with height h and base radius a is

f(x, y) = h− h
a

√
x2 + y2,

shown in Figure 13.34. Find the surface area of this cone.

SÊ½çã®ÊÄ We begin by compuƟng parƟal derivaƟves.

fx(x, y) = − xh
a
√

x2 + y2
and − yh

a
√

x2 + y2
.

Since we are integraƟng over the circle x2 + y2 = a2, we again use polar
coordinates. Using the standard subsƟtuƟons, our integrand becomes√

1+
(
hr cos θ
a
√
r2

)2

+

(
hr sin θ
a
√
r2

)2

.

This may look inƟmidaƟng at first, but there are lots of simple simplificaƟons to
be done. It amazingly reduces to just√

1+
h2

a2
=

1
a

√
a2 + h2.

Our polar bounds are 0 ≤ θ ≤ 2π and 0 ≤ r ≤ a. Thus

S =
∫ 2π

0

∫ a

0
r
1
a

√
a2 + h2 dr dθ

=

∫ 2π

0

(
1
2
r2
1
a

√
a2 + h2

)∣∣∣∣a
0
dθ

=

∫ 2π

0

1
2
a
√

a2 + h2 dθ

= πa
√

a2 + h2.

This matches the formula found in the back of this text. ..

.. Example 470 ..Finding surface area over a region
Find the area of the surface f(x, y) = x2 − 3y+ 3 over the region R bounded by
−x ≤ y ≤ x, 0 ≤ x ≤ 4, as pictured in Figure 13.35.

SÊ½çã®ÊÄ It is straighƞorward to compute fx(x, y) = 2x and fy(x, y) =
−3. Thus the surface area is described by the double integral∫∫

R

√
1+ (2x)2 + (−3)2 dA =

∫∫
R

√
10+ 4x2 dA.
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13.5 Surface Area

As with integrals describing arc length, double integrals describing surface area
are in general hard to evaluate directly because of the square–root. This parƟc-
ular integral can be easily evaluated, though, with judicious choice of our order
of integraƟon.

IntegraƟngwith order dx dy requires us to evaluate
∫ √

10+ 4x2 dx. This can
be done, though it involves IntegraƟon By Parts and sinh−1 x. IntegraƟng with
order dy dx has as its first integral

∫ √
10+ 4x2 dy, which is easy to evaluate: it

is simply y
√
10+ 4x2 + C. So we proceed with the order dy dx; the bounds are

already given in the statement of the problem.∫∫
R

√
10+ 4x2 dA =

∫ 4

0

∫ x

−x

√
10+ 4x2 dy dx

=

∫ 4

0

(
y
√

10+ 4x2
)∣∣∣x

−x
dx

=

∫ 4

0

(
2x
√

10+ 4x2
)
dx.

Apply subsƟtuƟon with u = 10+ 4x2:

=

(
1
6
(
10+ 4x2

)3/2)∣∣∣∣4
0

=
1
3
(
37

√
74− 5

√
10
)
≈ 100.825u2.

So while the region R over which we integrate has an area of 16u2, the surface
has a much greater area as its z-values change dramaƟcally over R. ...

In pracƟce, technology helps greatly in the evaluaƟon of such integrals. High
powered computer algebra systems can compute integrals that are difficult, or
at least Ɵme consuming, by hand, and can at the least produce very accurate
approximaƟons with numerical methods. In general, just knowing how to set up
the proper integrals brings one very close to being able to compute the needed
value. Most of the work is actually done in just describing the region R in terms
of polar or rectangular coordinates. Once this is done, technology can usually
provide a good answer.

Notes:
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Exercises 13.5
Terms and Concepts
1. “Surface area” is analogous to what previously studied con-

cept?

2. To approximate the area of a small porƟon of a surface, we
computed the area of its plane.

3. We interpret
∫∫

R
dS as “sum up lots of liƩle

.”

4. Why is it important to know how to set up a double inte-
gral to compute surface area, even if the resulƟng integral
is hard to evaluate?

5. Why do z = f(x, y) and z = g(x, y) = f(x, y) + h, for some
real number h, have the same surface area over a region
R?

6. Let z = f(x, y) and z = g(x, y) = 2f(x, y). Why is the sur-
face area of g over a region R not twice the surface area of
f over R?

Problems

In Exercises 7 – 10, set up the iterated integral that computes
the surface area of the given surface over the region R.

7. f(x, y) = sin x cos y; R is the rectangle with bounds 0 ≤
x ≤ 2π, 0 ≤ y ≤ 2π.

...
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8. f(x, y) =
1

x2 + y2 + 1
; R is the circle x2 + y2 = 9.
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9. f(x, y) = x2− y2; R is the rectangle with opposite corners
(−1,−1) and (1, 1).
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10. f(x, y) =
1

ex2 + 1
; R is the rectangle bounded by

−5 ≤ x ≤ 5 and 0 ≤ y ≤ 1.
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In Exercises 11 – 19, find the area of the given surface over
the region R.

11. f(x, y) = 3x− 7y+ 2; R is the rectangle with opposite cor-
ners (−1, 0) and (1, 3).

12. f(x, y) = 2x+ 2y+ 2; R is the triangle with corners (0, 0),
(1, 0) and (0, 1).

13. f(x, y) = x2 + y2 + 10; R is the circle x2 + y2 = 16.

14. f(x, y) = −2x + 4y2 + 7 over R, the triangle bounded by
y = −x, y = x, 0 ≤ y ≤ 1.

15. f(x, y) = x2 + y over R, the triangle bounded by y = 2x,
y = 0 and x = 2.

16. f(x, y) = 2
3 x

3/2 + 2y3/2 over R, the rectangle with opposite
corners (0, 0) and (1, 1).

17. f(x, y) = 10 − 2
√
x2 + y2 over R, the circle x2 + y2 = 25.

(This is the cone with height 10 and base radius 5; be sure
to compare you result with the known formula.)

18. Find the surface area of the sphere with radius 5 by dou-
bling the surface area of f(x, y) =

√
25− x2 − y2 over R,

the circle x2 + y2 = 25. (Be sure to compare you result
with the known formula.)

19. Find the surface area of the ellipse formed by restricƟng
the plane f(x, y) = cx + dy + h to the region R, the circle
x2 + y2 = 1, where c, d and h are some constants. Your
answer should be given in terms of c and d; why does the
value of h not maƩer?
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Figure 13.36: Finding the volume be-
tween the planes given in Example 13.36.

Chapter 13 MulƟple IntegraƟon

13.6 VolumeBetweenSurfaces andTriple IntegraƟon
We learned in SecƟon 13.2 how to compute the signed volumeV under a surface
z = f(x, y) over a region R: V =

∫∫
R f(x, y) dA. It follows naturally that if f(x, y) ≥

g(x, y) on R, then the volume between f(x, y) and g(x, y) on R is

V =

∫∫
R
f(x, y) dA−

∫∫
R
g(x, y) dA =

∫∫
R

(
f(x, y)− g(x, y)

)
dA.

..
Theorem 124 Volume Between Surfaces

Let f and g be conƟnuous funcƟons on a closed, bounded region R, where
f(x, y) ≥ g(x, y) for all (x, y) in R. The volume V between f and g over R
is

V =

∫∫
R

(
f(x, y)− g(x, y)

)
dA.

.. Example 471 Finding volume between surfaces
Find the volume of the space region bounded by the planes z = 3x+ y− 4 and
z = 8− 3x− 2y in the 1st octant. In Figure 13.36(a) the planes are drawn; in (b),
only the defined region is given.

SÊ½çã®ÊÄ We need to determine the region R over which we will inte-
grate. To do so, we need to determine where the planes intersect. They have
common z-values when 3x+ y− 4 = 8− 3x− 2y. Applying a liƩle algebra, we
have:

3x+ y− 4 = 8− 3x− 2y
6x+ 3y = 12
2x+ y = 4

The planes intersect along the line 2x+y = 4. Therefore the region R is bounded
by x = 0, y = 0, and y = 4 − 2x; we can convert these bounds to integraƟon
bounds of 0 ≤ x ≤ 2, 0 ≤ y ≤ 4− 2x. Thus

V =

∫∫
R

(
8− 3x− 2y− (3x+ y− 4)

)
dA

=

∫ 2

0

∫ 4−2x

0

(
12− 6x− 3y

)
dy dx

= 16u3.

The volume between the surfaces is 16 cubic units. ..

Notes:
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Figure 13.37: ApproximaƟng the volume
of a region D in space.

13.6 Volume Between Surfaces and Triple IntegraƟon

In the preceding example, we found the volume by evaluaƟng the integral∫ 2

0

∫ 4−2x

0

(
8− 3x− 2y− (3x+ y− 4)

)
dy dx.

Note howwe can rewrite the integrand as an integral, much as we did in SecƟon
13.1:

8− 3x− 2y− (3x+ y− 4) =
∫ 8−3x−2y

3x+y−4
dz.

Thus we can rewrite the double integral that finds volume as∫ 2

0

∫ 4−2x

0

(
8−3x−2y−(3x+y−4)

)
dy dx =

∫ 2

0

∫ 4−2x

0

(∫ 8−3x−2y

3x+y−4
dz
)

dy dx.

This no longer looks like a “double integral,” but more like a “triple integral.”
Just as our first introducƟon to double integrals was in the context of finding the
area of a plane region, our introducƟon into triple integrals will be in the context
of finding the volume of a space region.

To formally find the volume of a closed, bounded region D in space, such as
the one shown in Figure 13.37(a), we start with an approximaƟon. Break D into
n rectangular solids; the solids near the boundary of D will either not include
porƟons of D or include extra space. In Figure 13.37(b), we zoom in on a porƟon
of the boundary of D to show a rectangular solid that contains space not in D;
as this is an approximaƟon of the volume, this is acceptable and this error will
be reduced as we shrink the size of our solids.

The volume ∆Vi of the i th solid Di is ∆Vi = ∆xi∆yi∆zi, where ∆xi, ∆yi
and∆zi give the dimensions of the rectangular solid in the x, y and z direcƟons,
respecƟvely. By summing up the volumes of all n solids, we get an approximaƟon
of the volume V of D:

V ≈
n∑

i=1

∆Vi =

n∑
i=1

∆xi∆yi∆zi.

Let |∆D| represent the length of the longest diagonal of rectangular solids
in the subdivision of D. As |∆D| → 0, the volume of each solid goes to 0, as do
each of ∆xi, ∆yi and ∆zi, for all i. Our calculus experience tells us that taking
a limit as |∆D| → 0 turns our approximaƟon of V into an exact calculaƟon of
V. Before we state this result in a theorem, we use a definiƟon to define some
terms.

Notes:
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..
DefiniƟon 106 Triple Integrals, Iterated IntegraƟon (Part I)

Let D be a closed, bounded region in space. Let a and b be real numbers, let g1(x) and g2(x) be
conƟnuous funcƟons of x, and let f1(x, y) and f2(x, y) be conƟnuous funcƟons of x and y.

1. The volume V of D is denoted by a triple integral,

V =

∫∫∫
D
dV.

2. The iterated integral
∫ b

a

∫ g2(x)

g1(x)

∫ f2(x,y)

f1(x,y)
dz dy dx is evaluated as

∫ b

a

∫ g2(x)

g1(x)

∫ f2(x,y)

f1(x,y)
dz dy dx =

∫ b

a

∫ g2(x)

g1(x)

(∫ f2(x,y)

f1(x,y)
dz

)
dy dx.

EvaluaƟng the above iterated integral is triple integraƟon.

Our informal understanding of the notaƟon
∫∫∫

D dV is “sum up lots of liƩle
volumes over D,” analogous to our understanding of

∫∫
R dA and

∫∫
R dm.

We now state the major theorem of this secƟon.

..
Theorem 125 Triple IntegraƟon (Part I)

Let D be a closed, bounded region in space and let∆D be any subdivision of D into n rectangular
solids, where the i th subregion Di has dimensions∆xi ×∆yi ×∆zi and volume∆Vi.

1. The volume V of D is

V =

∫∫∫
D
dV = lim

|∆D|→0

n∑
i=1

∆Vi = lim
|∆D|→0

n∑
i=1

∆xi∆yi∆zi.

2. If D is defined as the region bounded by the planes x = a and x = b, the cylinders y = g(x)
and y = g2(x), and the surfaces z = f1(x, y) and z = f2(x, y), where a < b, g1(x) ≤ g2(x)
and f1(x, y) ≤ f2(x, y) on D, then∫∫∫

D
dV =

∫ b

a

∫ g2(x)

g1(x)

∫ f2(x,y)

f1(x,y)
dz dy dx.

3. V can be determined using iterated integraƟon with other orders of integraƟon (there are 6
total), as long as D is defined by the region enclosed by a pair of planes, a pair of cylinders,
and a pair of surfaces.
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Figure 13.38: The region D used in Exam-
ple 472 in (a); in (b), the region found by
collapsing D onto the x, y plane.

13.6 Volume Between Surfaces and Triple IntegraƟon

We evaluated the area of a plane region R by iterated integraƟon, where
the bounds were “from curve to curve, then from point to point.” Theorem 125
allows us to find the volume of a space region with an iterated integral with
bounds “from surface to surface, then from curve to curve, then from point to
point.” In the iterated integral

∫ b

a

∫ g2(x)

g1(x)

∫ f2(x,y)

f1(x,y)
dz dy dx,

the bounds a ≤ x ≤ b and g1(x) ≤ y ≤ g2(x) define a region R in the x, y plane
overwhich the regionD exists in space. However, these bounds are also defining
surfaces in space; x = a is a plane and y = g1(x) is a cylinder. The combinaƟon
of these 6 surfaces enclose, and define, D.

Examples will help us understand triple integraƟon, including integraƟng
with various orders of integraƟon.

.. Example 472 ..Finding the volumeof a space regionwith triple integraƟon
Find the volume of the space region in the 1 st octant bounded by the plane
z = 2 − y/3 − 2x/3, shown in Figure 13.38(a), using the order of integraƟon
dz dy dx. Set up the triple integrals that give the volume in the other 5 orders of
integraƟon.

SÊ½çã®ÊÄ StarƟng with the order of integraƟon dz dy dx, we need to
first find bounds on z. The region D is bounded below by the plane z = 0 (be-
cause we are restricted to the first octant) and above by z = 2 − y/3 − 2x/3;
0 ≤ z ≤ 2− y/3− 2x/3.

To find the bounds on y and x, we “collapse” the region onto the x, y plane,
giving the triangle shown in Figure 13.38(b). (We know the equaƟon of the line
y = 6− 2x in two ways. First, by seƫng z = 0, we have 0 = 2− y/3− 2x/3 ⇒
y = 6 − 2x. Secondly, we know this is going to be a straight line between the
points (3, 0) and (0, 6) in the x, y plane.)

We define that region R, in the integraƟon order of dy dx, with bounds 0 ≤

Notes:
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y ≤ 6− 2x and 0 ≤ x ≤ 3. Thus the volume V of the region D is:

V =

∫∫∫
D
dV

=

∫ 3

0

∫ 6−2x

0

∫ 2− 1
3 y−

2
3 x

0
dz dy dz

=

∫ 3

0

∫ 6−2x

0

(∫ 2− 1
3 y−

2
3 x

0
dz

)
dy dz

=

∫ 3

0

∫ 6−2x

0
z
∣∣∣2− 1

3 y−
2
3 x

0
dy dz

=

∫ 3

0

∫ 6−2x

0

(
2− 1

3
y− 2

3
x
)

dy dz.

From this step on, we are evaluaƟng a double integral as done many Ɵmes be-
fore. We skip these steps and give the final volume,

= 6u3.

..The order dz dx dy:

Now consider the volumeusing the order of integraƟon dz dx dy. The bounds
on z are the same as before, 0 ≤ z ≤ 2−y/3−2x/3. Collapsing the space region
on the x, y plane as shown in Figure 13.38(b), we now describe this triangle with
the order of integraƟon dx dy. This gives bounds 0 ≤ x ≤ 3−y/2 and 0 ≤ y ≤ 6.
Thus the volume is given by the triple integral

V =

∫ 6

0

∫ 3− 1
2 y

0

∫ 2− 1
3 y−

2
3 x

0
dz dx dy.

The order: dx dy dz:

Following our “surface to surface. . .” strategy, we need to determine the
x-surfaces that bound our space region. To do so, approach the region “from
behind,” in the direcƟon of increasing x. The first surface we hit as we enter the
region is the y, z plane, defined by x = 0. We come out of the region at the
plane z = 2− y/3− 2x/3; solving for x, we have x = 3− y/2− 3z/2. Thus the
bounds on x are: 0 ≤ x ≤ 3− y/2− 3z/2.

Nowcollapse the space regiononto the y, zplane, as shown in Figure 13.39(a).
(Again, we find the equaƟon of the line z = 2−y/3 by seƫng x = 0 in the equa-
Ɵon x = 3− y/2− 3z/2.) We need to find bounds on this region with the order

Notes:
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Figure 13.39: The regionD in Example 472
is collapsed onto the y, z plane in (a); in
(b), the region is collapsed onto the x, z
plane.

13.6 Volume Between Surfaces and Triple IntegraƟon

dy dz. The curves that bound y are y = 0 and y = 6− 3z; the points that bound
z are 0 and 2. Thus the triple integral giving volume is:

0 ≤ x ≤ 3− y/2− 3z/2
0 ≤ y ≤ 6− 3z

0 ≤ z ≤ 2
⇒

∫ 2

0

∫ 6−3z

0

∫ 3−y/2−3z/2

0
dx dy dz.

The order: dx dz dy:

..The x-bounds are the same as the order above. Wenowconsider the triangle
in Figure 13.39(a) and describe it with the order dz dy: 0 ≤ z ≤ 2 − y/3 and
0 ≤ y ≤ 6. Thus the volume is given by:

0 ≤ x ≤ 3− y/2− 3z/2
0 ≤ z ≤ 2− y/3

0 ≤ y ≤ 6
⇒

∫ 6

0

∫ 2−y/3

0

∫ 3−y/2−3z/2

0
dx dz dy.

The order: dy dz dx:

We now need to determine the y-surfaces that determine our region. Ap-
proaching the space region from “behind” and moving in the direcƟon of in-
creasing y, we first enter the region at y = 0, and exit along the plane z =
2− y/3− 2x/3. Solving for y, this plane has equaƟon y = 6− 2x− 3z. Thus y
has bounds 0 ≤ y ≤ 6− 2x− 3z.

Now collapse the region onto the x, z plane, as shown in Figure 13.39(b). The
curves bounding this triangle are z = 0 and z = 2 − 2x/3; x is bounded by the
points x = 0 to x = 3. Thus the triple integral giving volume is:

0 ≤ y ≤ 6− 2x− 3z
0 ≤ z ≤ 2− 2x/3

0 ≤ x ≤ 3
⇒

∫ 3

0

∫ 2−2x/3

0

∫ 6−2x−3z

0
dy dz dx.

The order: dy dx dz:

The y-bounds are the same as in the order above. We now determine the
bounds of the triangle in Figure 13.39(b) using the order dy dx dz. x is bounded
by x = 0 and x = 3 − 2z/3; z is bounded between z = 0 and z = 2. This leads
to the triple integral:

0 ≤ y ≤ 6− 2x− 3z
0 ≤ x ≤ 3− 2z/3

0 ≤ z ≤ 2
⇒

∫ 2

0

∫ 3−2z/3

0

∫ 6−2x−3z

0
dy dx dz.

Notes:

777



...

..

2

. 1.
2

.

2

.

4

.

x

. y.

z

(a)

...

..

2

.

1

.

2

.

2

.

4

.

x

.

y

.

z

(b)

Figure 13.40: Finding the projecƟons of
the curve of intersecƟon in Example 473.

Chapter 13 MulƟple IntegraƟon

This problem was long, but hopefully useful, demonstraƟng how to deter-
mine bounds with every order of integraƟon to describe the region D. In prac-
Ɵce, we only need 1, but being able to do them all gives us flexibility to choose
the order that suits us best. ...

In the previous example, we collapsed the surface into the x-y, x-z, and y-z
planes as we determined the “curve to curve, point to point” bounds of integra-
Ɵon. Since the surface was a plane, this collapsing, or projecƟng, was simple:
the projecƟon of the boundaries of a plane onto a coordinate plane is just a line.

The following example shows us how to do this when dealing with more
complicated surfaces and curves.

.. Example 473 ..Finding the projecƟon of a curve in space onto the coordi-
nate planes
Consider the surfaces z = 3− x2 − y2 and z = 2y, as shown in Figure 13.40(a).
The curve of their intersecƟon is shown, along with the projecƟon of this curve
into the coordinate planes, shown dashed. Find the equaƟons of the projecƟons
into the coordinate planes.

SÊ½çã®ÊÄ The two surfaces are z = 3 − x2 − y2 and z = 2y. To find
where they intersect, it is natural to set them equal to each other: 3− x2− y2 =
2y. This is an implicit funcƟon of x and y that gives all points (x, y) in the x, y
plane where the z values of the two surfaces are equal.

We can rewrite this implicit funcƟon by compleƟng the square:

3− x2 − y2 = 2y ⇒ y2 + 2y+ x2 = 3 ⇒ (y+ 1)2 + x2 = 4.

Thus in the x, y plane the projecƟon of the intersecƟon is a circle with radius 2,
centered at (0,−1).

To project onto the x, z plane, we do a similar procedure: find the x and z
values where the y values on the surface are the same. We start by solving the
equaƟon of each surface for y. In this parƟcular case, it works well to actually
solve for y2:
z = 3− x2 − y2 ⇒ y2 = 3− x2 − z
z = 2y ⇒ y2 = z2/4.

Thus we have (aŌer again compleƟng the square):

3− x2 − z = z2/4 ⇒ (z+ 2)2

16
+

x2

4
= 1,

and ellipse centered at (0,−2) in the x, z with a major axis of length 8 and a
minor axis of length 4.

Notes:
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Figure 13.41: The regionD in Example 474
is shown in (a); in (b), it is collapsed onto
the x, y plane.

13.6 Volume Between Surfaces and Triple IntegraƟon

Finally, to project the curve of intersecƟon into the y, z plane, we solve equa-
Ɵon for x. Since z = 2y is a cylinder that lacks the variable x, it becomes our
equaƟon of the projecƟon in the y, z plane.

All three projecƟons are shown in Figure 13.40(b). ...

.. Example 474 ..Finding the volumeof a space regionwith triple integraƟon
Set up the triple integrals that find the volume of the space region D bounded
by the surfaces x2 + y2 = 1, z = 0 and z = −y, as shown in Figure 13.41(a),
with the orders of integraƟon dz dy dx, dy dx dz and dx dz dy.

SÊ½çã®ÊÄ The order dz dy dx:

The region D is bounded below by the plane z = 0 and above by the plane
z = −y. The cylinder x2 + y2 = 1 does not offer any bounds in the z-direcƟon,
as that surface is parallel to the z-axis. Thus 0 ≤ z ≤ −y.

Collapsing the region into the x, y plane, we get part of the circle with equa-
Ɵon x2 + y2 = 1 as shown in Figure 13.41(b). As a funcƟon of x, this half circle
has equaƟon y = −

√
1− x2. Thus y is bounded below by−

√
1− x2 and above

by y = 0: −
√
1− x2 ≤ y ≤ 0. The x bounds of the half circle are −1 ≤ x ≤ 1.

All together, the bounds of integraƟon and triple integral are as follows:

0 ≤ z ≤ −y
−
√
1− x2 ≤ y ≤ 0
−1 ≤ x ≤ 1

⇒
∫ 1

−1

∫ 0

−
√
1−x2

∫ −y

0
dz dy dx.

We evaluate this triple integral:∫ 1

−1

∫ 0

−
√
1−x2

∫ −y

0
dz dy dx =

∫ 1

−1

∫ 0

−
√
1−x2

(
− y
)
dy dx

=

∫ 1

−1

(
− 1

2
y2
)∣∣∣0

−
√
1−x2

dx

=

∫ 1

−1

1
2
(
1− x2

)
dx

=

(
1
2

(
x− 1

3
x3
))∣∣∣∣1

−1

=
2
3
u3.

With the order dy dx dz:

Notes:
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Figure 13.42: The region D in Example
474 is shown collapsed onto the x, z plane
in (a); in (b), it is collapsed onto the y, z
plane.

Chapter 13 MulƟple IntegraƟon

The region is bounded “below” in the y-direcƟon by the surface x2 + y2 =
1 ⇒ y = −

√
1− x2 and “above” by the surface y = −z. Thus the y bounds are

−
√
1− x2 ≤ y ≤ −z.

Collapsing the region onto the x, z plane gives the region shown in Figure
13.42(a); this half circle has equaƟon x2 + z2 = 1. (We find this curve by solving
each surface for y2, then seƫng them equal to each other. We have y2 = 1− x2
and y = −z ⇒ y2 = z2. Thus x2+z2 = 1.) It is bounded belowby x = −

√
1− z2

and above by x =
√
1− z2, where z is bounded by 0 ≤ z ≤ 1. All together, we

have:

−
√
1− x2 ≤ y ≤ −z

−
√
1− z2 ≤ x ≤

√
1− z2

0 ≤ z ≤ 1
⇒

∫ 1

0

∫ √
1−z2

−
√
1−z2

∫ −z

−
√
1−x2

dy dx dz.

With the order dx dz dy:

D is bounded below by the surface x = −
√

1− y2 and above by
√

1− y2.
We then collapse the region onto the y, z plane and get the triangle shown in
Figure 13.42(b). (The hypotenuse is the line z = −y, just as the plane.) Thus z is
bounded by 0 ≤ z ≤ −y and y is bounded by−1 ≤ y ≤ 0. This gives:

−
√

1− y2 ≤ x ≤
√

1− y2
0 ≤ z ≤ −y
−1 ≤ y ≤ 0

⇒
∫ 0

−1

∫ −y

0

∫ √
1−y2

−
√

1−y2
dx dz dy.

...

The following theorem states two things that should make “common sense”
to us. First, using the triple integral to find volume of a region D should always
return a posiƟve number; we are compuƟng volume here, not signed volume.
Secondly, to compute the volume of a “complicated” region, we could break
it up into subregions and compute the volumes of each subregion separately,
summing them later to find the total volume.

Notes:
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Figure 13.43: The regionD in Example 475
is shown in (a); in (b), it is collapsed onto
the x, y plane.

13.6 Volume Between Surfaces and Triple IntegraƟon

..
Theorem 126 ProperƟes of Triple Integrals

Let D be a closed, bounded region in space, and let D1 and D2 be non-
overlapping regions such that D = D1

∪
D2.

1.
∫∫∫

D
dV ≥ 0

2.
∫∫∫

D
dV =

∫∫∫
D1

dV+

∫∫∫
D2

dV.

We use this laƩer property in the next example.

.. Example 475 ..Finding the volumeof a space regionwith triple integraƟon
Find the volume of the space region D bounded by the coordinate planes, z =
1− x/2 and z = 1− y/4, as shown in Figure 13.43(a). Set up the triple integrals
that find the volume of D in all 6 orders of integraƟon.

SÊ½çã®ÊÄ Following the bounds–determining strategy of “surface to
surface, curve to curve, and point to point,” we can see that the most difficult
orders of integraƟon are the two in which we integrate with respect to z first,
for there are two “upper” surfaces that bound D in the z-direcƟon. So we start
by noƟng that we have

0 ≤ z ≤ 1− 1
2
x and 0 ≤ z ≤ 1− 1

4
y.

We now collapse the region D onto the x, y axis, as shown in Figure 13.43(b).
The boundary of D, the line from (0, 0, 1) to (2, 4, 0), is shown in part (b) of the
figure as a dashed line; it has equaƟon y = 2x. (We can recognize this in two
ways: one, in collapsing the line from (0, 0, 1) to (2, 4, 0) onto the x, y plane,
we simply ignore the z-values, meaning the line now goes from (0, 0) to (2, 4).
Secondly, the two surfaces meet where z = 1 − x/2 is equal to z = 1 − y/4:
thus 1− x/2 = 1− y/4 ⇒ y = 2x.)

We use the second property of Theorem 126 to state that∫∫∫
D
dV =

∫∫∫
D1

dV+

∫∫∫
D2

dV,

where D1 and D2 are the space regions above the plane regions R1 and R2, re-
specƟvely. Thus we can say∫∫∫

D
dV =

∫∫
R1

(∫ 1−x/2

0
dz

)
dA+

∫∫
R2

(∫ 1−y/4

0
dz

)
dA.

Notes:
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Figure 13.44: The region D in Example
475 is shown collapsed onto the x, z plane
in (a); in (b), it is collapsed onto the y, z
plane.

Chapter 13 MulƟple IntegraƟon

All that is leŌ is to determine bounds of R1 and R2, depending on whether we
are integraƟngwith order dx dy or dy dx. We give the final integrals here, leaving
it to the reader to confirm these results.

dz dy dx:

0 ≤ z ≤ 1− x/2
0 ≤ y ≤ 2x
0 ≤ x ≤ 2

0 ≤ z ≤ 1− y/4
2x ≤ y ≤ 4
0 ≤ x ≤ 2∫∫∫

D
dV =

∫ 2

0

∫ 2x

0

∫ 1−x/2

0
dz dy dx +

∫ 2

0

∫ 4

2x

∫ 1−y/4

0
dz dy dx

dz dx dy:

0 ≤ z ≤ 1− x/2
y/2 ≤ x ≤ 2
0 ≤ y ≤ 4

0 ≤ z ≤ 1− y/4
0 ≤ x ≤ y/2
0 ≤ y ≤ 4∫∫∫

D
dV =

∫ 4

0

∫ 2

y/2

∫ 1−x/2

0
dz dx dy +

∫ 4

0

∫ y/2

0

∫ 1−y/4

0
dz dx dy

The remaining four orders of integraƟon do not require a sum of triple in-
tegrals. In Figure 13.44 we show D collapsed onto the other two coordinate
planes. Using these graphs, we give the final orders of integraƟon here, again
leaving it to the reader to confirm these results.

dy dx dz:

0 ≤ y ≤ 4− 4z
0 ≤ x ≤ 2− 2z

0 ≤ z ≤ 1
⇒
∫ 1

0

∫ 2−2z

0

∫ 4−4z

0
dy dx dz

..dy dz dx:

0 ≤ y ≤ 4− 4z
0 ≤ z ≤ 1− x/2

0 ≤ x ≤ 2
⇒
∫ 2

0

∫ 1−x/2

0

∫ 4−4z

0
dy dx dz

Notes:

782



...

..

−2

.

2

.

−2

.

2

.

5

.

x

.

y

.

z

(a)

...

..

−2

.

2

.

−2

.

2

.

5

.

x

.

y

.

z

(b)

...

..

−2

.

2

.

−2

.

2

.

5

.

x

.

y

.

z

(c)

Figure 13.45: The region D is bounded
by the surfaces shown in (a) and (b); D is
shown in (c).

13.6 Volume Between Surfaces and Triple IntegraƟon

dx dy dz:

0 ≤ x ≤ 2− 2z
0 ≤ y ≤ 4− 4z

0 ≤ z ≤ 1
⇒
∫ 1

0

∫ 4−4z

0

∫ 2−2z

0
dx dy dz

dx dz dy:

0 ≤ x ≤ 2− 2z
0 ≤ z ≤ 1− y/4

0 ≤ y ≤ 4
⇒
∫ 4

0

∫ 1−y/4

0

∫ 2−2z

0
dx dz dy

...

We give one more example of finding the volume of a space region.

.. Example 476 ..Finding the volume of a space region
Set up a triple integral that gives the volume of the space region D bounded by
z = 2x2 + 2 and z = 6− 2x2 − y2. These surfaces are ploƩed in Figure 13.45(a)
and (b), respecƟvely; the region D is shown in part (c) of the figure.

SÊ½çã®ÊÄ The main point of this example is this: integraƟng with re-
spect to z first is rather straighƞorward; integraƟng with respect to x first is not.

The order dz dy dx:

The bounds on z are clearly 2x2 + 2 ≤ z ≤ 6− 2x2 − y2. Collapsing D onto
the x, y plane gives the ellipse shown in Figure 13.45(c). The equaƟon of this
ellipse is found by seƫng the two surfaces equal to each other:

2x2 + 2 = 6− 2x2 − y2 ⇒ 4x2 + y2 = 4 ⇒ x2 +
y2

4
= 1.

We can describe this ellipse with the bounds

−
√

4− 4x2 ≤ y ≤
√

4− 4x2 and − 1 ≤ x ≤ 1.

Thus we find volume as

2x2 + 2 ≤ z ≤ 6− 2x2 − y2

−
√
4− 4x2 ≤ y ≤

√
4− 4x2

−1 ≤ x ≤ 1
⇒
∫ 1

−1

∫ √
4−4x2

−
√
4−4x2

∫ 6−2x2−y2

2x2+2
dz dy dx .

The order dy dz dx:

Notes:
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Figure 13.46: The regionD in Example 476
is collapsed onto the x, z plane in (a); in
(b), it is collapsed onto the y, z plane.

Chapter 13 MulƟple IntegraƟon

IntegraƟngwith respect to y is not too difficult. Since the surface z = 2x2+2
is a cylinder whose directrix is the y-axis, it does not create a border for y. The
paraboloid z = 6− 2x2 − y2 does; solving for y, we get the bounds

−
√

6− 2x2 − z ≤ y ≤
√

6− 2x2 − z.

Collapsing D onto the x, z axes gives the region shown in Figure 13.46(a); the
lower curve is the from the cylinder, with equaƟon z = 2x2 + 2. The upper
curve is from the paraboloid; with y = 0, the curve is z = 6− 2x2. Thus bounds
on z are 2x2+2 ≤ z ≤ 6−2x2; the bounds on x are−1 ≤ x ≤ 1. Thus we have:

−
√
6− 2x2 − z ≤ y ≤

√
6− 2x2 − z

2x2 + 2 ≤ z ≤ 6− 2x2

−1 ≤ x ≤ 1
⇒
∫ 1

−1

∫ 6−2x2

2x2+2

∫ √
6−2x2−z

−
√
6−2x2−z

dy dz dx.

The order dx dz dy:

This order takes more effort as D must be split into two subregions. The
two surfaces create two sets of upper/lower bounds in terms of x; the cylinder
creates bounds

−
√

z/2− 1 ≤ x ≤
√

z/2− 1

for region D1 and the paraboloid creates bounds

−
√

3− y2/2− z2/2 ≤ x ≤
√

3− y2/2− z2/2

for region D2.
Collapsing D onto the y, z axes gives the regions shown in Figure 13.46(b).

We find the equaƟon of the curve z = 4 − y2/2 by noƟng that the equaƟon of
the ellipse seen in Figure 13.45(c) has equaƟon

x2 + y2/4 = 1 ⇒ x =
√

1− y2/4.

SubsƟtute this expression for x in either surface equaƟon, z = 6 − 2x2 − y2 or
z = 2x2 + 2. In both cases, we find

z = 4− 1
2
y2.

..Region R1, corresponding to D1, has bounds

2 ≤ z ≤ 4− y2/2, −2 ≤ y ≤ 2

and region R2, corresponding to D2, has bounds

4− y2/2 ≤ z ≤ 6− y2, −2 ≤ y ≤ 2.

Notes:

784



13.6 Volume Between Surfaces and Triple IntegraƟon

Thus the volume of D is given by:

∫ 2

−2

∫ 4−y2/2

2

∫ √
z/2−1

−
√

z/2−1
dx dz dy +

∫ 2

−2

∫ 6−y2

4−y2/2

∫ √
3−y2/2−z2/2

−
√

3−y2/2−z2/2
dx dz dy.

...

If all one wanted to do in Example 476 was find the volume of the region D,
one would have likely stopped at the first integraƟon setup (with order dz dy dx)
and computed the volume from there. However, we included the other two
methods 1) to show that it could be done, “messy” or not, and 2) because some-
Ɵmes we “have” to use a less desirable order of integraƟon in order to actually
integrate.

Triple IntegraƟon and FuncƟons of Three Variables

There are uses for triple integraƟon beyond merely finding volume, just as
there are uses for integraƟon beyond “area under the curve.” These uses start
with understanding how to integrate funcƟons of three variables, which is effec-
Ɵvely no different than integraƟng funcƟons of two variables. This leads us to a
definiƟon, followed by an example.

..
DefiniƟon 107 Iterated IntegraƟon, (Part II)

Let D be a closed, bounded region in space, over which g1(x), g2(x),
f1(x, y), f2(x, y) and h(x, y, z) are all conƟnuous, and let a and b be real
numbers.

The iterated integral
∫ b

a

∫ g2(x)

g1(x)

∫ f2(x,y)

f1(x,y)
h(x, y, z) dz dy dx is evaluated as∫ b

a

∫ g2(x)

g1(x)

∫ f2(x,y)

f1(x,y)
h(x, y, z)dz dy dx =

∫ b

a

∫ g2(x)

g1(x)

(∫ f2(x,y)

f1(x,y)
h(x, y, z) dz

)
dy dx.

.. Example 477 ..EvaluaƟng a triple integral of a funcƟon of three variables

Evaluate
∫ 1

0

∫ x

x2

∫ 2x+3y

x2−y

(
xy+ 2xz

)
dz dy dx.

SÊ½çã®ÊÄ We evaluate this integral according to DefiniƟon 107.

Notes:
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∫ 1

0

∫ x

x2

∫ 2x+3y

x2−y

(
xy+ 2xz

)
dz dy dx

=

∫ 1

0

∫ x

x2

(∫ 2x+3y

x2−y

(
xy+ 2xz

)
dz
)

dy dx

=

∫ 1

0

∫ x

x2

((
xyz+ xz2

)∣∣∣2x+3y

x2−y

)
dy dx

=

∫ 1

0

∫ x

x2

(
xy(2x+ 3y) + x(2x+ 3y)2 −

(
xy(x2 − y) + x(x2 − y)2

))
dy dx

=

∫ 1

0

∫ x

x2

(
− x5 + x3y+ 4x3 + 14x2y+ 12xy2

)
dy dx.

We conƟnue as we have in the past, showing fewer steps.

=

∫ 1

0

(
− 7

2
x7 − 8x6 − 7

2
x5 + 15x4

)
dx

=
281
336

≈ 0.836.
...

We now know how to evaluate a triple integral of a funcƟon of three vari-
ables; we do not yet understand what itmeans. We build up this understanding
in a way very similar to how we have understood integraƟon and double inte-
graƟon.

Let h(x, y, z) a conƟnuous funcƟon of three variables, defined over some
space region D. We can parƟƟon D into n rectangular–solid subregions, each
with dimensions ∆xi × ∆yi × ∆zi. Let (xi, yi, zi) be some point in the i th sub-
region, and consider the product h(xi, yi, zi)∆xi∆yi∆zi. It is the product of a
funcƟon value (that’s the h(xi, yi, zi) part) and a small volume ∆Vi (that’s the
∆xi∆yi∆zi part). One of the simplest understanding of this type of product is
when h describes the density of an object; then h× volume = mass.

We can sumup all n products overD. Again leƫng |∆D| represent the length
of the longest diagonal of the n rectangular solids in the parƟƟon, we can take
the limit of the sums of products as |∆D| → 0. That is, we can find

S = lim
|∆D|→0

n∑
i=1

h(xi, yi, zi)∆Vi = lim
|∆D|→0

n∑
i=1

h(xi, yi, zi)∆xi∆yi∆zi.

While this limit has lots of interpretaƟons depending on the funcƟon h, in
the case where h describes density, S is the total mass of the object described
by the region D.

Notes:
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13.6 Volume Between Surfaces and Triple IntegraƟon

We now use the above limit to define the triple integral, give a theorem that
relates triple integrals to iterated iteraƟon, followed by the applicaƟon of triple
integrals to find the centers of mass of solid objects.

..
DefiniƟon 108 Triple Integral

Letw = h(x, y, z) be a conƟnuous funcƟon over a closed, bounded space
region D, and let∆D be any parƟƟon of D into n rectangular solids with
volume Vi. The triple integral of h over D is∫∫∫

D
h(x, y, z) dV = lim

|∆D|→0

n∑
i=1

h(xi, yi, zi)∆Vi.

The following theorem assures us that the above limit exists for conƟnuous
funcƟons h and gives us a method of evaluaƟng the limit.

..
Theorem 127 Triple IntegraƟon (Part II)

Letw = h(x, y, z) be a conƟnuous funcƟon over a closed, bounded space
region D, and let∆D be any parƟƟon of D into n rectangular solids with
volume Vi.

1. The limit lim
|∆D|→0

n∑
i=1

h(xi, yi, zi)∆Vi exists.

2. If D is defined as the region bounded by the planes x = a and
x = b, the cylinders y = g1(x) and y = g2(x), and the surfaces
z = f1(x, y) and z = f2(x, y), where a < b, g1(x) ≤ g2(x) and
f1(x, y) ≤ f2(x, y) on D, then∫∫∫

D
h(x, y, z) dV =

∫ b

a

∫ g2(x)

g1(x)

∫ f2(x,y)

f1(x,y)
h(x, y, z) dz dy dx.

We now apply triple integraƟon to find the centers of mass of solid objects.

Mass and Center of Mass
One may wish to review SecƟon 13.4 for a reminder of the relevant terms

and concepts.

Notes:
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Figure 13.47: Finding the center of mass
of this solid in Example 478.

Chapter 13 MulƟple IntegraƟon

..
DefiniƟon 109 Mass, Center of Mass of Solids

Let a solid be represented by a region D in space with variable density
funcƟon δ(x, y, z).

1. Themass of the object isM =

∫∫∫
D
dm =

∫∫∫
D
δ(x, y, z) dV.

2. Themoment about the x,y plane isMxy =

∫∫∫
D
zδ(x, y, z) dV.

3. Themoment about the x,z plane isMxz =

∫∫∫
D
yδ(x, y, z) dV.

4. Themoment about the y,z plane isMyz =

∫∫∫
D
xδ(x, y, z) dV.

5. The center of mass of the object is

(
x, y, z

)
=

(
Myz

M
,
Mxz

M
,
Mxy

M

)
.

.. Example 478 ..Finding the center of mass of a solid
Find the mass, and center of mass, of the solid represented by the space region
bounded by the coordinate planes and z = 2 − y/3 − 2x/3, shown in Figure
13.47, with constant density δ(x, y, z) = 3gm/cm3. (Note: this space region was
used in Example 472.)

SÊ½çã®ÊÄ We apply DefiniƟon 109. In Example 472, we found bounds
for the order of integraƟon dz dy dx to be 0 ≤ z ≤ 2−y/3−2x/3, 0 ≤ y ≤ 6−2x
and 0 ≤ x ≤ 3. We find the mass of the object:

M =

∫∫∫
D
δ(x, y, z) dV

=

∫ 3

0

∫ 6−2x

0

∫ 2−y/3−2x/3

0

(
3
)
dz dy dx

= 3
∫ 3

0

∫ 6−2x

0

∫ 2−y/3−2x/3

0
dz dy dx

= 3(6) = 18gm.

The evaluaƟon of the triple integral is done in Example 472, so we skipped those

Notes:

788



...

..

x 2
+ y 2

= 1

.

z = −y

.

−1

.

1

.

−1

.

−0.5

.
1

.

x

.

y

.

z

Figure 13.48: Finding the center of mass
of this solid in Example 479.

13.6 Volume Between Surfaces and Triple IntegraƟon

steps above. Note how the mass of an object with constant density is simply
“density×volume.”

We now find the moments about the planes.

Mxy =

∫∫∫
D
3z dV

=

∫ 3

0

∫ 6−2x

0

∫ 2−y/3−2x/3

0

(
3z
)
dz dy dx

=

∫ 3

0

∫ 6−2x

0

1
6
(
2x+ y− 6

)2 dy dx
=

∫ 3

0
−4
9
(
x− 3

)3 dx
= 9.

We omit the steps of integraƟng to find the other moments.

Myz =

∫∫∫
D
3x dV

=
27
2
.

Mxz =

∫∫∫
D
3y dV

= 27.

The center of mass is(
x, y, z

)
=

(
27/2
18

,
27
18

,
9
18

)
=
(
0.75, 1.5, 0.5

)
.

...

.. Example 479 ..Finding the center of mass of a solid
Find the center of mass of the solid represented by the region bounded by the
planes z = 0 and z = −y and the cylinder x2 + y2 = 1, shown in Figure 13.48,
with density funcƟon δ(x, y, z) = 10 + x2 + 5y − 5z. (Note: this space region
was used in Example 474.)

SÊ½çã®ÊÄ As we start, consider the density funcƟon. It is symmetric
about the y, z plane, and the farther one moves from this plane, the denser the
object is. The symmetry indicates that x should be 0.

As one moves away from the origin in the y or z direcƟons, the object be-
comes less dense, though there is more volume in these regions.

Though none of the integrals needed to compute the center of mass are
parƟcularly hard, they do require a number of steps. We emphasize here the

Notes:
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Chapter 13 MulƟple IntegraƟon

importance of knowing how to set up the proper integrals; in complex situaƟons
we can appeal to technology for a good approximaƟon, if not the exact answer.
We use the order of integraƟon dz dy dx, using the bounds found in Example
474. (As these are the same for all four triple integrals, we explicitly show the
bounds only forM.)

M =

∫∫∫
D

(
10+ x2 + 5y− 5z

)
dV

=

∫ 1

−1

∫ 0

−
√
1−x2

∫ −y

0

(
10+ x2 + 5y− 5z

)
dV

=
64
5

− 15π
16

≈ 3.855.

Myz =

∫∫∫
D
x
(
10+ x2 + 5y− 5z

)
dV

= 0.

Mxz =

∫∫∫
D
y
(
10+ x2 + 5y− 5z

)
dV

= 2− 61π
48

≈ −1.99.

Mxy =

∫∫∫
D
z
(
10+ x2 + 5y− 5z

)
dV

=
61π
96

− 10
9

≈ 0.885.

Note howMyz = 0, as expected. The center of mass is

(
x, y, z

)
=

(
0,

−1.99
3.855

,
0.885
3.855

)
≈
(
0,−0.516, 0.230

)
.

...

As stated before, there are many uses for triple integraƟon beyond finding
volume. When h(x, y, z) describes a rate of change funcƟon over some space

region D, then
∫∫∫

D
h(x, y, z) dV gives the total change over D. Our one specific

example of this was compuƟngmass; a density funcƟon is simply a “rate of mass
change per volume” funcƟon. IntegraƟng density gives total mass.

While knowing how to integrate is important, it is arguably much more im-
portant to know how to set up integrals. It takes skill to create a formula that de-
scribes a desired quanƟty; modern technology is very useful in evaluaƟng these
formulas quickly and accurately.

Notes:
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Exercises 13.6
Terms and Concepts
1. The strategy for establishing bounds for triple integrals

is “ to , to and
to .”

2. Give an informal interpretaƟon of what “
∫∫∫

D
dV”

means.

3. Give two uses of triple integraƟon.

4. If an object has a constant density δ and a volume V, what
is its mass?

Problems
In Exercises 5 – 8, two surfaces f1(x, y) and f2(x, y) and a re-
gion R in the x, y plane are given. Set up and evaluate the
double integral that finds the volume between these surfaces
over R.

5. f1(x, y) = 8− x2 − y2, f2(x, y) = 2x+ y;
R is the square with corners (−1,−1) and (1, 1).

6. f1(x, y) = x2 + y2, f2(x, y) = −x2 − y2;
R is the square with corners (0, 0) and (2, 3).

7. f1(x, y) = sin x cos y, f2(x, y) = cos x sin y+ 2;
R is the triangle with corners (0, 0), (π, 0) and (π, π).

8. f1(x, y) = 2x2 + 2y2 + 3, f2(x, y) = 6− x2 − y2;
R is the circle x2 + y2 = 1.

In Exercises 9 – 16, a domain D is described by its bounding
surfaces, along with a graph. Set up the triple integrals that
give the volume of D in all 6 orders of integraƟon, and find
the volume of D by evaluaƟng the indicated triple integral.

9. D is bounded by the coordinate planes and
z = 2− 2x/3− 2y.

Evaluate the triple integral with order dz dy dx.

...

..

z = 2 − 2
3 x − 2y

.
1

.

2

.

3

.
1

.

2

.

3

.

1

.

2

.

x

.

y

.

z

10. D is bounded by the planes y = 0, y = 2, x = 1, z = 0 and
z = (3− x)/2.

Evaluate the triple integral with order dx dy dz.

...

..

z = 1
2 (3 − x)

.1 .
2

.
3

. 1.
2

.
3

.

1

.

x

.
y

.

z

11. D is bounded by the planes x = 0, x = 2, z = −y and by
z = y2/2.

Evaluate the triple integral with the order dy dz dx.

...

..

z
=

−
y

.z
=

12 y 2

.

1

.

2

.
1

.

2

.

x

.

y

.

z
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12. D is bounded by the planes z = 0, y = 9, x = 0 and by
z =

√
y2 − 9x2.

Do not evaluate any triple integral.

...

..

z =
√

y2 − 9x2

.

3

.
3

.

6

.

9

.

3

.

6

.

9

.

x

.

y

.

z

13. D is bounded by the planes x = 2, y = 1, z = 0 and
z = 2x+ 4y− 4.

Evaluate the triple integral with the order dx dy dz.

...

..

z = 2x + 4y − 4

.

1

.

2

. 1.

2

.

2

.

4

.

x

.

y

.

z

14. D is bounded by the plane z = 2y and by y = 4− x2.

Evaluate the triple integral with the order dz dy dx.

...

..

y =
4−

x2.

z =
2y

.

1

.

2

.

−1

.
−2

.
1

.
2

. 3. 4. 2.

4

.

6

.

8

.

x

.
y

.

z

15. D is bounded by the coordinate planes and by
y = 1− x2 and y = 1− z2.

Do not evaluate any triple integral. Which order is easier to
evaluate: dz dy dx or dy dz dx? Explain why.

...

..

y = 1 − x2

.

y
=

1−
z 2

.

1

.

1

.

1

.

x

.

y

.

z
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16. D is bounded by the coordinate planes and by
z = 1− y/3 and z = 1− x.
Evaluate the triple integral with order dx dy dz.

...

..

z = 1 − x

.

z
=

1−
y/3

.
1

.

2

.
1

.

2

.

3

.

1

.

x

.

y

.

z

In Exercises 17 – 20, evaluate the triple integral.

17.
∫ π/2

−π/2

∫ π

0

∫ π

0

(
cos x sin y sin z

)
dz dy dx

18.
∫ 1

0

∫ x

0

∫ x+y

0

(
x+ y+ z

)
dz dy dx

19.
∫ π

0

∫ 1

0

∫ z

0

(
sin(yz)

)
dx dy dz

20.
∫ π2

π

∫ x3

x

∫ y2

−y2

(
z
x2y+ y2x
ex2+y2

)
dz dy dx

In Exercises 21 – 24, find the center ofmass of the solid repre-
sented by the indicated space region Dwith density funcƟon
δ(x, y, z).

21. D is bounded by the coordinate planes and
z = 2− 2x/3− 2y; δ(x, y, z) = 10gm/cm3.
(Note: this is the same region as used in Exercise 9.)

22. D is bounded by the planes y = 0, y = 2, x = 1, z = 0 and
z = (3− x)/2; δ(x, y, z) = 2gm/cm3.
(Note: this is the same region as used in Exercise 10.)

23. D is bounded by the planes x = 2, y = 1, z = 0 and
z = 2x+ 4y− 4; δ(x, y, z) = x2lb/in3.
(Note: this is the same region as used in Exercise 13.)

24. D is bounded by the plane z = 2y and by y = 4− x2.
δ(x, y, z) = y2lb/in3.
(Note: this is the same region as used in Exercise 14.)
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A: SÊ½çã®ÊÄÝ TÊ S�½��ã�� PÙÊ�½�ÃÝ

Chapter 1
SecƟon 1.1

1. Answers will vary.

3. F

5. Answers will vary.

7. −5

9. 2

11. Limit does not exist.

13. 7

15. Limit does not exist.

17.

h f(a+h)−f(a)
h

−0.1 9
−0.01 9
0.01 9
0.1 9

The limit seems to be exactly 9.

19.

h f(a+h)−f(a)
h

−0.1 −0.114943
−0.01 −0.111483
0.01 −0.110742
0.1 −0.107527

The limit is approx. −0.11.

21.

h f(a+h)−f(a)
h

−0.1 0.202027
−0.01 0.2002
0.01 0.1998
0.1 0.198026

The limit is approx. 0.2.

23.

h f(a+h)−f(a)
h

−0.1 −0.0499583
−0.01 −0.00499996
0.01 0.00499996
0.1 0.0499583

The limit is approx. 0.005.

SecƟon 1.2

1. ε should be given first, and the restricƟon |x− a| < δ implies
|f(x)− K| < ε, not the other way around.

3. T

5. Let ε > 0 be given. We wish to find δ > 0 such that when
|x− 5| < δ, |f(x)− (−2)| < ε.
Consider |f(x)− (−2)| < ε:

|f(x) + 2| < ε

|(3− x) + 2| < ε

|5− x| < ε

−ε < 5− x < ε

−ε < x− 5 < ε.

This implies we can let δ = ε. Then:

|x− 5| < δ

−δ < x− 5 < δ

−ε < x− 5 < ε

−ε < (x− 3)− 2 < ε

−ε < (−x+ 3)− (−2) < ε

|3− x− (−2)| < ε,

which is what we wanted to prove.

7. Let ε > 0 be given. We wish to find δ > 0 such that when
|x− 4| < δ, |f(x)− 15| < ε.
Consider |f(x)− 15| < ε, keeping in mind we want to make a
statement about |x− 4|:

|f(x)− 15| < ε

|x2 + x− 5− 15| < ε

|x2 + x− 20| < ε

|x− 4| · |x+ 5| < ε

|x− 4| < ε/|x+ 5|

Since x is near 4, we can safely assume that, for instance,
3 < x < 5. Thus

3+ 5 < x+ 5 < 5+ 5
8 < x+ 5 < 10
1
8
<

1
x+ 5

<
1
10

ε

8
<

ε

x+ 5
<

ε

10

Let δ = ε
8 . Then:

|x− 4| < δ

|x− 4| <
ε

8

|x− 4| <
ε

x+ 5

|x− 4| · |x+ 5| <
ε

x+ 5
· |x+ 5|

Assuming x is near 4, x+ 4 is posiƟve and we can drop the
absolute value signs on the right.

|x− 4| · |x+ 5| <
ε

x+ 5
· (x+ 5)

|x2 + x− 20| < ε|(x2 + x− 5)− 15| < ε,

which is what we wanted to prove.

9. Let ε > 0 be given. We wish to find δ > 0 such that when
|x− 2| < δ, |f(x)− 5| < ε. However, since f(x) = 5, a constant
funcƟon, the laƩer inequality is simply |5− 5| < ε, which is
always true. Thus we can choose any δ we like; we arbitrarily
choose δ = ε.

A.1



11. Let ε > 0 be given. We wish to find δ > 0 such that when
|x− 0| < δ, |f(x)− 0| < ε. In simpler terms, we want to show
that when |x| < δ, | sin x| < ε.
Set δ = ε. We start with assuming that |x| < δ. Using the hint,
we have that | sin x| < |x| < δ = ε. Hence if |x| < δ, we know
immediately that | sin x| < ε.

SecƟon 1.3

1. Answers will vary.

3. Answers will vary.

5. As x is near 1, both f and g are near 0, but f is approximately twice
the size of g. (I.e., f(x) ≈ 2g(x).)

7. 6

9. Limit does not exist.

11. Not possible to know.

13. −45

15. −1

17. π

19. −0.000000015 ≈ 0

21. Limit does not exist

23. 2

25. π2+3π+5
5π2−2π−3 ≈ 0.6064

27. −8

29. 10

31. −3/2

33. 0

35. 9

37. 5/8

39. π/180

SecƟon 1.4

1. The funcƟon approaches different values from the leŌ and right;
the funcƟon grows without bound; the funcƟon oscillates.

3. F

5. (a) 2

(b) 2

(c) 2

(d) 1

(e) As f is not defined for x < 0, this limit is not defined.

(f) 1

7. (a) Does not exist.

(b) Does not exist.

(c) Does not exist.

(d) Not defined.

(e) 0

(f) 0

9. (a) 2

(b) 2

(c) 2

(d) 2

11. (a) 2

(b) 2

(c) 2

(d) 0

(e) 2

(f) 2

(g) 2

(h) Not defined

13. (a) 2

(b) -4

(c) Does not exist.

(d) 2

15. (a) 0

(b) 0

(c) 0

(d) 0

(e) 2

(f) 2

(g) 2

(h) 2

17. (a) 1− cos2 a = sin2 a
(b) sin2 a
(c) sin2 a
(d) sin2 a

19. (a) 4

(b) 4

(c) 4

(d) 3

21. (a) −1

(b) 1

(c) Does not exist

(d) 0

23. 2/3

25. −1/2

27. −31/19

29. 11/81

SecƟon 1.5

1. Answers will vary.

3. A root of a funcƟon f is a value c such that f(c) = 0.

5. F

7. T

9. F

11. No; lim
x→1

f(x) = 2, while f(1) = 1.

13. No; f(1) does not exist.

15. Yes

17. (a) No; lim
x→−2

f(x) ̸= f(−2)

(b) Yes

(c) No; f(2) is not defined.

A.2



19. (a) Yes

(b) No; the leŌ and right hand limits at 1 are not equal.

21. (a) Yes

(b) No. limx→8 f(x) = 16/5 ̸= f(8) = 5.

23. (−∞,−2] ∪ [2,∞)

25. (−∞,−
√
6] ∪ [

√
6,∞)

27. (−∞,∞)

29. (0,∞)

31. (−∞, 0]

33. Yes, by the Intermediate Value Theorem.

35. We cannot say; the Intermediate Value Theorem only applies to
funcƟon values between−10 and 10; as 11 is outside this range,
we do not know.

37. Approximate root is x = 1.23. The intervals used are:
[1, 1.5] [1, 1.25] [1.125, 1.25]
[1.1875, 1.25] [1.21875, 1.25] [1.234375, 1.25]
[1.234375, 1.2421875] [1.234375, 1.2382813]

39. Approximate root is x = 0.69. The intervals used are:
[0.65, 0.7] [0.675, 0.7] [0.6875, 0.7]
[0.6875, 0.69375] [0.690625, 0.69375]

41. (a) 20

(b) 25

(c) Limit does not exist

(d) 25

43. Answers will vary.

SecƟon 1.6

1. F

3. F

5. T

7. Answers will vary.

9. (a) ∞

(b) ∞

11. (a) 1

(b) 0

(c) 1/2

(d) 1/2

13. (a) Limit does not exist

(b) Limit does not exist

15. Tables will vary.

(a)

x f(x)
2.9 −15.1224
2.99 −159.12
2.999 −1599.12

It seems limx→3− f(x) = −∞.

(b)

x f(x)
3.1 16.8824
3.01 160.88
3.001 1600.88

It seems limx→3+ f(x) = ∞.

(c) It seems limx→3 f(x) does not exist.

17. Tables will vary.

(a)
x f(x)
2.9 132.857
2.99 12124.4

It seems limx→3− f(x) = ∞.

(b)
x f(x)
3.1 108.039
3.01 11876.4

It seems limx→3+ f(x) = ∞.

(c) It seems limx→3 f(x) = ∞.

19. Horizontal asymptote at y = 2; verƟcal asymptotes at x = −5, 4.

21. Horizontal asymptote at y = 0; verƟcal asymptotes at
x = −1, 0, 3.

23. No horizontal or verƟcal asymptotes.

25. ∞

27. −∞

29. SoluƟon omiƩed.

31. Yes. The only “quesƟonable” place is at x = 3, but the leŌ and
right limits agree.

Chapter 2
SecƟon 2.1

1. T

3. Answers will vary.

5. Answers will vary.

7. f ′(x) = 2

9. g′(x) = 2x

11. h′(x) = −1
x2

13. (a) y = 6

(b) x = −2

15. (a) y = −3x+ 4

(b) y = 1/3x+ 4

17. (a) y = −7(x+ 1) + 8

(b) y = 1/7(x+ 1) + 8

19. (a) y = −1(x− 3) + 1

(b) y = 1(x− 3) + 1

21. y = −0.99(x− 9) + 1

23. y = −0.05x+ 1

25. (a) ApproximaƟons will vary; they should match (c) closely.

(b) f ′(x) = −1/(x+ 1)2

(c) At (0, 1), slope is−1. At (1, 0.5), slope is−1/4.

27. ...

..

−6

.

−4

.

−2

.

2

.

−2

.

2

.

x

.

y
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29. ..... −1.

−0.5

.

0.5

.

1

.

−2π

.

−π

.

π

.

2π

.

x

.

y

31. Approximately 24.

33. (a) (−∞,∞)

(b) (−∞,−1) ∪ (−1, 1) ∪ (1,∞)

(c) (−∞, 5]

(d) [−5, 5]

SecƟon 2.2

1. Velocity

3. Linear funcƟons.

5. −17

7. f(10.1) is likely most accurate, as accuracy is lost the farther from
x = 10 we go.

9. 6

11. Ō/s2

13. (a) thousands of dollars per car

(b) It is likely that P(0) < 0. That is, negaƟve profit for not
producing any cars.

15. f(x) = g′(x)

17. Either g(x) = f ′(x) or f(x) = g′(x) is acceptable. The actual
answer is g(x) = f ′(x), but is very hard to show that f(x) ̸= g′(x)
given the level of detail given in the graph.

19. f ′(x) = 10x

21. f ′(π) ≈ 0.

SecƟon 2.3

1. Power Rule.

3. One answer is f(x) = 10ex.

5. g(x) and h(x)

7. One possible answer is f(x) = 17x− 205.

9. f ′(x) is a velocity funcƟon, and f ′′(x) is acceleraƟon.

11. f ′(x) = 14x− 5

13. m′(t) = 45t4 − 3
8 t

2 + 3

15. f ′(r) = 6er

17. f ′(x) = 2
x − 1

19. h′(t) = et − cos t+ sin t

21. f ′(x) = 0

23. g′(x) = 24x2 − 120x+ 150

25. f ′(x) = 18x− 12

27. g′(x) = −2 sin x g′′(x) = −2 cos x g′′′(x) = 2 sin x
g(4)(x) = 2 cos x

29. p′(θ) = 4θ3 − 3θ2 p′′(θ) = 12θ2 − 6θ p′′′(θ) = 24θ − 6
p(4)(θ) = 24

31. f ′(x) = f ′′(x) = f ′′′(x) = f(4)(x) = 0

33. Tangent line: y = t+ 4
Normal line: y = −t+ 4

35. Tangent line: y = 4
Normal line: x = π/2

37. Tangent line: y = 2x+ 3
Normal line: y = −1/2(x− 5) + 13

39. The tangent line to f(x) = x4 at x = 3 is y = 108(x− 3) + 81;
thus (3.01)4 ≈ y(3.01) = 108(.01) + 81 = 82.08.

SecƟon 2.4

1. F

3. T

5. F

7. (a) f ′(x) = (x2 + 3x) + x(2x+ 3)

(b) f ′(x) = 3x2 + 6x

(c) They are equal.

9. (a) h′(s) = 2(s+ 4) + (2s− 1)(1)

(b) h′(s) = 4s+ 7

(c) They are equal.

11. (a) f ′(x) = x(2x)−(x2+3)1
x2

(b) f ′(x) = 1− 3
x2

(c) They are equal.

13. (a) h′(s) = 4s3(0)−3(12s2)
16s6

(b) h′(s) = −9/4s−4

(c) They are equal.

15. (a) f ′(x) = (x+2)(4x3+6x2)−(x4+2x3)(1)
(x+2)2

(b) f(x) = x3 when x ̸= −2, so f ′(x) = 3x2.

(c) They are equal.

17. f ′(t) = −2
t3 (csc t− 4) + 1

t2 (− csc t cot t)

19. g′(t) = (cos t−2t2)(5t4)−(t5)(− sin t−4t)
(cos t−2t2)2

21. h′(t) = 14t+ 6

23. f ′(t) = 1
5 x

−4/5(sec t+ et) + 5√t(sec t tan t+ et)

25. g′(x) = 0

27. f ′(x) = (3t+2)(ln 22t)−(2t+3)(ln 3)
(3t+2)2

29. g′(x) = 2 sin x sec x+ 2x cos x sec x+ 2x sin x sec x tan x =
2 tan x+ 2x+ 2x tan2 x = 2 tan x+ 2x sec2 x

31. Tangent line: y = −(x− 3π
2 )− 3π

2 = −x

Normal line: y = (x− 3π
2 )− 3π

2 = −x

33. Tangent line: y = −9x− 5
Normal line: y = 1/9x− 5

35. x = 0

37. x = −2, 0

39. f(4)(x) = −4 cos x+ x sin x

41. f(8) = 0
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SecƟon 2.5

1. T

3. F

5. T

7. f ′(t) = 15(3t− 2)4

9. h′(t) = (6t+ 1)e3t
2+t−1

11. f ′(x) = −3 sin(3x)

13. h′(t) = 8 sin3(2t) cos(2t)

15. f ′(x) = − tan x

17. f ′(x) = 2/x

19. g′(t) = − ln 5 · 5cos t sin t

21. m′(w) = ln(3/2)(3/2)w

23. f ′(x) = 2x
2
(ln 3·3xx22x+1)−(3x

2
+x)(ln 2·2x

2
2x)

22x2

25. g′(t) = 5 cos(t2+3t) cos(5t−7)−(2t+3) sin(t2+3t) sin(5t−7)

27. Tangent line: y = 0
Normal line: x = 0

29. Tangent line: y = −3(θ − π/2) + 1
Normal line: y = 1/3(θ − π/2) + 1

31. In both cases the derivaƟve is the same: 1/x.

33. (a) ◦ F/mph

(b) The sign would be negaƟve; when the wind is blowing at
10 mph, any increase in wind speed will make it feel colder,
i.e., a lower number on the Fahrenheit scale.

SecƟon 2.6

1. Answers will vary.

3. T

5. f ′(x) = 1
3 x

−2/3 = 1
3 3√x2

7. g′(t) =
√
t cos t+ sin t

2
√

t

9. dy
dx = −4x3

2y+1

11. dy
dx = sin(x) sec(y)

13. dy
dx = y

x

15. − 2 sin(y) cos(y)
x

17. 1
2y+2

19. − cos(x)(x+cos(y))+sin(x)+y
sin(y)(sin(x)+y)+x+cos(y)

21. − 2x+y
2y+x

23. (a) y = 0

(b) y = −1.859(x− 0.1) + 0.281

25. (a) y = 4

(b) y = 0.93(x− 2) + 4√108

27. (a) y = − 1√
3
(x− 7

2 ) +
6+3

√
3

2

(b) y =
√
3(x− 4+3

√
3

2 ) + 3
2

29. d2y
dx2 = 3

5
y3/5

x8/5
+ 3

5
1

yx6/5

31. d2y
dx2 = 0

33. y′ = (2x)x
2(
2x ln(2x) + x

)
Tangent line: y = (2+ 4 ln 2)(x− 1) + 2

35. y′ = xsin(x)+2( cos x ln x+ sin x+2
x
)

Tangent line: y = (3π2/4)(x− π/2) + (π/2)3

37. y′ = (x+1)(x+2)
(x+3)(x+4)

( 1
x+1 + 1

x+2 − 1
x+3 − 1

x+4

)
Tangent line: y = 11/72x+ 1/6

SecƟon 2.7

1. F

3. The point (10, 1) lies on the graph of y = f−1(x) (assuming f is
inverƟble).

5. Compose f(g(x)) and g(f(x)) to confirm that each equals x.

7. Compose f(g(x)) and g(f(x)) to confirm that each equals x.

9.
(
f−1)′ (20) = 1

f ′(2) = 1/5

11.
(
f−1)′ (√3/2) = 1

f ′(π/6) = 1

13.
(
f−1)′ (1/2) = 1

f ′(1) = −2

15. h′(t) = 2√
1−4t2

17. g′(x) = 2
1+4x2

19. g′(t) = cos−1(t) cos(t)− sin(t)√
1−t2

21. h′(x) = sin−1(x)+cos−1(x)√
1−x2 cos−1(x)2

23. f ′(x) = − 1√
1−x2

25. (a) f(x) = x, so f ′(x) = 1

(b) f ′(x) = cos(sin−1 x) 1√
1−x2

= 1.

27. (a) f(x) =
√
1− x2, so f ′(x) = −x√

1−x2

(b) f ′(x) = cos(cos−1 x)( 1√
1−x2

= −x√
1−x2

29. y = −4(x−
√
3/4) + π/6

31. y = −4/5(x− 1) + 2
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Chapter 3
SecƟon 3.1

1. Answers will vary.

3. Answers will vary.

5. F

7. A: abs. min B: none C: abs. max D: none E: none

9. f ′(0) = 0 f ′(2) = 0

11. f ′(0) = 0 f ′(3.2) = 0 f ′(4) is undefined

13. f ′(0) is not defined

15. min: (−0.5, 3.75)
max: (2, 10)

17. min: (π/4, 3
√
2/2)

max: (π/2, 3)

19. min: (
√
3, 2

√
3)

max: (5, 28/5)

21. min: (π,−eπ)

max: (π/4,
√

2eπ/4
2 )

23. min: (1, 0)
max: (e, 1/e)

25. dy
dx =

y(y−2x)
x(x−2y)

27. 3x2 + 1

SecƟon 3.2

1. Answers will vary.

3. Any c in [−1, 1] is valid.

5. c = −1/2

7. Rolle’s Thm. does not apply.

9. Rolle’s Thm. does not apply.

11. c = 0

13. c = 3/
√
2

15. The Mean Value Theorem does not apply.

17. c = ± sec−1(2/
√
π)

19. c = 5±7
√

7
6

21. Max value of 19 at x = −2 and x = 5; min value of 6.75 at
x = 1.5.

23. They are the odd, integer valued mulƟples of π/2 (such as
0,±π/2,±3π/2,±5π/2, etc.)

SecƟon 3.3

1. Answers will vary.

3. Answers will vary.

5. Increasing

7. Graph and verify.

9. Graph and verify.

11. Graph and verify.

13. Graph and verify.

15. c.p. at c = −2, 0; increasing on (−∞,−2) ∪ (0,∞); decreasing
on (−2, 0); rel. min at x = 0; rel. max at x = −2.

17. c.p. at c = 1; increasing on (−∞,∞);

19. c.p. at c = −1, 0, 1; decreasing on (−∞,−1) ∪ (−1, 0)
increasing on (0, 1) ∪ (1,∞); rel. min at x = 0;

21. c.p. at c = 2, 6, 0; decreasing on (−∞, 0) ∪ (0, 2); increasing on
(2,∞); rel. min at x = 2;

23. c.p. at c = −1, 1 decreasing on (−1, 1) increasing on
(−∞,−1) ∪ (1,∞); rel. min at x = 1; rel. max at x = −1

25. c = ± cos−1(2/π)

SecƟon 3.4

1. Answers will vary.

3. Yes; Answers will vary.

5. Graph and verify.

7. Graph and verify.

9. Graph and verify.

11. Graph and verify.

13. Graph and verify.

15. Graph and verify.

17. Possible points of inflecƟon: none; concave down on (−∞,∞)

19. Possible points of inflecƟon: x = 1/2; concave down on
(−∞, 1/2); concave up on (1/2,∞)

21. Possible points of inflecƟon: x = (1/3)(2±
√
7); concave up on

((1/3)(2−
√
7), (1/3)(2+

√
7)); concave down on

(−∞, (1/3)(2−
√
7)) ∪ ((1/3)(2+

√
7),∞)

23. Possible points of inflecƟon: x = ±1/
√
3; concave down on

(−1/
√
3, 1/

√
3); concave up on (−∞,−1/

√
3) ∪ (1/

√
3,∞)

25. Possible points of inflecƟon: x = −π/4, 3π/4; concave down on
(−π/4, 3π/4) concave up on (−π,−π/4) ∪ (3π/4, π)

27. Possible points of inflecƟon: x = 1/e3/2; concave down on
(0, 1/e3/2) concave up on (1/e3/2,∞)

29. min: x = 1

31. max: x = −1/
√
3 min: x = 1/

√
3

33. min: x = 1

35. min: x = 1

37. criƟcal values: x = −1, 1; no max/min

39. max: x = −2; min: x = 0

41. max: x = 0

43. f ′ has no maximal or minimal value

45. f ′ has a minimal value at x = 1/2

47. f ′ has a relaƟve max at: x = (1/3)(2+
√
7) relaƟve min at:

x = (1/3)(2−
√
7)

49. f ′ has a relaƟve max at x = −1/
√
3; relaƟve min at x = 1/

√
3

51. f ′ has a relaƟve min at x = 3π/4; relaƟve max at x = −π/4

53. f ′ has a relaƟve min at x = 1/
√
e3 = e−3/2

SecƟon 3.5

1. Answers will vary.

3. T

5. T

7. A good sketch will include the x and y intercepts..
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9. Use technology to verify sketch.

11. Use technology to verify sketch.

13. Use technology to verify sketch.

15. Use technology to verify sketch.

17. Use technology to verify sketch.

19. Use technology to verify sketch.

21. Use technology to verify sketch.

23. Use technology to verify sketch.

25. Use technology to verify sketch.

27. CriƟcal points: x = nπ/2−b
a , where n is an odd integer Points of

inflecƟon: (nπ − b)/a, where n is an integer.

29. dy
dx = −x/y, so the funcƟon is increasing in second and fourth
quadrants, decreasing in the first and third quadrants.
d2y
dx2 = −1/y− x2/y3, which is posiƟve when y < 0 and is
negaƟve when y > 0. Hence the funcƟon is concave down in the
first and second quadrants and concave up in the third and fourth
quadrants.

Chapter 4
SecƟon 4.1

1. F

3. x0 = 1.5, x1 = 1.5709148, x2 = 1.5707963, x3 = 1.5707963,
x4 = 1.5707963, x5 = 1.5707963

5. x0 = 0, x1 = 2, x2 = 1.2, x3 = 1.0117647, x4 = 1.0000458,
x5 = 1

7. x0 = 2, x1 = 0.6137056389, x2 = 0.9133412072,
x3 = 0.9961317034, x4 = 0.9999925085, x5 = 1

9. roots are: x = −3.714, x = −0.857, x = 1 and x = 1.571

11. roots are: x = −2.165, x = 0, x = 0.525 and x = 1.813

13. x = −0.637, x = 1.410

15. x = ±4.493, x = 0

17. The approximaƟons alternate between x = 1, x = 2 and x = 3.

SecƟon 4.2

1. T

3. (a) 5/(2π) ≈ 0.796cm/s

(b) 1/(4π) ≈ 0.0796 cm/s

(c) 1/(40π) ≈ 0.00796 cm/s

5. 49mph

7. Due to the height of the plane, the gun does not have to rotate
very fast.

(a) 0.0573 rad/s

(b) 0.0725 rad/s

(c) In the limit, rate goes to 0.0733 rad/s

9. (a) 0.04 Ō/s

(b) 0.458 Ō/s

(c) 3.35 Ō/s

(d) Not defined; as the distance approaches 24, the rates
approaches∞.

11. (a) 50.92 Ō/min

(b) 0.509 Ō/min

(c) 0.141 Ō/min
As the tank holds about 523.6Ō3, it will take about 52.36 minutes.

13. (a) The rope is 80Ō long.

(b) 1.71 Ō/sec

(c) 1.87 Ō/sec

(d) About 34 feet.

15. The cone is rising at a rate of 0.003Ō/s.

SecƟon 4.3

1. T

3. 2500; the two numbers are each 50.

5. There is no maximum sum; the fundamental equaƟon has only 1
criƟcal value that corresponds to a minimum.

7. Area = 1/4, with sides of length 1/
√
2.

9. The radius should be about 3.84cm and the height should be
2r = 7.67cm. No, this is not the size of the standard can.

11. The height and width should be 18 and the length should be 36,
giving a volume of 11, 664in3.

13. 5− 10/
√
39 ≈ 3.4 miles should be run underground, giving a

minimum cost of $374,899.96.

15. The dog should run about 19 feet along the shore before starƟng
to swim.

17. The largest area is 2 formed by a square with sides of length
√
2.

SecƟon 4.4

1. T

3. F

5. Answers will vary.

7. Use y = x2; dy = 2x · dx with x = 6 and dx = −0.07. Thus
dy = −0.84; knowing 62 = 36, we have 5.932 ≈ 35.16.

9. Use y = x3; dy = 3x2 · dx with x = 7 and dx = −0.2. Thus
dy = −29.4; knowing 73 = 343, we have 6.83 ≈ 313.6.

11. Use y =
√
x; dy = 1/(2

√
x) · dx with x = 25 and dx = −1. Thus

dy = −0.1; knowing
√
25 = 5, we have

√
24 ≈ 4.9.

13. Use y = 3√x; dy = 1/(3 3√x2) · dx with x = 8 and dx = 0.5. Thus
dy = 1/24 ≈ 1/25 = 0.04; knowing 3√8 = 2, we have
3√8.5 ≈ 2.04.

15. Use y = cos x; dy = − sin x · dx with x = π/2 ≈ 1.57 and
dx ≈ −0.07. Thus dy = 0.07; knowing cos π/2 = 0, we have
cos 1.5 ≈ 0.07.

17. dy = (2x+ 3)dx

19. dy = −2
4x3 dx

21. dy =
(
2xe3x + 3x2e3x

)
dx

23. dy = 2(tan x+1)−2x sec2 x
(tan x+1)2 dx

25. dy = (ex sin x+ ex cos x)dx

27. dy = 1
(x+2)2 dx

29. dy = (ln x)dx

31. (a) ±12.8 feet

(b) ±32 feet

33. ±48in2, or 1/3Ō2

A.7



35. (a) 298.8 feet

(b) ±17.3 Ō

(c) ±5.8%

37. The isosceles triangle setup works the best with the smallest
percent error.

Chapter 5
SecƟon 5.1

1. Answers will vary.

3. Answers will vary.

5. Answers will vary.

7. velocity

9. 1/9x9 + C

11. t+ C

13. −1/(3t) + C

15. 2
√
x+ C

17. − cos θ + C

19. 5eθ + C

21. 5t
2 ln 5 + C

23. t6/6+ t4/4− 3t2 + C

25. eπx+ C

27. (a) x > 0

(b) 1/x

(c) x < 0

(d) 1/x

(e) ln |x|+ C. ExplanaƟons will vary.

29. 5ex + 5

31. tan x+ 4

33. 5/2x2 + 7x+ 3

35. 5ex − 2x

37. 2x4 ln2(2)+2x+x ln 2)(ln 32−1)+ln2(2) cos(x)−1−ln2(2)
ln2(2)

39. No answer provided.

SecƟon 5.2

1. Answers will vary.

3. 0

5. (a) 3

(b) 4

(c) 3

(d) 0

(e) −4

(f) 9

7. (a) 4

(b) 2

(c) 4

(d) 2

(e) 1

(f) 2

9. (a) π

(b) π

(c) 2π

(d) 10π

11. (a) 4/π

(b) −4/π

(c) 0

(d) 2/π

13. (a) 40/3

(b) 26/3

(c) 8/3

(d) 38/3

15. (a) 3Ō/s

(b) 9.5Ō

(c) 9.5Ō

17. (a) 96Ō/s

(b) 6 seconds

(c) 6 seconds

(d) Never; the maximum height is 208Ō.

19. 5

21. Answers can vary; one soluƟon is a = −2, b = 7

23. −7

25. Answers can vary; one soluƟon is a = −11, b = 18

27. − cos x− sin x+ tan x+ C

29. ln |x|+ csc x+ C

SecƟon 5.3

1. limits

3. Rectangles.

5. 22 + 32 + 42 = 29

7. 0− 1+ 0+ 1+ 0 = 0

9. −1+ 2− 3+ 4− 5+ 6 = 3

11. 1+ 1+ 1+ 1+ 1+ 1 = 6

13. Answers may vary;
∑8

i=0(i
2 − 1)

15. Answers may vary;
∑4

i=0(−1)iei

17. 1045

19. −8525

21. 5050

23. 155

25. 24

27. 19

29. π/3+ π/(2
√
3) ≈ 1.954

31. 0.388584

33. (a) Exact expressions will vary; (1+n)2

4n2 .

(b) 121/400, 10201/40000, 1002001/4000000

(c) 1/4

35. (a) 8.

(b) 8, 8, 8
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(c) 8

37. (a) Exact expressions will vary; 100− 200/n.

(b) 80, 98, 499/5

(c) 100

39. F(x) = 5 tan x+ 4

41. G(t) = 4/6t6 − 5/4t4 + 8t+ 9

43. G(t) = sin t− cos t− 78

SecƟon 5.4

1. Answers will vary.

3. T

5. 20

7. 0

9. 1

11. (5− 1/5)/ ln 5

13. −4

15. 16/3

17. 45/4

19. 1/2

21. 1/2

23. 1/4

25. 8

27. 0

29. ExplanaƟons will vary. A sketch will help.

31. c = ±2/
√
3

33. c = 64/9 ≈ 7.1

35. 2/pi

37. 16/3

39. 1/(e− 1)

41. 400Ō

43. −1Ō

45. −64Ō/s

47. 2Ō/s

49. 27/2

51. 9/2

53. F′(x) = (3x2 + 1) 1
x3+x

55. F′(x) = 2x(x2 + 2)− (x+ 2)

SecƟon 5.5

1. F

3. They are superseded by the Trapezoidal Rule; it takes an equal
amount of work and is generally more accurate.

5. (a) 250

(b) 250

(c) 250

7. (a) 2+
√
2+

√
3 ≈ 5.15

(b) 2/3(3+
√
2+ 2

√
3) ≈ 5.25

(c) 16/3 ≈ 5.33

9. (a) 0.2207

(b) 0.2005

(c) 1/5

11. (a) 9/2(1+
√
3) ≈ 12.294

(b) 3+ 6
√
3 ≈ 13.392

(c) 9π/2 ≈ 14.137

13. Trapezoidal Rule: 3.0241
Simpson’s Rule: 2.9315

15. Trapezoidal Rule: 3.0695
Simpson’s Rule: 3.14295

17. Trapezoidal Rule: 2.52971
Simpson’s Rule: 2.5447

19. Trapezoidal Rule: 3.5472
Simpson’s Rule: 3.6133

21. (a) n = 150 (using max
(
f ′′(x)

)
= 1)

(b) n = 18 (using max
(
f (4)(x)

)
= 7)

23. (a) n = 5591 (using max
(
f ′′(x)

)
= 300)

(b) n = 46 (using max
(
f (4)(x)

)
= 24)

25. (a) Area is 25.0667 cm2

(b) Area is 250,667 yd2

Chapter 6
SecƟon 6.1

1. Chain Rule.

3. 1
8 (x

3 − 5)8 + C

5. 1
18

(
x2 + 1

)9
+ C

7. 1
2 ln |2x+ 7|+ C

9. 2
3 (x+ 3)3/2 − 6(x+ 3)1/2 + C = 2

3 (x− 6)
√
x+ 3+ C

11. 2e
√

x + C

13. − 1
2x2 − 1

x + C

15. sin3(x)
3 + C

17. − tan(4− x) + C

19. tan3(x)
3 + C

21. tan(x)− x+ C

23. ex
3

3 + C

25. x− e−x + C

27. 27x
ln 27 + C

29. 1
2 ln

2(x) + C

31. 1
6 ln

2 (x3)+ C

33. x2
2 + 3x+ ln |x|) + C

35. x3
3 − x2

2 + x− 2 ln |x+ 1|+ C

37. 3
2 x

2 − 8x+ 15 ln |x+ 1|+ C

39.
√
7 tan−1

(
x√
7

)
+ C

41. 14 sin−1
(

x√
5

)
+ C
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43. 5
4 sec

−1(|x|/4) + C

45.
tan−1

(
x−1√

7

)
√

7
+ C

47. −3 sin−1 ( 4−x
5

)
+ C

49. − 1
3(x3+3)

+ C

51. −
√
1− x2 + C

53. − 2
3 cos

3
2 (x) + C

55. 7
3 ln |3x+ 2|+ C

57. ln
∣∣x2 + 7x+ 3

∣∣+ C

59. − x2
2 + 2 ln

∣∣x2 − 7x+ 1
∣∣+ 7x+ C

61. tan−1(2x) + C

63. 1
3 sin

−1 ( 3x
4

)
+ C

65. 19
5 tan−1 ( x+6

5

)
− ln

∣∣x2 + 12x+ 61
∣∣+ C

67. x2
2 − 9

2 ln
∣∣x2 + 9

∣∣+ C

69. − tan−1(cos(x)) + C

71. ln | sec x+ tan x|+ C (integrand simplifies to sec x)

73.
√
x2 − 6x+ 8+ C

75. 352/15

77. 1/5

79. π/2

81. π/6

SecƟon 6.2

1. T

3. Determining which funcƟons in the integrand to set equal to “u”
and which to set equal to “dv”.

5. −e−x − xe−x + C

7. −x3 cos x+ 3x2 sin x+ 6x cos x− 6 sin x+ C

9. x3ex − 3x2ex + 6xex − 6ex + C

11. 1/2ex(sin x− cos x) + C

13. 1/13e2x(2 sin(3x)− 3 cos(3x)) + C

15. −1/2 cos2 x+ C

17. x tan−1(2x)− 1
4 ln
∣∣4x2 + 1

∣∣+ C

19.
√
1− x2 + x sin−1 x+ C

21. − x2
4 + 1

2 x
2 ln |x|+ 2x− 2x ln |x|+ C

23. 1
2 x

2 ln
(
x2
)
− x2

2 + C

25. 2x+ x (ln |x|)2 − 2x ln |x|+ C

27. x tan(x) + ln | cos(x)|+ C

29. 2
5 (x− 2)5/2 + 4

3 (x− 2)3/2 + C

31. sec x+ C

33. −x csc x− ln | csc x+ cot x|+ C

35. 2 sin
(√

x
)
− 2

√
x cos

(√
x
)
+ C

37. 2
√
xe

√
x − 2e

√
x + C

39. π

41. 0

43. 1/2

45. 3
4e2 − 5

4e4

47. 1/5
(
eπ + e−π

)
SecƟon 6.3

1. F

3. F

5. 1
4 sin

4(x) + C

7. 1
6 cos

6 x− 1
4 cos

4 x+ C

9. − 1
9 sin

9(x) + 3 sin7(x)
7 − 3 sin5(x)

5 +
sin3(x)

3 + C

11. 1
2

(
− 1

8 cos(8x)−
1
2 cos(2x)

)
+ C

13. 1
2

( 1
4 sin(4x)−

1
10 sin(10x)

)
+ C

15. 1
2

(
sin(x) + 1

3 sin(3x)
)
+ C

17. tan5(x)
5 + C

19. tan6(x)
6 +

tan4(x)
4 + C

21. sec5(x)
5 − sec3(x)

3 + C

23. 1
3 tan

3 x− tan x+ x+ C

25. 1
2 (sec x tan x− ln | sec x+ tan x|) + C

27. 2
5

29. 32/315

31. 2/3

33. 16/15

SecƟon 6.4

1. backwards

3. (a) tan2 θ + 1 = sec2 θ

(b) 9 sec2 θ.

5. 1
2

(
x
√
x2 + 1+ ln |

√
x2 + 1+ x|

)
+ C

7. 1
2

(
sin−1 x+ x

√
1− x2

)
+ C

9. 1
2 x
√
x2 − 1− 1

2 ln |x+
√
x2 − 1|+ C

11. x
√

x2 + 1/4+ 1
4 ln |2

√
x2 + 1/4+ 2x|+ C =

1
2 x
√
4x2 + 1+ 1

4 ln |
√
4x2 + 1+ 2x|+ C

13. 4
(

1
2 x
√

x2 − 1/16− 1
32 ln |4x+ 4

√
x2 − 1/16|

)
+ C =

1
2 x
√
16x2 − 1− 1

8 ln |4x+
√
16x2 − 1|+ C

15. 3 sin−1
(

x√
7

)
+ C (Trig. Subst. is not needed)

17.
√
x2 − 11−

√
11 sec−1(x/

√
11) + C

19.
√
x2 − 3+ C (Trig. Subst. is not needed)

21. − 1√
x2+9

+ C (Trig. Subst. is not needed)

23. 1
18

x+2
x2+4x+13 + 1

54 tan
−1 ( x+2

2

)
+ C

25. 1
7

(
−
√

5−x2
x − sin−1(x/

√
5)
)

+ C

27. π/2

29. 2
√
2+ 2 ln(1+

√
2)
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31. 9 sin−1(1/3) +
√
8 Note: the new lower bound is

θ = sin−1(−1/3) and the new upper bound is θ = sin−1(1/3).
The final answer comes with recognizing that
sin−1(−1/3) = − sin−1(1/3) and that
cos
(
sin−1(1/3)

)
= cos

(
sin−1(−1/3)

)
=

√
8/3.

SecƟon 6.5

1. raƟonal

3. A
x + B

x−3

5. A
x−

√
7
+ B

x+
√

7

7. 3 ln |x− 2|+ 4 ln |x+ 5|+ C

9. 1
3 (ln |x+ 2| − ln |x− 2|) + C

11. − 4
x+8 − 3 ln |x+ 8|+ C

13. − ln |2x− 3|+ 5 ln |x− 1|+ 2 ln |x+ 3|+ C

15. x+ ln |x− 1| − ln |x+ 2|+ C

17. 2x+ C

19. − 3
2 ln
∣∣x2 + 4x+ 10

∣∣+ x+
tan −1

(
x+2√

6

)
√

6
+ C

21. 2 ln |x− 3|+ 2 ln |x2 + 6x+ 10| − 4 tan−1(x+ 3) + C

23. 1
2

(
3 ln
∣∣x2 + 2x+ 17

∣∣− 4 ln |x− 7|+ tan −1 ( x+1
4

))
+ C

25. 1
2 ln
∣∣x2 + 10x+ 27

∣∣+ 5 ln |x+ 2| − 6
√
2 tan −1

(
x+5√

2

)
+ C

27. 5 ln(9/4)− 1
3 ln(17/2) ≈ 3.3413

29. 1/8

SecƟon 6.6

1. Because cosh x is always posiƟve.

3. coth2 x− csch2 x =
(
ex + e−x

ex − e−x

)2

−
(

2
ex − e−x

)2

=
(e2x + 2+ e−2x)− (4)

e2x − 2+ e−2x

=
e2x − 2+ e−2x

e2x − 2+ e−2x

= 1

5. cosh2 x =
(
ex + e−x

2

)2

=
e2x + 2+ e−2x

4

=
1
2
(e2x + e−2x) + 2

2

=
1
2

(
e2x + e−2x

2
+ 1
)

=
cosh 2x+ 1

2
.

7.
d
dx

[sech x] =
d
dx

[
2

ex + e−x

]
=

−2(ex − e−x)

(ex + e−x)2

= −
2(ex − e−x)

(ex + e−x)(ex + e−x)

= −
2

ex + e−x ·
ex − e−x

ex + e−x

= − sech x tanh x

9.
∫

tanh x dx =
∫

sinh x
cosh x

dx

Let u = cosh x; du = (sinh x)dx

=

∫
1
u
du

= ln |u|+ C
= ln(cosh x) + C.

11. 2 sinh 2x

13. coth x

15. x cosh x

17. 3√
9x2+1

19. 1
1−(x+5)2

21. sec x

23. y = 3/4(x− ln 2) + 5/4

25. y = x

27. 1/2 ln(cosh(2x)) + C

29. 1/2 sinh2 x+ C or 1/2 cosh2 x+ C

31. x cosh(x)− sinh(x) + C

33. cosh−1(x2/2) + C = ln(x2 +
√
x4 − 4) + C

35. 1
16 tan

−1(x/2) + 1
32 ln |x− 2|+ 1

32 ln |x+ 2|+ C

37. tan−1(ex) + C

39. x tanh−1 x+ 1/2 ln |x2 − 1|+ C

41. 0

43. 2

SecƟon 6.7

1. 0/0,∞/∞, 0 · ∞,∞−∞, 00, 1∞,∞0

3. F

5. derivaƟves; limits

7. Answers will vary.

9. −5/3

11. −
√
2/2

13. 0

15. a/b

17. 1/2

19. 0

21. ∞

23. 0

25. −2

27. 0

29. 0

31. ∞

33. ∞

35. 0

37. 1

39. 1

41. 1
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43. 1

45. 1

47. 2

49. −∞

51. 0

SecƟon 6.8

1. The interval of integraƟon is finite, and the integrand is
conƟnuous on that interval.

3. converges; could also state< 10.

5. p > 1

7. e5/2

9. 1/3

11. 1/ ln 2

13. diverges

15. 1

17. diverges

19. diverges

21. diverges

23. 1

25. 0

27. −1/4

29. −1

31. diverges

33. 1/2

35. converges; Limit Comparison Test with 1/x3/2.

37. converges; Direct Comparison Test with xe−x.

39. converges; Direct Comparison Test with xe−x.

41. diverges; Direct Comparison Test with x/(x2 + cos x).

43. converges; Limit Comparison Test with 1/ex.

Chapter 7
SecƟon 7.1

1. T

3. Answers will vary.

5. 16/3

7. π

9. 2
√
2

11. 4.5

13. 2− π/2

15. 1/6

17. On regions such as [π/6, 5π/6], the area is 3
√
3/2. On regions

such as [−π/2, π/6], the area is 3
√
3/4.

19. 5/3

21. 9/4

23. 1

25. 4

27. 219,000 Ō2

SecƟon 7.2

1. T

3. Recall that “dx” does not just “sit there;” it is mulƟplied by A(x)
and represents the thickness of a small slice of the solid.
Therefore dx has units of in, giving A(x) dx the units of in3.

5. 175π/3 units3

7. π/6 units3

9. 35π/3 units3

11. 2π/15 units3

13. (a) 512π/15

(b) 256π/5

(c) 832π/15

(d) 128π/3

15. (a) 104π/15

(b) 64π/15

(c) 32π/5

17. (a) 8π

(b) 8π

(c) 16π/3

(d) 8π/3

19. The cross–secƟons of this cone are the same as the cone in
Exercise 18. Thus they have the same volume of 250π/3 units3.

21. Orient the solid so that the x-axis is parallel to long side of the
base. All cross–secƟons are trapezoids (at the far leŌ, the
trapezoid is a square; at the far right, the trapezoid has a top
length of 0, making it a triangle). The area of the trapezoid at x is
A(x) = 1/2(−1/2x+ 5+ 5)(5) = −5/4x+ 25. The volume is
187.5 units3.

SecƟon 7.3

1. T

3. F

5. 9π/2 units3

7. π2 − 2π units3

9. 48π
√
3/5 units3

11. π2/4 units3

13. (a) 4π/5

(b) 8π/15

(c) π/2

(d) 5π/6

15. (a) 4π/3

(b) π/3

(c) 4π/3

(d) 2π/3

17. (a) 2π(
√
2− 1)

(b) 2π(1−
√
2+ sinh−1(1))

SecƟon 7.4

1. T

3.
√
2
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5. 4/3

7. 109/2

9. 12/5

11. − ln(2−
√
3) ≈ 1.31696

13.
∫ 1
0

√
1+ 4x2 dx

15.
∫ 1
0

√
1+ 1

4x dx

17.
∫ 1
−1

√
1+ x2

1−x2 dx

19.
∫ 2
1

√
1+ 1

x4 dx

21. 1.4790

23. Simpson’s Rule fails, as it requires one to divide by 0. However,
recognize the answer should be the same as for y = x2; why?

25. Simpson’s Rule fails.

27. 1.4058

29. 2π
∫ 1
0 2x

√
5 dx = 2π

√
5

31. 2π
∫ 1
0 x3

√
1+ 9x4 dx = π/27(10

√
10− 1)

33. 2π
∫ 1
0

√
1− x2

√
1+ x/(1− x2) dx = 4π

SecƟon 7.5

1. In SI units, it is one joule, i.e., one Newton–meter, or kg·m/s2·m.
In Imperial Units, it is Ō–lb.

3. Smaller.

5. (a) 2450 j

(b) 1568 j

7. 735 j

9. 11,100 Ō–lb

11. 125 Ō–lb

13. 12.5 Ō–lb

15. 7/20 j

17. 45 Ō–lb

19. 953, 284 j

21. 192,767 Ō–lb. Note that the tank is oriented horizontally. Let the
origin be the center of one of the circular ends of the tank. Since
the radius is 3.75 Ō, the fluid is being pumped to y = 4.75; thus
the distance the gas travels is h(y) = 4.75− y. A differenƟal
element of water is a rectangle, with length 20 and width
2
√

3.752 − y2. Thus the force required to move that slab of gas is
F(y) = 40 · 45.93 ·

√
3.752 − y2dy. Total work is∫ 3.75

−3.75 40 · 45.93 · (4.75− y)
√

3.752 − y2 dy. This can be
evaluated without actual integraƟon; split the integral into∫ 3.75
−3.75 40 · 45.93 · (4.75)

√
3.752 − y2 dy+

∫ 3.75
−3.75 40 · 45.93 ·

(−y)
√

3.752 − y2 dy. The first integral can be evaluated as
measuring half the area of a circle; the laƩer integral can be
shown to be 0 without much difficulty. (Use subsƟtuƟon and
realize the bounds are both 0.)

23. (a) approx. 577,000 j

(b) approx. 399,000 j

(c) approx 110,000 j (By volume, half of the water is between
the base of the cone and a height of 3.9685 m. If one
rounds this to 4 m, the work is approx 104,000 j.)

25. 617,400 j

SecƟon 7.6

1. Answers will vary.

3. 499.2 lb

5. 6739.2 lb

7. 3920.7 lb

9. 2496 lb

11. 602.59 lb

13. (a) 2340 lb

(b) 5625 lb

15. (a) 1597.44 lb

(b) 3840 lb

17. (a) 56.42 lb

(b) 135.62 lb

19. 5.1 Ō

Chapter 8
SecƟon 8.1

1. Answers will vary.

3. Answers will vary.

5. 2, 8
3 ,

8
3 ,

32
15 ,

64
45

7. 1
3 , 2,

81
5 , 512

3 , 15625
7

9. an = 3n+ 1

11. an = 10 · 2n−1

13. 1/7

15. 0

17. diverges

19. converges to 0

21. diverges

23. converges to e

25. converges to 0

27. converges to 2

29. bounded

31. bounded

33. neither bounded above or below

35. monotonically increasing

37. never monotonic

39. Let {an} be given such that lim
n→∞

|an| = 0. By the definiƟon of
the limit of a sequence, given any ε > 0, there is am such that for
all n > m, | |an| − 0| < ε. Since | |an| − 0| = |an − 0|, this
directly implies that for all n > m, |an − 0| < ε, meaning that
lim

n→∞
an = 0.

41. LeŌ to reader

SecƟon 8.2

1. Answers will vary.

3. One sequence is the sequence of terms {a}. The other is the
sequence of nth parƟal sums, {Sn} = {

∑n
i=1 ai}.

5. F
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7. (a) 1, 5
4 ,

49
36 ,

205
144 ,

5269
3600

(b) Plot omiƩed

9. (a) 1, 3, 6, 10, 15

(b) Plot omiƩed

11. (a) 1
3 ,

4
9 ,

13
27 ,

40
81 ,

121
243

(b) Plot omiƩed

13. (a) 0.1, 0.11, 0.111, 0.1111, 0.11111

(b) Plot omiƩed

15. lim
n→∞

an = ∞; by Theorem 63 the series diverges.

17. lim
n→∞

an = 1; by Theorem 63 the series diverges.

19. lim
n→∞

an = e; by Theorem 63 the series diverges.

21. Converges

23. Converges

25. Converges

27. Converges

29. Diverges

31. (a) Sn =
(

n(n+1)
2

)2
(b) Diverges

33. (a) Sn = 5 1−1/2n

1/2

(b) Converges to 10.

35. (a) Sn =
1−(−1/3)n

4/3

(b) Converges to 3/4.

37. (a) With parƟal fracƟons, an = 3
2

(
1
n − 1

n+2

)
. Thus

Sn = 3
2

(
3
2 − 1

n+1 − 1
n+2

)
.

(b) Converges to 9/4

39. (a) Sn = ln
(
1/(n+ 1)

)
(b) Diverges (to−∞).

41. (a) an = 1
n(n+3) ; using parƟal fracƟons, the resulƟng

telescoping sum reduces to
Sn = 1

3

(
1+ 1

2 + 1
3 − 1

n+1 − 1
n+2 − 1

n+3

)
(b) Converges to 11/18.

43. (a) With parƟal fracƟons, an = 1
2

(
1

n−1 − 1
n+1

)
. Thus

Sn = 1
2

(
3/2− 1

n − 1
n+1

)
.

(b) Converges to 3/4.

45. (a) The nth parƟal sum of the odd series is
1+ 1

3 + 1
5 + · · ·+ 1

2n−1 . The n
th parƟal sum of the even

series is 1
2 + 1

4 + 1
6 + · · ·+ 1

2n . Each term of the even
series is less than the corresponding term of the odd
series, giving us our result.

(b) The nth parƟal sum of the odd series is
1+ 1

3 + 1
5 + · · ·+ 1

2n−1 . The n
th parƟal sum of 1 plus the

even series is 1+ 1
2 + 1

4 + · · ·+ 1
2(n−1) . Each term of the

even series is now greater than or equal to the
corresponding term of the odd series, with equality only on
the first term. This gives us the result.

(c) If the odd series converges, the work done in (a) shows the
even series converges also. (The sequence of the nth
parƟal sum of the even series is bounded and
monotonically increasing.) Likewise, (b) shows that if the
even series converges, the odd series will, too. Thus if
either series converges, the other does.
Similarly, (a) and (b) can be used to show that if either
series diverges, the other does, too.

(d) If both the even and odd series converge, then their sum
would be a convergent series. This would imply that the
Harmonic Series, their sum, is convergent. It is not. Hence
each series diverges.

SecƟon 8.3

1. conƟnuous, posiƟve and decreasing

3. The Integral Test (we do not have a conƟnuous definiƟon of n!
yet) and the Limit Comparison Test (same as above, hence we
cannot take its derivaƟve).

5. Converges

7. Diverges

9. Converges

11. Converges

13. Converges; compare to
∞∑
n=1

1
n2

, as 1/(n2 + 3n− 5) ≤ 1/n2 for

all n > 1.

15. Diverges; compare to
∞∑
n=1

1
n
, as 1/n ≤ ln n/n for all n ≥ 2.

17. Diverges; compare to
∞∑
n=1

1
n
. Since n =

√
n2 >

√
n2 − 1,

1/n ≤ 1/
√
n2 − 1 for all n ≥ 2.

19. Diverges; compare to
∞∑
n=1

1
n
:

1
n
=

n2

n3
<

n2 + n+ 1
n3

<
n2 + n+ 1
n3 − 5

,

for all n ≥ 1.

21. Diverges; compare to
∞∑
n=1

1
n
. Note that

n
n2 − 1

=
n2

n2 − 1
·
1
n
>

1
n
,

as n2
n2−1 > 1, for all n ≥ 2.

23. Converges; compare to
∞∑
n=1

1
n2

.

25. Diverges; compare to
∞∑
n=1

ln n
n

.

27. Diverges; compare to
∞∑
n=1

1
n
.

29. Diverges; compare to
∞∑
n=1

1
n
. Just as lim

n→0

sin n
n

= 1,

lim
n→∞

sin(1/n)
1/n

= 1.

31. Converges; compare to
∞∑
n=1

1
n3/2

.

33. Converges; Integral Test
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35. Diverges; the nth Term Test and Direct Comparison Test can be
used.

37. Converges; the Direct Comparison Test can be used with sequence
1/3n.

39. Diverges; the nth Term Test can be used, along with the Integral
Test.

41. (a) Converges; use Direct Comparison Test as an
n < n.

(b) Converges; since original series converges, we know
limn→∞ an = 0. Thus for large n, anan+1 < an.

(c) Converges; similar logic to part (b) so (an)2 < an.

(d) May converge; certainly nan > an but that does not mean
it does not converge.

(e) Does not converge, using logic from (b) and nth Term Test.

SecƟon 8.4

1. algebraic, or polynomial.

3. Integral Test, Limit Comparison Test, and Root Test

5. Converges

7. Converges

9. The RaƟo Test is inconclusive; the p-Series Test states it diverges.

11. Converges

13. Converges; note the summaƟon can be rewriƩen as
∞∑
n=1

2nn!
3nn!

,

from which the RaƟo Test can be applied.

15. Converges

17. Converges

19. Diverges

21. Diverges. The Root Test is inconclusive, but the nth-Term Test
shows divergence. (The terms of the sequence approach e2, not
0, as n → ∞.)

23. Converges

25. Diverges; Limit Comparison Test

27. Converges; RaƟo Test or Limit Comparison Test with 1/3n.

29. Diverges; nth-Term Test or Limit Comparison Test with 1.

31. Diverges; Direct Comparison Test with 1/n

33. Converges; Root Test

SecƟon 8.5

1. The signs of the terms do not alternate; in the given series, some
terms are negaƟve and the others posiƟve, but they do not
necessarily alternate.

3. Many examples exist; one common example is an = (−1)n/n.

5. (a) converges

(b) converges (p-Series)

(c) absolute

7. (a) diverges (limit of terms is not 0)

(b) diverges

(c) n/a; diverges

9. (a) converges

(b) diverges (Limit Comparison Test with 1/n)

(c) condiƟonal

11. (a) diverges (limit of terms is not 0)

(b) diverges

(c) n/a; diverges

13. (a) diverges (terms oscillate between±1)

(b) diverges

(c) n/a; diverges

15. (a) converges

(b) converges (Geometric Series with r = 2/3)

(c) absolute

17. (a) converges

(b) converges (RaƟo Test)

(c) absolute

19. (a) converges

(b) diverges (p-Series Test with p = 1/2)

(c) condiƟonal

21. S5 = −1.1906; S6 = −0.6767;

−1.1906 ≤
∞∑
n=1

(−1)n

ln(n+ 1)
≤ −0.6767

23. S6 = 0.3681; S7 = 0.3679;

0.3681 ≤
∞∑
n=0

(−1)n

n!
≤ 0.3679

25. n = 5

27. Using the theorem, we find n = 499 guarantees the sum is within
0.001 of π/4. (Convergence is actually faster, as the sum is within
ε of π/24 when n ≥ 249.)

SecƟon 8.6

1. 1

3. 5

5. 1+ 2x+ 4x2 + 8x3 + 16x4

7. 1+ x+ x2
2 + x3

6 + x4
24

9. (a) R = ∞
(b) (−∞,∞)

11. (a) R = 1

(b) (2, 4]

13. (a) R = 2

(b) (−2, 2)

15. (a) R = 1/5

(b) (4/5, 6/5)

17. (a) R = 1

(b) (−1, 1)

19. (a) R = ∞
(b) (−∞,∞)

21. (a) R = 1

(b) [−1, 1]

23. (a) R = 0

(b) x = 0

25. (a) f ′(x) =
∞∑
n=1

n2xn−1; (−1, 1)
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(b)
∫

f(x) dx = C+
∞∑
n=0

n
n+ 1

xn+1; (−1, 1)

27. (a) f ′(x) =
∞∑
n=1

n
2n

xn−1; (−2, 2)

(b)
∫

f(x) dx = C+

∞∑
n=0

1
(n+ 1)2n

xn+1; [−2, 2)

29. (a) f ′(x) =
∞∑
n=1

(−1)nx2n−1

(2n− 1)!
=

∞∑
n=0

(−1)n+1x2n+1

(2n+ 1)!
;

(−∞,∞)

(b)
∫

f(x) dx = C+
∞∑
n=0

(−1)nx2n+1

(2n+ 1)!
; (−∞,∞)

31. 1+ 3x+ 9
2 x

2 + 9
2 x

3 + 27
8 x4

33. 1+ x+ x2 + x3 + x4

35. 0+ x+ 0x2 − 1
6 x

3 + 0x4

SecƟon 8.7

1. The Maclaurin polynomial is a special case of Taylor polynomials.
Taylor polynomials are centered at a specific x-value; when that
x-value is 0, it is a Maclauring polynomial.

3. p2(x) = 6+ 3x− 4x2.

5. p3(x) = 1− x+ 1
2 x

3 − 1
6 x

3

7. p8(x) = x+ x2 + 1
2 x

3 + 1
6 x

4 + 1
24 x

5

9. p4(x) = 2x4
3 + 4x3

3 + 2x2 + 2x+ 1

11. p4(x) = x4 − x3 + x2 − x+ 1

13. p4(x) = 1+ 1
2 (−1+x)− 1

8 (−1+x)2+ 1
16 (−1+x)3− 5

128 (−1+x)4

15. p6(x) = 1√
2
− − π

4 +x
√

2
− (− π

4 +x)2

2
√

2
+

(− π
4 +x)3

6
√

2
+

(− π
4 +x)4

24
√

2
−

(− π
4 +x)5

120
√

2
− (− π

4 +x)6

720
√

2

17. p5(x) = 1
2−

x−2
4 + 1

8 (x−2)2− 1
16 (x−2)3+ 1

32 (x−2)4− 1
64 (x−2)5

19. p3(x) = 1
2 + 1+x

2 + 1
4 (1+ x)2

21. p3(x) = x− x3
6 ; p3(0.1) = 0.09983. Error is bounded by

± 1
4! · 0.1

4 ≈ ±0.000004167.

23. p2(x) = 3+ 1
6 (−9+ x)− 1

216 (−9+ x)2; p2(10) = 3.16204.
The third derivaƟve of f(x) =

√
x is bounded on (8, 11) by 0.003.

Error is bounded by± 0.003
3! · 13 = ±0.0005.

25. The nth derivaƟve of f(x) = ex is bounded by 3 on intervals
containing 0 and 1. Thus |Rn(1)| ≤ 3

(n+1)!1
(n+1). When n = 7,

this is less than 0.0001.

27. The nth derivaƟve of f(x) = cos x is bounded by 1 on intervals
containing 0 and π/3. Thus |Rn(π/3)| ≤ 1

(n+1)! (π/3)
(n+1).

When n = 7, this is less than 0.0001. Since the Maclaurin
polynomial of cos x only uses even powers, we can actually just
use n = 6.

29. The nth term is 1
n! x

n.

31. The nth term is xn.

33. The nth term is (−1)n (x−1)n

n .

35. 3+ 15x+
75
2
x2 +

375
6

x3 +
1875
24

x4

SecƟon 8.8

1. A Taylor polynomial is a polynomial, containing a finite number of
terms. A Taylor series is a series, the summaƟon of an infinite
number of terms.

3. All derivaƟves of ex are ex which evaluate to 1 at x = 0.
The Taylor series starts 1+ x+ 1

2 x
2 + 1

3! x
3 + 1

4! x
4 + · · · ;

the Taylor series is
∞∑
n=0

xn

n!

5. The nth derivaƟve of 1/(1− x) is f (n)(x) = (n)!/(1− x)n+1,
which evaluates to n! at x = 0.
The Taylor series starts 1+ x+ x2 + x3 + · · · ;

the Taylor series is
∞∑
n=0

xn

7. The Taylor series starts
0− (x− π/2) + 0x2 + 1

6 (x− π/2)3 + 0x4 − 1
120 (x− π/2)5;

the Taylor series is
∞∑
n=0

(−1)n+1 (x− π/2)2n+1

(2n+ 1)!

9. f (n)(x) = (−1)ne−x; at x = 0, f (n)(0) = −1 when n is odd and
f (n)(0) = 1 when n is even.
The Taylor series starts 1− x+ 1

2 x
2 − 1

3! x
3 + · · · ;

the Taylor series is
∞∑
n=0

(−1)n
xn

n!
.

11. f (n)(x) = (−1)n+1 n!
(x+1)n+1 ; at x = 1, f (n)(1) = (−1)n+1 n!

2n+1

The Taylor series starts
1
2 + 1

4 (x− 1)− 1
8 (x− 1)2 + 1

16 (x− 1)3 · · · ;

the Taylor series is
∞∑
n=0

(−1)n+1 (x− 1)n

2n+1 .

13. Given a value x, the magnitude of the error term Rn(x) is bounded
by ∣∣Rn(x)∣∣ ≤ max

∣∣ f (n+1)(z)
∣∣

(n+ 1)!

∣∣x(n+1)∣∣,
where z is between 0 and x.
If x > 0, then z < x and f (n+1)(z) = ez < ex. If x < 0, then
x < z < 0 and f (n+1)(z) = ez < 1. So given a fixed x value, let
M = max{ex, 1}; f (n)(z) < M. This allows us to state

∣∣Rn(x)∣∣ ≤ M
(n+ 1)!

∣∣x(n+1)∣∣.
For any x, lim

n→∞

M
(n+ 1)!

∣∣x(n+1)∣∣ = 0. Thus by the Squeeze

Theorem, we conclude that lim
n→∞

Rn(x) = 0 for all x, and hence

ex =
∞∑
n=0

xn

n!
for all x.

15. Given a value x, the magnitude of the error term Rn(x) is bounded
by ∣∣Rn(x)∣∣ ≤ max

∣∣ f (n+1)(z)
∣∣

(n+ 1)!

∣∣(x− 1)(n+1)∣∣,
where z is between 1 and x.
Note that

∣∣f (n+1)(x)
∣∣ = n!

xn+1 .
We consider the cases when x > 1 and when x < 1 separately.
If x > 1, then 1 < z < x and f (n+1)(z) = n!

zn+1 < n!. Thus∣∣Rn(x)∣∣ ≤ n!
(n+ 1)!

∣∣(x− 1)(n+1)∣∣ = (x− 1)n+1

n+ 1
.

For a fixed x,

lim
n→∞

(x− 1)n+1

n+ 1
= 0.
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If 0 < x < 1, then x < z < 1 and f (n+1)(z) = n!
zn+1 < n!

xn+1 .
Thus∣∣Rn(x)∣∣ ≤ n!/xn+1

(n+ 1)!

∣∣(x− 1)(n+1)∣∣ = xn+1

n+ 1
(1− x)n+1.

Since 0 < x < 1, xn+1 < 1 and (1− x)n+1 < 1. We can then
extend the inequality from above to state∣∣Rn(x)∣∣ ≤ xn+1

n+ 1
(1− x)n+1 <

1
n+ 1

.

As n → ∞, 1/(n+ 1) → 0. Thus by the Squeeze Theorem, we
conclude that lim

n→∞
Rn(x) = 0 for all x, and hence

ln x =
∞∑
n=1

(−1)n+1 (x− 1)n

n
for all 0 < x ≤ 2.

17. Given cos x =
∞∑
n=0

(−1)n
x2n

(2n)!
,

cos(−x) =
∞∑
n=0

(−1)n
(−x)2n

(2n)!
=

∞∑
n=0

(−1)n
x2n

(2n)!
= cos x, as all

powers in the series are even.

19. Given sin x =
∞∑
n=0

(−1)n
x2n+1

(2n+ 1)!
,

d
dx
(
sin x

)
=

d
dx

( ∞∑
n=0

(−1)n
x2n+1

(2n+ 1)!

)
=

∞∑
n=0

(−1)n
(2n+ 1)x2n

(2n+ 1)!
=

∞∑
n=0

(−1)n
x2n

(2n)!
= cos x. (The

summaƟon sƟll starts at n = 0 as there was no constant term in
the expansion of sin x).

21. 1+
x
2
−

x2

8
+

x3

16
−

5x4

128

23. 1+
x
3
−

x2

9
+

5x3

81
−

10x4

243

25.
∞∑
n=0

(−1)n
(x2)2n

(2n)!
=

∞∑
n=0

(−1)n
x4n

(2n)!
.

27.
∞∑
n=0

(−1)n
(2x+ 3)2n+1

(2n+ 1)!
.

29. x+ x2 +
x3

3
−

x5

30

31.
∫ √

π

0
sin
(
x2
)
dx ≈

∫ √
π

0

(
x2 −

x6

6
+

x10

120
−

x14

5040

)
dx =

0.8877

Chapter 9
SecƟon 9.1

1. When defining the conics as the intersecƟons of a plane and a
double napped cone, degenerate conics are created when the
plane intersects the Ɵps of the cones (usually taken as the origin).
Nondegenerate conics are formed when this plane does not
contain the origin.

3. Hyperbola

5. With a horizontal transverse axis, the x2 term has a posiƟve
coefficient; with a verƟcal transverse axis, the y2 term has a
posiƟve coefficient.

7. y = −1
12 (x+ 1)2 − 1

9. x = y2

11. x = − 1
12 y

2

13. x = − 1
8 (y− 3)2 + 2

15. focus: (5, 2); directrix: x = 1. The point P is 10 units from each.

17. .....

−5

.

5

. −6.

−4

.

−2

.

x

.

y

19. (x−1)2

1/4 + y2
9 = 1; foci at (1,±

√
8.75); e =

√
8.75/3 ≈ 0.99

21. (x−2)2

25 +
(y−3)2

16 = 1

23. (x+1)2

9 +
(y−1)2

25 = 1

25. x2
3 + y2

5 = 1

27. (x−2)2

4 +
(y−2)2

4 = 1

29. x2 − y2
3 = 1

31. (y−3)2

4 − (x−1)2

9 = 1

33. ...

..

−5

.

5

.

−6

.

−4

.

−2

.

2

.

x

.

y

35. x2
4 − y2

5 = 1

37. (x−3)2

16 − (y−3)2

9 = 1

39. x2
4 − y2

3 = 1

41. (y− 2)2 − x2
10 = 1

43. (a) Solve for c in e = c/a: c = ae. Thus a2e2 = a2 − b2, and
b2 = a2 − a2e2. The result follows.

(b) Mercury: x2/(0.387)2 + y2/(0.3787)2 = 1
Earth: x2 + y2/(0.99986)2 = 1
Mars: x2/(1.524)2 + y2/(1.517)2 = 1

(c) Mercury: (x− 0.08)2/(0.387)2 + y2/(0.3787)2 = 1
Earth: (x− 0.0167)2 + y2/(0.99986)2 = 1
Mars: (x− 0.1423)2/(1.524)2 + y2/(1.517)2 = 1

SecƟon 9.2

1. T

3. rectangular
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5.

.....

5

.

10

.

−5

.

x

.

y

7.

.....
1

.
2

.

1

.

2

.

x

.

y

9.

.....
−10

.
−5

.
5

.
10

.

2

.

4

.

6

.

8

. x.

y

11.

.....

−5

.

5

. −5.

5

.

x

.

y

13.

.....

−1

.

−0.5

.

0.5

.

1

. −1.

−0.5

.

0.5

.

1

.

x

.

y

15.

.....

5

.

10

.

−10

.

10

.

x

.

y

17.

.....

−1

.

1

.
−1

.

1

.

x

.

y

19. (a) Traces a circle of radius 1 counterclockwise once.
(b) Traces a circle of radius 1 counterclockwise over 6 Ɵmes.
(c) Traces a circle of radius 1 clockwise infinite Ɵmes.
(d) Traces an arc of a circle of radius 1, from an angle of -1

radians to 1 radian, twice.

21. x2 − y2 = 1

23. y = x3/2

25. y = x3 − 3

27. y2 − x2 = 1

29. x = 1− 2y2

31. x2 + y2 = r2; circle centered at (0, 0) with radius r.

33. (x−h)2

a2 − (y−k)2

b2 = 1; hyperbola centered at (h, k) with
horizontal transverse axis and asymptotes with slope b/a. The
parametric equaƟons only give half of the hyperbola. When
a > 0, the right half; when a < 0, the leŌ half.

35. x = ln t, y = t. At t = 1, x = 0, y = 1.
y′ = ex; when x = 0, y′ = 1.

37. x = 1/(4t2), y = 1/(2t). At t = 1, x = 1/4, y = 1/2.
y′ = 1/(2

√
x); when x = 1/4, y′ = 1.

39. t = −1, 2

41. t = π/6, π/2, 5π/6

43. t = 2

45. t = . . . 0, 2π, 4π, . . .

47. x = 50t, y = −16t2 + 64t

49. x = 2 cos t, y = −2 sin t; other answers possible

51. x = cos t+ 1, y = 3 sin t+ 3; other answers possible

53. x = ± sec t+ 2, y =
√
8 tan t− 3; other answers possible

SecƟon 9.3

1. F

3. F

5. (a) dy
dx = 2t

(b) Tangent line: y = 2(x− 1) + 1; normal line:
y = −1/2(x− 1) + 1
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7. (a) dy
dx = 2t+1

2t−1

(b) Tangent line: y = 3x+ 2; normal line: y = −1/3x+ 2

9. (a) dy
dx = csc t

(b) t = π/4: Tangent line: y =
√
2(x−

√
2) + 1; normal line:

y = −1/
√
2(x−

√
2) + 1

11. (a) dy
dx =

cos t sin(2t)+sin t cos(2t)
− sin t sin(2t)+2 cos t cos(2t)

(b) Tangent line: y = x−
√
2; normal line: y = −x−

√
2

13. t = 0

15. t = −1/2

17. The graph does not have a horizontal tangent line.

19. The soluƟon is non-trivial; use idenƟƟes sin(2t) = 2 sin t cos t and
cos(2t) = cos2 t− sin2 t to rewrite
g′(t) = 2 sin t(2 cos2 t− sin2 t). On [0, 2π], sin t = 0 when
t = 0, π, 2π, and 2 cos2 t− sin2 t = 0 when
t = tan−1(

√
2), π ± tan−1(

√
2), 2π − tan−1(

√
2).

21. t0 = 0; limt→0
dy
dx = 0.

23. t0 = 1; limt→1
dy
dx = ∞.

25. d2y
dx2 = 2; always concave up

27. d2y
dx2 = − 4

(2t−1)3 ; concave up on (−∞, 1/2); concave down on
(1/2,∞).

29. d2y
dx2 = − cot3 t; concave up on (−∞, 0); concave down on
(0,∞).

31. d2y
dx2 =

4(13+3 cos(4t))
(cos t+3 cos(3t))3 , obtained with a computer algebra system;

concave up on
(
− tan−1(

√
2/2), tan−1(

√
2/2)

)
, concave down

on
(
− π/2,− tan−1(

√
2/2)

)
∪
(
tan−1(

√
2/2), π/2

)
33. L = 6π

35. L = 2
√
34

37. L ≈ 2.4416 (actual value: L = 2.42211)

39. L ≈ 4.19216 (actual value: L = 4.18308)

41. The answer is 16π for both (of course), but the integrals are
different.

43. SA ≈ 8.50101 (actual value SA = 8.02851

SecƟon 9.4

1. Answers will vary.

3. T

5. ..
1

.
2

.
O
. A.B .

C

.
D

7. A = P(2.5, π/4) and P(−2.5, 5π/4);
B = P(−1, 5π/6) and P(1, 11π/6);
C = P(3, 4π/3) and P(−3, π/3);
D = P(1.5, 2π/3) and P(−1.5, 5π/3);

9. A = (
√
2,
√
2)

B = (
√
2,−

√
2)

C = P(
√
5,−0.46)

D = P(
√
5, 2.68)

11.

.....
1

.
2

.

1

.

2

.

x

.

y

13.

.....

−2

.

2

. −2.

−1

.

1

.

2

.

x

.

y

15.

.....

−2

.

2

.

−2

.

2

.

x

.

y

17.

.....

−2

.

2

.
−2

.

2

.

x

.

y

19.

.....

−1

.

1

. −1.

1

.

x

.

y

21.

.....

−1

.

1

. −1.

1

.

x

.

y

23.

.....
−2

.
2

.

2

.

3

.

1

.

x

.

y
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25.

.....

−8

.

−6

.

−4

.

−2

.

−2

.

2

.

x

.

y

27.

.....

−5

.

5

.
−4

.

−2

.

2

.

4

.

x

.

y

29.

.....

−5

.

5

.
−4

.

−2

.

2

.

4

.

x

.

y

31. x2 + (y+ 2)2 = 4

33. y = 2/5x+ 7/5

35. y = 4

37. x2 + y2 = 4

39. θ = π/4

41. r = 5 sec θ

43. r = cos θ/ sin2 θ

45. r =
√
7

47. P(
√
3/2, π/6), P(0, π/2), P(−

√
3/2, 5π/6)

49. P(0, 0) = P(0, π/2), P(
√
2, π/4)

51. P(
√
2/2, π/12), P(−

√
2/2, 5π/12), P(

√
2/2, 3π/4)

53. For all points, r = 1; θ =
π/12, 5π/12, 7π/12, 11π/12, 13π/12, 17π/12, 19π/12, 23π/12.

55. Answers will vary. Ifm and n do not have any common factors,
then an interval of 2nπ is needed to sketch the enƟre graph.

SecƟon 9.5

1. Using x = r cos θ and y = r sin θ, we can write x = f(θ) cos θ,
y = f(θ) sin θ.

3. (a) dy
dx = − cot θ

(b) tangent line: y = −(x−
√
2/2) +

√
2/2; normal line:

y = x

5. (a) dy
dx =

cos θ(1+2 sin θ)
cos2 θ−sin θ(1+sin θ)

(b) tangent line: x = 3
√
3/4; normal line: y = 3/4

7. (a) dy
dx = θ cos θ+sin θ

cos θ−θ sin θ

(b) tangent line: y = −2/πx+ π/2; normal line:
y = π/2x+ π/2

9. (a) dy
dx =

4 sin(t) cos(4t)+sin(4t) cos(t)
4 cos(t) cos(4t)−sin(t) sin(4t)

(b) tangent line: y = 5
√
3(x+

√
3/4)− 3/4; normal line:

y = −1/5
√
3(x+

√
3/4)− 3/4

11. horizontal: θ = π/2, 3π/2;

verƟcal: θ = 0, π, 2π

13. horizontal: θ = tan−1(1/
√
5), π/2, π − tan−1(1/

√
5), π +

tan−1(1/
√
5), 3π/2, 2π − tan−1(1/

√
5);

verƟcal: θ = 0, tan−1(
√
5), π − tan−1(

√
5), π, π +

tan−1(
√
5), 2π − tan−1(

√
5)

15. In polar: θ = 0 ∼= θ = π

In rectangular: y = 0

17. area = 4π

19. area = π/12

21. area = π − 3
√
3/2

23. area = π + 3
√
3

25. area =
∫ π/3

π/12

1
2
sin2(3θ) dθ −

∫ π/6

π/12

1
2
cos2(3θ) dθ =

1
12

+
π

24

27. area =
∫ 5π/12

0

1
2
(1− cos θ)2 dθ +

∫ π/2

5π/12

1
2
(3 cos θ)2 dθ =

1
4
(2π −

√
6−

√
2− 2) ≈ 0.105

29. 4π

31. L ≈ 2.2592; (actual value L = 2.22748)

33. SA = 16π

35. SA = 32π/5

37. SA = 36π

Chapter 10

SecƟon 10.1

1. right hand

3. curve (a parabola); surface (a cylinder)

5. a hyperboloid of two sheets

7. || AB || =
√
6; || BC || =

√
17; || AC || =

√
11. Yes, it is a right

triangle as || AB ||2 + || AC ||2 = || BC ||2.

9. Center at (4,−1, 0); radius = 3

11. Interior of a sphere with radius 1 centered at the origin.

13. The first octant of space; all points (x, y, z) where each of x, y and
z are posiƟve. (Analogous to the first quadrant in the plane.)

15.

...

..

−1

.
1

.
x

.y .

z

A.20



17.

...

..
−2

.2 .
−2

. 2.
−2
.

2

.x .
y

.

z

19. y2 + z2 = x4

21. z = (
√

x2 + y2)2 = x2 + y2

23. (a) x = y2 +
z2

9

25. (b) x2 +
y2

9
+

z2

4
= 1

27.

...

..
−1

.
1

.−1 .
1

.

−1

.

1

.
x

.
y

.

z

29.

...

..
−1

.
−1

.1 .

−1

.

1

.x . y.

z

31.

...

..
−5

.5 .
−1

. 1.−5 .

5

.x . y.

z

SecƟon 10.2

1. Answers will vary.

3. A vector with magnitude 1.

5. It stretches the vector by a factor of 2, and points it in the
opposite direcƟon.

7. # ‰PQ = ⟨−4, 4⟩ = −4⃗i+ 4⃗j

9. # ‰PQ = ⟨2, 2, 0⟩ = 2⃗i+ 2⃗j

11. (a) u⃗+ v⃗ = ⟨3, 2, 1⟩; u⃗− v⃗ = ⟨−1, 0,−3⟩;
πu⃗−

√
2⃗v =

⟨
π − 2

√
2, π −

√
2,−π − 2

√
2
⟩
.

(c) x⃗ = ⟨−1, 0,−3⟩.

13.

.....

u⃗

.

v⃗

.

u⃗ + v⃗

.

u⃗−
v⃗

.

x

.

y

Sketch of u⃗− v⃗ shiŌed for clarity.

15.

...

..
u⃗

.

v⃗

.
u⃗ + v⃗

.

u⃗ − v⃗

.

x

.

y

.

z

17. || u⃗ || =
√
17, || v⃗ || =

√
3, || u⃗+ v⃗ || =

√
14, || u⃗− v⃗ || =

√
26

19. || u⃗ || = 7, || v⃗ || = 35, || u⃗+ v⃗ || = 42, || u⃗− v⃗ || = 28

21. u⃗ =
⟨
3/

√
30, 7/

√
30
⟩

23. u⃗ = ⟨1/3,−2/3, 2/3⟩
25. u⃗ = ⟨cos 50◦, sin 50◦⟩ ≈ ⟨0.643, 0.766⟩.
27.

|| u⃗ || =
√

sin2 θ cos2 φ+ sin2 θ sin2 φ+ cos2 θ

=
√

sin2 θ(cos2 φ+ sin2 φ) + cos2 θ

=
√

sin2 θ + cos2 θ
= 1.

29. The force on each chain is 100lb.

31. The force on each chain is 50lb.

33. θ = 5.71◦; the weight is liŌed 0.005 Ō (about 1/16th of an inch).

35. θ = 84.29◦; the weight is liŌed 9 Ō.

SecƟon 10.3

1. Scalar

3. By considering the sign of the dot product of the two vectors. If
the dot product is posiƟve, the angle is acute; if the dot product is
negaƟve, the angle is obtuse.

5. −22

7. 3

9. not defined

11. Answers will vary.

13. θ = 0.3218 ≈ 18.43◦

15. θ = π/4 = 45◦

17. Answers will vary; two possible answers are ⟨−7, 4⟩ and ⟨14,−8⟩.
19. Answers will vary; two possible answers are ⟨1, 0,−1⟩ and

⟨4, 5,−9⟩.
21. proj v⃗ u⃗ = ⟨−1/2, 3/2⟩.
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23. proj v⃗ u⃗ = ⟨−1/2,−1/2⟩.

25. proj v⃗ u⃗ = ⟨1, 2, 3⟩.

27. u⃗ = ⟨−1/2, 3/2⟩+ ⟨3/2, 1/2⟩.

29. u⃗ = ⟨−1/2,−1/2⟩+ ⟨−5/2, 5/2⟩.

31. u⃗ = ⟨1, 2, 3⟩+ ⟨0, 3,−2⟩.

33. 1.96lb

35. 141.42Ō–lb

37. 500Ō–lb

39. 500Ō–lb

SecƟon 10.4

1. vector

3. “Perpendicular” is one answer.

5. Torque

7. u⃗× v⃗ = ⟨11, 1,−17⟩

9. u⃗× v⃗ = ⟨47,−36,−44⟩

11. u⃗× v⃗ = ⟨0, 0, 0⟩

13. i⃗× k⃗ = −⃗j

15. Answers will vary.

17. 5

19. 0

21.
√
14

23. 3

25. 5
√
2/2

27. 1

29. 7

31. 2

33. ± 1√
6
⟨1, 1,−2⟩

35. ⟨0,±1, 0⟩

37. 87.5Ō–lb

39. 200/3 ≈ 66.67Ō–lb

41. With u⃗ = ⟨u1, u2, u3⟩ and v⃗ = ⟨v1, v2, v3⟩, we have

u⃗ · (⃗u× v⃗) = ⟨u1, u2, u3⟩ · (⟨u2v3 − u3v2,−(u1v3 − u3v1), u1v2 − u2v1⟩)
= u1(u2v3 − u3v2)− u2(u1v3 − u3v1) + u3(u1v2 − u2v1)
= 0.

SecƟon 10.5

1. A point on the line and the direcƟon of the line.

3. parallel, skew

5. vector: ℓ(t) = ⟨2,−4, 1⟩+ t ⟨9, 2, 5⟩
parametric: x = 2+ 9t, y = −4+ 2t, z = 1+ 5t
symmetric: (x− 2)/9 = (y+ 4)/2 = (z− 1)/5

7. Answers can vary: vector: ℓ(t) = ⟨2, 1, 5⟩+ t ⟨5,−3,−1⟩
parametric: x = 2+ 5t, y = 1− 3t, z = 5− t
symmetric: (x− 2)/5 = −(y− 1)/3 = −(z− 5)

9. Answers can vary; here the direcƟon is given by d⃗1 × d⃗2: vector:
ℓ(t) = ⟨0, 1, 2⟩+ t ⟨−10, 43, 9⟩
parametric: x = −10t, y = 1+ 43t, z = 2+ 9t
symmetric: −x/10 = (y− 1)/43 = (z− 2)/9

11. Answers can vary; here the direcƟon is given by d⃗1 × d⃗2: vector:
ℓ(t) = ⟨7, 2,−1⟩+ t ⟨1,−1, 2⟩
parametric: x = 7+ t, y = 2− t, z = −1+ 2t
symmetric: x− 7 = 2− y = (z+ 1)/2

13. vector: ℓ(t) = ⟨1, 1⟩+ t ⟨2, 3⟩
parametric: x = 1+ 2t, y = 1+ 3t
symmetric: (x− 1)/2 = (y− 1)/3

15. parallel

17. intersecƟng; ℓ1(3) = ℓ2(4) = ⟨9,−5, 13⟩

19. skew

21. same

23.
√
41/3

25. 5
√
2/2

27. 3/
√
2

29. Since both P and Q are on the line, # ‰PQ is parallel to d⃗. Thus
# ‰PQ× d⃗ = 0⃗, giving a distance of 0.

31. The distance formula cannot be used because since d⃗1 and d⃗2 are
parallel, c⃗ is 0⃗ and we cannot divide by || 0⃗ ||.
Since d⃗1 and d⃗2 are parallel,

#     ‰P1P2 lies in the plane formed by the
two lines. Thus #     ‰P1P2 × d⃗2 is orthogonal to this plane, and
c⃗ = (

#     ‰P1P2 × d⃗2)× d⃗2 is parallel to the plane, but sƟll orthogonal
to both d⃗1 and d⃗2. We desire the length of the projecƟon of #     ‰P1P2
onto c⃗, which is what the formula provides.

SecƟon 10.6

1. A point in the plane and a normal vector (i.e., a direcƟon
orthogonal to the plane).

3. Answers will vary.

5. Answers will vary.

7. Standard form: 3(x− 2)− (y− 3) + 7(z− 4) = 0
general form: 3x− y+ 7z = 31

9. Answers may vary;
Standard form: 8(x− 1) + 4(y− 2)− 4(z− 3) = 0
general form: 8x+ 4y− 4z = 4

11. Answers may vary;
Standard form: −7(x− 2) + 2(y− 1) + (z− 2) = 0
general form: −7x+ 2y+ z = −10

13. Answers may vary;
Standard form: 2(x− 1)− (y− 1) = 0
general form: 2x− y = 1

15. Answers may vary;
Standard form: 2(x− 2)− (y+ 6)− 4(z− 1) = 0
general form: 2x− y− 4z = 6

17. Answers may vary;
Standard form: (x− 5) + (y− 7) + (z− 3) = 0
general form: x+ y+ z = 15

19. Answers may vary;
Standard form: 3(x+ 4) + 8(y− 7)− 10(z− 2) = 0
general form: 3x+ 8y− 10z = 24

21. Answers may vary:

ℓ =


x = 14t
y = −1− 10t
z = 2− 8t

23. (−3,−7,−5)

25. No point of intersecƟon; the plane and line are parallel.

27.
√

5/7
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29. 1/
√
3

31. If P is any point in the plane, and Q is also in the plane, then # ‰PQ
lies parallel to the plane and is orthogonal to n⃗, the normal vector.
Thus n⃗ · # ‰PQ = 0, giving the distance as 0.

Chapter 11

SecƟon 11.1

1. parametric equaƟons

3. displacement

5.

.....

1

.

2

.

3

.

4

.

−5

.

5

.

x

.

y

7.

.....

2

.

4

.−1.

−0.5

.

0.5

.

1

.

x

.

y

9.

.....

−3

.

−2

.

−1

.

1

.

2

.

3

.

−1

.
−2

.

1

.

2

.

x

.

y

11.

...

..

−10

.

−5

.

5

.

10

.

−5

.

5

.

x

.

y

13.

...

..

−2

.

2

.
−1

.

1

.
1

.

2

.

x

.

y

.

z

15.

...

..
−1

.1 .

−1

.
1

.

−1

.

1

.x .y.

z

17. || r⃗(t) || =
√

25 cos2 t+ 9 sin2 t.

19. || r⃗(t) || =
√
cos2 t+ t2 + t4.

21. Answers may vary; three soluƟons are
r⃗(t) = ⟨3 sin t+ 5, 3 cos t+ 5⟩,
r⃗(t) = ⟨−3 cos t+ 5, 3 sin t+ 5⟩ and
r⃗(t) = ⟨3 cos t+ 5,−3 sin t+ 5⟩.

23. Answers may vary, though most direct soluƟons are
r⃗(t) = ⟨−3 cos t+ 3, 2 sin t− 2⟩,
r⃗(t) = ⟨3 cos t+ 3,−2 sin t− 2⟩ and
r⃗(t) = ⟨3 sin t+ 3, 2 cos t− 2⟩.

25. Answers may vary, though most direct soluƟons are
r⃗(t) = ⟨t,−1/2(t− 1) + 5⟩,
r⃗(t) = ⟨t+ 1,−1/2t+ 5⟩,
r⃗(t) = ⟨−2t+ 1, t+ 5⟩ and
r⃗(t) = ⟨2t+ 1,−t+ 5⟩.

27. Answers may vary, though most direct soluƟon is
r⃗(t) = ⟨3 cos(4πt), 3 sin(4πt), 3t⟩.

29. ⟨1, 1⟩

31. ⟨1, 2, 7⟩

SecƟon 11.2

1. component

3. It is difficult to idenƟfy the points on the graphs of r⃗(t) and r⃗ ′(t)
that correspond to each other.

5.
⟨
e3, 0

⟩
7. ⟨2t, 1, 0⟩

9. (0,∞)

11. r⃗ ′(t) =
⟨
−1/t2, 5/(3t+ 1)2, sec2 t

⟩
13. r⃗ ′(t) = ⟨2t, 1⟩ · ⟨sin t, 2t+ 5⟩+

⟨
t2 + 1, t− 1

⟩
· ⟨cos t, 2⟩ =

(t2 + 1) cos t+ 2t sin t+ 4t+ 3
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15.

.....
2

.
4

.
6

.

2

.

4

.

6

.

r⃗ ′(1)

.

x

.

y

r⃗ ′(t) = ⟨2t+ 1, 2t− 1⟩

17.

.....

2

.

4

.
−2
.

2

.

r⃗ ′(1)

.

x

.

y

r⃗ ′(t) =
⟨
2t, 3t2 − 1

⟩
19. ℓ(t) = ⟨2, 0⟩+ t ⟨3, 1⟩

21. ℓ(t) = ⟨−3, 0, π⟩+ t ⟨0,−3, 1⟩

23. t = 0

25. r⃗(t) is not smooth at t = 3π/4+ nπ, where n is an integer

27. Both derivaƟves return
⟨
5t4, 4t3 − 3t2, 3t2

⟩
.

29. Both derivaƟves return⟨
2t− et − 1, cos t− 3t2, (t2 + 2t)et − (t− 1) cos t− sin t

⟩
.

31.
⟨
tan−1 t, tan t

⟩
+ C⃗

33. ⟨4,−4⟩

35. r⃗(t) = ⟨ln |t+ 1|+ 1,− ln | cos t|+ 2⟩

37. r⃗(t) = ⟨− cos t+ 1, t− sin t, et − t− 1⟩

39. 10π

41.
√
2(1− e−1)

SecƟon 11.3

1. Velocity is a vector, indicaƟng an objects direcƟon of travel and its
rate of distance change (i.e., its speed). Speed is a scalar.

3. The average velocity is found by dividing the displacement by the
Ɵme traveled – it is a vector. The average speed is found by
dividing the distance traveled by the Ɵme traveled – it is a scalar.

5. One example is traveling at a constant speed s in a circle, ending
at the starƟng posiƟon. Since the displacement is 0⃗, the average
velocity is 0⃗, hence || 0⃗ || = 0. But traveling at constant speed s
means the average speed is also s > 0.

7. v⃗(t) = ⟨2, 5, 0⟩, a⃗(t) = ⟨0, 0, 0⟩

9. v⃗(t) = ⟨− sin t, cos t⟩, a⃗(t) = ⟨− cos t,− sin t⟩

11. v⃗(t) = ⟨1, cos t⟩, a⃗(t) = ⟨0,− sin t⟩

.....
0.5

.
1

.
1.5

.

0.5

.

1

.

1.5

.

v⃗(π/4)

.
a⃗(π/4)

. x.

y

13. v⃗(t) = ⟨2t+ 1,−2t+ 2⟩, a⃗(t) = ⟨2,−2⟩

.....

2

.

4

.

6

.

2

.

−2

.

−4

.

−6

.−8.

v⃗(π/4)

.

a⃗(π/4)

.

x

.

y

15. || v⃗(t) || =
√
4t2 + 1.

Min at t = 0; Max at t = ±1.

17. || v⃗(t) || = 5.
Speed is constant, so there is no difference between min/max

19. || v⃗(t) || = | sec t|
√
tan2 t+ sec2 t.

min: t = 0; max: t = π/4

21. || v⃗(t) || = 13.
speed is constant, so there is no difference between min/max

23. || v⃗(t) || =
√

4t2 + 1+ t2/(1− t2).
min: t = 0; max: there is no max; speed approaches∞ as
t → ±1

25. (a) r⃗1(1) = ⟨1, 1⟩; r⃗2(1) = ⟨1, 1⟩

(b) v⃗1(1) = ⟨1, 2⟩; || v⃗1(1) || =
√
5; a⃗1(1) = ⟨0, 2⟩

v⃗2(1) = ⟨2, 4⟩; || v⃗2(1) || = 2
√
5; a⃗2(1) = ⟨2, 12⟩

27. (a) r⃗1(2) = ⟨6, 4⟩; r⃗2(2) = ⟨6, 4⟩

(b) v⃗1(2) = ⟨3, 2⟩; || v⃗1(2) || =
√
13; a⃗1(2) = ⟨0, 0⟩

v⃗2(2) = ⟨6, 4⟩; || v⃗2(2) || = 2
√
13; a⃗2(2) = ⟨0, 0⟩

29. v⃗(t) = ⟨2t+ 1, 3t+ 2⟩, r⃗(t) =
⟨
t2 + t+ 5, 3t2/2+ 2t− 2

⟩
31. v⃗(t) = ⟨sin t, cos t⟩, r⃗(t) = ⟨1− cos t, sin t⟩

33. Displacement: ⟨0, 0, 6π⟩; distance traveled: 2
√
13π ≈ 22.65Ō;

average velocity: ⟨0, 0, 3⟩; average speed:
√
13 ≈ 3.61Ō/s

35. Displacement: ⟨0, 0⟩; distance traveled: 2π ≈ 6.28Ō; average
velocity: ⟨0, 0⟩; average speed: 1Ō/s

37. At t-values of sin−1(9/30)/(4π) + n/2 ≈ 0.024+ n/2 seconds,
where n is an integer.

39. (a) Holding the crossbow at an angle of 0.013 radians,
≈ 0.745◦ will hit the target 0.4s later. (Another soluƟon
exists, with an angle of 89◦, landing 18.75s later, but this is
impracƟcal.)

(b) In the .4 seconds the arrow travels, a deer, traveling at
20mph or 29.33Ō/s, can travel 11.7Ō. So she needs to lead
the deer by 11.7Ō.
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41. The posiƟon funcƟon is r⃗(t) =
⟨
220t,−16t2 + 1000

⟩
. The

y-component is 0 when t = 7.9; r⃗(7.9) = ⟨1739.25, 0⟩, meaning
the box will travel about 1740Ō horizontally before it lands.

SecƟon 11.4

1. 1

3. T⃗(t) and N⃗(t).

5. T⃗(t) =
⟨

4t√
20t2−4t+1

, 2t−1√
20t2−4t+1

⟩
; T⃗(1) =

⟨
4/

√
17, 1/

√
17
⟩

7. T⃗(t) = cos t sin t√
cos2 t sin2 t

⟨− cos t, sin t⟩. (Be careful; this cannot be

simplified as just ⟨− cos t, sin t⟩ as
√
cos2 t sin2 t ̸= cos t sin t, but

rather | cos t sin t|.) T⃗(π/4) =
⟨
−
√
2/2,

√
2/2
⟩

9. ℓ(t) = ⟨2, 0⟩+ t
⟨
4/

√
17, 1/

√
17
⟩
; in parametric form,

ℓ(t) =
{

x = 2+ 4t/
√
17

y = t/
√
17

11. ℓ(t) =
⟨√

2/4,
√
2/4
⟩
+ t
⟨
−
√
2/2,

√
2/2
⟩
; in parametric form,

ℓ(t) =
{

x =
√
2/4−

√
2t/2

y =
√
2/4+

√
2t/2

13. T⃗(t) = ⟨− sin t, cos t⟩; N⃗(t) = ⟨− cos t,− sin t⟩

15. T⃗(t) =
⟨
− sin t√

4 cos2 t+sin2 t
, 2 cos t√

4 cos2 t+sin2 t

⟩
;

N⃗(t) =
⟨
− 2 cos t√

4 cos2 t+sin2 t
,− sin t√

4 cos2 t+sin2 t

⟩
17. (a) Be sure to show work

(b) N⃗(π/4) =
⟨
−5/

√
34,−3/

√
34
⟩

19. (a) Be sure to show work

(b) N⃗(0) =
⟨
− 1√

5
, 2√

5

⟩
21. T⃗(t) = 1√

5
⟨2, cos t,− sin t⟩; N⃗(t) = ⟨0,− sin t,− cos t⟩

23. T⃗(t) = 1√
a2+b2

⟨−a sin t, a cos t, b⟩; N⃗(t) = ⟨− cos t,− sin t, 0⟩

25. aT = 4t√
1+4t2

and aN =
√

4− 16t2
1+4t2

At t = 0, aT = 0 and aN = 2;
At t = 1, aT = 4/

√
5 and aN = 2/

√
5.

At t = 0, all acceleraƟon comes in the form of changing the
direcƟon of velocity and not the speed; at t = 1, more
acceleraƟon comes in changing the speed than in changing
direcƟon.

27. aT = 0 and aN = 2
At t = 0, aT = 0 and aN = 2;
At t = π/2, aT = 0 and aN = 2.
The object moves at constant speed, so all acceleraƟon comes
from changing direcƟon, hence aT = 0. a⃗(t) is always parallel to
N⃗(t), but twice as long, hence aN = 2.

29. aT = 0 and aN = a
At t = 0, aT = 0 and aN = a;
At t = π/2, aT = 0 and aN = a.
The object moves at constant speed, meaning that aT is always 0.
The object “rises” along the z-axis at a constant rate, so all
acceleraƟon comes in the form of changing direcƟon circling the
z-axis. The greater the radius of this circle the greater the
acceleraƟon, hence aN = a.

SecƟon 11.5

1. Ɵme and/or distance

3. Answers may include lines, circles, helixes

5. κ

7. s = 3t, so r⃗(s) = ⟨2s/3, s/3,−2s/3⟩

9. s =
√
13t, so r⃗(s) =

⟨
3 cos(s/

√
13), 3 sin(s/

√
13), 2s/

√
13
⟩

11. κ =
|6x|

(1+(3x2−1)2)3/2
;

κ(0) = 0, κ(1/2) = 192
17

√
17

≈ 2.74.

13. κ =
| cos x|

(1+sin2 x)3/2
;

κ(0) = 1, κ(π/2) = 0

15. κ =
|2 cos t cos(2t)+4 sin t sin(2t)|

(4 cos2(2t)+sin2 t)3/2
;

κ(0) = 1/4, κ(π/4) = 8

17. κ =
|6t2+2|

(4t2+(3t2−1)2)3/2
;

κ(0) = 2, κ(5) = 19
1394

√
1394

≈ 0.0004

19. κ = 0;
κ(0) = 0, κ(1) = 0

21. κ = 3
13 ;

κ(0) = 3/13, κ(π/2) = 3/13

23. maximized at x = ±
√

2
4√5

25. maximized at t = 1/4

27. radius of curvature is 5
√
5/4.

29. radius of curvature is 9.

31. x2 + (y− 1/2)2 = 1/4, or c⃗(t) = ⟨1/2 cos t, 1/2 sin t+ 1/2⟩

33. x2 + (y+ 8)2 = 81, or c⃗(t) = ⟨9 cos t, 9 sin t− 8⟩

Chapter 12
SecƟon 12.1

1. Answers will vary.

3. topographical

5. surface

7. domain: R2

range: z ≥ 2

9. domain: R2

range: R

11. domain: R2

range: 0 < z ≤ 1

13. domain: {(x, y) | x2 + y2 ≤ 9}, i.e., the domain is the circle and
interior of a circle centered at the origin with radius 3.
range: 0 ≤ z ≤ 3

15. Level curves are lines y = (3/2)x− c/2.

...

..

−2

.

−1

.

1

.

2

.

−2

.

2

.

x

.

y
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17. Level curves are parabolas x = y2 + c.

...

..

−4

.

−2

.

2

.

4

.
−4

.

−2

.

2

.

4

.

c = 2

.

c = 0

.

c = −2

.

x

.

y

19. Level curves are circles, centered at (1/c,−1/c) with radius
2/c2 − 1. When c = 0, the level curve is the line y = x.

...
..

−4

.

−2

.

2

.

4

.
−4

.

−2

.

2

.

4

.

c = 1

.

c = −1

.

c = 0

.

x

.

y

21. Level curves are ellipses of the form x2
c2 + y2

c2/4 = 1, i.e., a = c
and b = c/2.

.....

−4

.

−2

.

2

.

4

. −4.

−2

.

2

.

4

.

x

.

y

23. domain: x+ 2y− 4z ̸= 0; the set of points in R3 NOT in the
domain form a plane through the origin.
range: R

25. domain: z ≥ x2 − y2; the set of points in R3 above (and
including) the hyperbolic paraboloid z = x2 − y2.
range: [0,∞)

27. The level surfaces are spheres, centered at the origin, with radius√
c.

29. The level surfaces are paraboloids of the form z = x2
c + y2

c ; the
larger c, the “wider” the paraboloid.

31. The level curves for each surface are similar; for z =
√

x2 + 4y2

the level curves are ellipses of the form x2
c2 + y2

c2/4 = 1, i.e., a = c
and b = c/2; whereas for z = x2 + 4y2 the level curves are
ellipses of the form x2

c + y2
c/4 = 1, i.e., a =

√
c and b =

√
c/2.

The first set of ellipses are spaced evenly apart, meaning the
funcƟon grows at a constant rate; the second set of ellipses are
more closely spaced together as c grows, meaning the funcƟon
grows faster and faster as c increases.

The funcƟon z =
√

x2 + 4y2 can be rewriƩen as z2 = x2 + 4y2,
an ellipƟc cone; the funcƟon z = x2 + 4y2 is a paraboloid, each
matching the descripƟon above.

SecƟon 12.2

1. Answers will vary.

3. Answers will vary.
One possible answer: {(x, y)|x2 + y2 ≤ 1}

5. Answers will vary.
One possible answer: {(x, y)|x2 + y2 < 1}

7. Answers will vary.
interior point: (1, 3)
boundary point: (3, 3)
S is a closed set
S is bounded

9. Answers will vary.
interior point: none
boundary point: (0,−1)
S is a closed set, consisƟng only of boundary points
S is bounded

11. D = {(x, y) | y ̸= 2x}; D is an open set.

13. D =
{
(x, y) | y > x2

}
; D is an open set.

15. (a) Along y = 0, the limit is 1.

(b) Along x = 0, the limit is−1.
Since the above limits are not equal, the limit does not exist.

17. (a) Along y = mx, the limit is
mx(1−m)

m2x+ 1
.

(b) Along x = 0, the limit is−1.
Since the above limits are not equal, the limit does not exist.

19. (a) Along y = 2, the limit is:

lim
(x,y)→(1,2)

x+ y− 3
x2 − 1

= lim
x→1

x− 1
x2 − 1

= lim
x→1

1
x+ 1

= 1/2.

(b) Along y = x+ 1, the limit is:

lim
(x,y)→(1,2)

x+ y− 3
x2 − 1

= lim
x→1

2(x− 1)
x2 − 1

= lim
x→1

2
x+ 1

= 1.

Since the limits along the lines y = 2 and y = x+ 1 differ, the
overall limit does not exist.

SecƟon 12.3

1. A constant is a number that is added or subtracted in an
expression; a coefficient is a number that is being mulƟplied by a
nonconstant funcƟon.

3. fx

5. fx = 2xy− 1, fy = x2 + 2
fx(1, 2) = 3, fy(1, 2) = 3

7. fx = − sin x sin y, fy = cos x cos y
fx(π/3, π/3) = −3/4, fy(π/3, π/3) = 1/4

9. fx = 2xy+ 6x, fy = x2 + 4
fxx = 2y+ 6, fyy = 0
fxy = 2x, fyx = 2x
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11. fx = 1/y, fy = −x/y2
fxx = 0, fyy = 2x/y3
fxy = −1/y2, fyx = −1/y2

13. fx = 2xex
2+y2 , fy = 2yex

2+y2

fxx = 2ex
2+y2 + 4x2ex

2+y2 , fyy = 2ex
2+y2 + 4y2ex

2+y2

fxy = 4xyex
2+y2 , fyx = 4xyex

2+y2

15. fx = cos x cos y, fy = − sin x sin y
fxx = − sin x cos y, fyy = − sin x cos y
fxy = − sin y cos x, fyx = − sin y cos x

17. fx = −5y3 sin(5xy3), fy = −15xy2 sin(5xy3)
fxx = −25y6 cos(5xy3),
fyy = −225x2y4 cos(5xy3)− 30xy sin(5xy3)
fxy = −75xy5 cos(5xy3)− 15y2 sin(5xy3),
fyx = −75xy5 cos(5xy3)− 15y2 sin(5xy3)

19. fx = 2y2√
4xy2+1

, fy = 4xy√
4xy2+1

fxx = − 4y4√
4xy2+1

3 , fyy = − 16x2y2√
4xy2+1

3 + 4x√
4xy2+1

fxy = − 8xy3√
4xy2+1

3 + 4y√
4xy2+1

, fyx = − 8xy3√
4xy2+1

3 + 4y√
4xy2+1

21. fx = − 2x
(x2+y2+1)2 , fy = − 2y

(x2+y2+1)2

fxx = 8x2
(x2+y2+1)3 − 2

(x2+y2+1)2 , fyy =
8y2

(x2+y2+1)3 − 2
(x2+y2+1)2

fxy = 8xy
(x2+y2+1)3 , fyx =

8xy
(x2+y2+1)3

23. fx = 6x, fy = 0
fxx = 6, fyy = 0
fxy = 0, fyx = 0

25. fx = 1
4xy , fy = − ln x

4y2

fxx = − 1
4x2y , fyy =

ln x
2y3

fxy = − 1
4xy2 , fyx = − 1

4xy2

27. f(x, y) = x sin y+ x+ C, where C is any constant.

29. f(x, y) = 3x2y− 4xy2 + 2y+ C, where C is any constant.

31. fx = 2xe2y−3z, fy = 2x2e2y−3z, fz = −3x2e2y−3z

fyz = −6x2e2y−3z, fzy = −6x2e2y−3z

33. fx = 3
7y2z , fy = − 6x

7y3z , fz = − 3x
7y2z2

fyz = 6x
7y3z2 , fzy =

6x
7y3z2

SecƟon 12.4

1. T

3. T

5. dz = (sin y+ 2x)dx+ (x cos y)dy

7. dz = 5dx− 7dy
9. dz = x√

x2+y
dx+ 1

2
√

x2+y
dy, with dx = −0.05 and dy = .1. At

(3, 7), dz = 3/4(−0.05) + 1/8(.1) = −0.025, so
f(2.95, 7.1) ≈ −0.025+ 4 = 3.975.

11. dz = (2xy− y2)dx+ (x2 − 2xy)dy, with dx = 0.04 and
dy = 0.06. At (2, 3), dz = 3(0.04) + (−8)(0.06) = −0.36, so
f(2.04, 3.06) ≈ −0.36− 6 = −6.36.

13. The total differenƟal of volume is dV = 4πdr+ πdh. The
coefficient of dr is greater than the coefficient of dh, so the
volume is more sensiƟve to changes in the radius.

15. Using trigonometry, ℓ = x tan θ, so dℓ = tan θdx+ x sec2 θdθ.
With θ = 85◦ and x = 30, we have dℓ = 11.43dx+ 3949.38dθ.
The measured length of the wall is much more sensiƟve to errors
in θ than in x. While it can be difficult to compare sensiƟviƟes
between measuring feet and measuring degrees (it is somewhat
like “comparing apples to oranges”), here the coefficients are so
different that the result is clear: a small error in degree has a
much greater impact than a small error in distance.

17. dw = 2xyz3 dx+ x2z3 dy+ 3x2yz2 dz

19. dx = 0.05, dy = −0.1. dz = 9(.05) + (−2)(−0.1) = 0.65. So
f(3.5, 0.9) ≈ 7+ 0.65 = 7.65.

21. dx = 0.5, dy = 0.1, dz = −0.2.
dw = 2(0.5) + (−3)(0.1) + 3.7(−0.2) = −0.04, so
f(2.5, 4.1, 4.8) ≈ −1− 0.04 = −1.04.

SecƟon 12.5

1. Because the parametric equaƟons describe a level curve, z is
constant for all t. Therefore dz

dt = 0.

3. dx
dt , and

∂f
∂y

5. F

7. (a) dz
dt = 3(2t) + 4(2) = 6t+ 8.

(b) At t = 1, dz
dt = 14.

9. (a) dz
dt = 5(−2 sin t) + 2(cos t) = −10 sin t+ 2 cos t

(b) At t = π/4, dz
dt = −4

√
2.

11. (a)
dz
dt

= 2x(cos t) + 4y(3 cos t).

(b) At t = π/4, x =
√
2/2, y = 3

√
2/2, and dz

dt = 19.

13. t = −4/3; this corresponds to a minimum

15. t = tan−1(1/5) + nπ, where n is an integer

17. We find that
dz
dt

= 38 cos t sin t.

Thus dz
dt = 0 when t = πn or πn+ π/2, where n is any integer.

19. (a) ∂z
∂s = 2xy(1) + x2(2) = 2xy+ 2x2;
∂z
∂t = 2xy(−1) + x2(4) = −2xy+ 4x2

(b) With s = 1, t = 1, x = 1 and y = 2. Thus ∂z
∂s = 6 and

∂z
∂t = 0

21. (a) ∂z
∂s = 2x(cos t) + 2y(sin t) = 2x cos t+ 2y sin t;
∂z
∂t = 2x(−s sin t) + 2y(s cos t) = −2xs sin t+ 2ys cos t

(b) With s = 2, t = π/4, x =
√
2 and y =

√
2. Thus ∂z

∂s = 4
and ∂z

∂t = 0

23. fx = 2x tan y, fy = x2 sec2 y;
dy
dx

= −
2 tan y
x sec2 y

25. fx =
(x+ y2)(2x)− (x2 + y)(1)

(x+ y2)2
,

fy =
(x+ y2)(1)− (x2 + y)(2y)

(x+ y2)2
;

dy
dx

= −
2x(x+ y2)− (x2 + y)
x+ y2 − 2y(x2 + y)

SecƟon 12.6

1. A parƟal derivaƟve is essenƟally a special case of a direcƟonal
derivaƟve; it is the direcƟonal derivaƟve in the direcƟon of x or y,
i.e., ⟨1, 0⟩ or ⟨0, 1⟩.

3. u⃗ = ⟨0, 1⟩

5. maximal, or greatest

7. ∇f =
⟨
−2xy+ y2 + y,−x2 + 2xy+ x

⟩
9. ∇f =

⟨
−2x

(x2+y2+1)2 ,
−2y

(x2+y2+1)2

⟩
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11. ∇f = ⟨2x− y− 7, 4y− x⟩

13. ∇f =
⟨
−2xy+ y2 + y,−x2 + 2xy+ x

⟩
;∇f(2, 1) = ⟨−2, 2⟩. Be

sure to change all direcƟons to unit vectors.

(a) 2/5 (⃗u = ⟨3/5, 4/5⟩)

(b) −2
√
5 (⃗u =

⟨
−1/

√
5,−2

√
5
⟩
)

15. ∇f =
⟨

−2x
(x2+y2+1)2 ,

−2y
(x2+y2+1)2

⟩
;∇f(1, 1) = ⟨−2/9,−2/9⟩. Be

sure to change all direcƟons to unit vectors.

(a) 0 (⃗u =
⟨
1/

√
2,−1/

√
2
⟩
)

(b) 2
√
2/9 (⃗u =

⟨
−1/

√
2,−1/

√
2
⟩
)

17. ∇f = ⟨2x− y− 7, 4y− x⟩;∇f(4, 1) = ⟨0, 0⟩.

(a) 0

(b) 0

19. ∇f =
⟨
−2xy+ y2 + y,−x2 + 2xy+ x

⟩
(a) ∇f(2, 1) = ⟨−2, 2⟩

(b) || ∇f(2, 1) || = || ⟨−2, 2⟩ || =
√
8

(c) ⟨2,−2⟩

(d)
⟨
1/

√
2, 1/

√
2
⟩

21. ∇f =
⟨

−2x
(x2+y2+1)2 ,

−2y
(x2+y2+1)2

⟩
(a) ∇f(1, 1) = ⟨−2/9,−2/9⟩.

(b) || ∇f(1, 1) || = || ⟨−2/9,−2/9⟩ || = 2
√
2/9

(c) ⟨2/9, 2/9⟩

(d)
⟨
1/

√
2,−1/

√
2
⟩

23. ∇f = ⟨2x− y− 7, 4y− x⟩

(a) ∇f(4, 1) = ⟨0, 0⟩

(b) 0

(c) ⟨0, 0⟩

(d) All direcƟons give a direcƟonal derivaƟve of 0.

25. (a) ∇F(x, y, z) =
⟨
6xz3 + 4y, 4x, 9x2z2 − 6z

⟩
(b) 113/

√
3

27. (a) ∇F(x, y, z) =
⟨
2xy2, 2y(x2 − z2),−2y2z

⟩
(b) 0

SecƟon 12.7

1. Answers will vary. The displacement of the vector is one unit in
the x-direcƟon and 3 units in the z-direcƟon, with no change in y.
Thus along a line parallel to v⃗, the change in z is 3 Ɵmes the
change in x – i.e., a “slope” of 3. Specifically, the line in the x-z
plane parallel to z has a slope of 3.

3. T

5. (a) ℓx(t) =

 x = 2+ t
y = 3
z = −48− 12t

(b) ℓy(t) =

 x = 2
y = 3+ t
z = −48− 40t

(c) ℓ⃗u (t) =


x = 2+ t/

√
10

y = 3+ 3t/
√
10

z = −48− 66
√

2/5t

7. (a) ℓx(t) =

 x = 4+ t
y = 2
z = 2+ 3t

(b) ℓy(t) =

 x = 4
y = 2+ t
z = 2− 5t

(c) ℓ⃗u (t) =


x = 4+ t/

√
2

y = 2+ t/
√
2

z = 2−
√
2t

9. ℓ⃗n(t) =

 x = 2− 12t
y = 3− 40t
z = −48− t

11. ℓ⃗n(t) =

 x = 4+ 3t
y = 2− 5t
z = 2− t

13. (1.425, 1.085,−48.078), (2.575, 4.915,−47.952)

15. (5.014, 0.31, 1.662) and (2.986, 3.690, 2.338)

17. −12(x− 2)− 40(y− 3)− (z+ 48) = 0

19. 3(x− 4)− 5(y− 2)− (z− 2) = 0 (Note that this tangent plane
is the same as the original funcƟon, a plane.)

21. ∇F = ⟨x/4, y/2, z/8⟩; at P,∇F =
⟨
1/4,

√
2/2,

√
6/8
⟩

(a) ℓ⃗n(t) =


x = 1+ t/4
y =

√
2+

√
2t/2

z =
√
6+

√
6t/8

(b) 1
4 (x− 1) +

√
2

2 (y−
√
2) +

√
6

8 (z−
√
6) = 0.

23. ∇F =
⟨
y2 − z2, 2xy,−2xz

⟩
; at P,∇F = ⟨0, 4, 4⟩

(a) ℓ⃗n(t) =

 x = 2
y = 1+ 4t
z = −1+ 4t

(b) 4(y− 1) + 4(z+ 1) = 0.

SecƟon 12.8

1. F; it is the “other way around.”

3. T

5. One criƟcal point at (−4, 2); fxx = 1 and D = 4, so this point
corresponds to a relaƟve minimum.

7. One criƟcal point at (6,−3); D = −4, so this point corresponds
to a saddle point.

9. Two criƟcal points: at (0,−1); fxx = 2 and D = −12, so this point
corresponds to a saddle point;
at (0, 1), fxx = 2 and D = 12, so this corresponds to a relaƟve
minimum.

11. One criƟcal point at (0, 0). D = −12x2y2, so at (0, 0), D = 0 and
the test is inconclusive. (Some elementary thought shows that it
is the absolute minimum.)

13. One criƟcal point: fx = 0 when x = 3; fy = 0 when y = 0, so one
criƟcal point at (3, 0), which is a relaƟve maximum, where
fxx = y2−16

(16−(x−3)2−y2)3/2
and D = 16

(16−(x−3)2−y2)2 .

Both fx and fy are undefined along the circle (x− 3)2 + y2 = 16;
at any point along this curve, f(x, y) = 0, the absolute minimum
of the funcƟon.

15. The triangle is bound by the lines y = −1, y = 2x+ 1 and
y = −2x+ 1.
Along y = −1, there is a criƟcal point at (0,−1).
Along y = 2x+ 1, there is a criƟcal point at (−3/5,−1/5).
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Along y = −2x+ 1, there is a criƟcal point at (3/5,−1/5).
The funcƟon f has one criƟcal point, irrespecƟve of the constraint,
at (0,−1/2).
Checking the value of f at these four points, along with the three
verƟces of the triangle, we find the absolute maximum is at
(0, 1, 3) and the absolute minimum is at (0,−1/2, 3/4).

17. The region has no “corners” or “verƟces,” just a smooth edge.
To find criƟcal points along the circle x2 + y2 = 4, we solve for y2:
y2 = 4− x2. We can go further and state y = ±

√
4− x2.

We can rewrite f as
f(x) = x2 + 2x+ (4− x2) +

√
4− x2 = 2x+ 4+

√
4− x2. (We

will return and use−
√
4− x2 later.) Solving f ′(x) = 0, we get

x =
√
2 ⇒ y =

√
2. f ′(x) is also undefined at x = ±2, where

y = 0.
Using y = −

√
4− x2, we rewrite f(x, y) as

f(x) = 2x+ 4−
√
4− x2. Solving f ′(x) = 0, we get

x = −
√
2, y = −

√
2.

The funcƟon f itself has a criƟcal point at (−1,−1).
Checking the value of f at (−1,−1), (

√
2,
√
2), (−

√
2,−

√
2),

(2, 0) and (−2, 0), we find the absolute maximum is at (2, 0, 8)
and the absolute minimum is at (−1,−1,−2).

Chapter 13
SecƟon 13.1

1. C(y), meaning that instead of being just a constant, like the
number 5, it is a funcƟon of y, which acts like a constant when
taking derivaƟves with respect to x.

3. curve to curve, then from point to point

5. (a) 18x2 + 42x− 117

(b) −108

7. (a) x4/2− x2 + 2x− 3/2

(b) 23/15

9. (a) sin2 y

(b) π/2

11.
∫ 4

1

∫ 1

−2
dy dx and

∫ 1

−2

∫ 4

1
dx dy.

area of R = 9u2

13.
∫ 4

2

∫ 7−x

x−1
dy dx. The order dx dy needs two iterated integrals as

x is bounded above by two different funcƟons. This gives:∫ 3

1

∫ y+1

2
dx dy+

∫ 5

3

∫ 7−y

2
dx dy.

area of R = 4u2

15.
∫ 1

0

∫ √
x

x4
dy dx and

∫ 1

0

∫ 4√y

y2
dx dy

area of R = 7/15u2

17.

.....

R

.

y = 4 − x2

. −2. 2.

2

.

4

.
x

.

y

area of R =

∫ 4

0

∫ √
4−y

−
√

4−y
dx dy

19.

.....

R

.

x2/16 + y2/4 = 1

.

2

.

4

.
−2
.

2

.

x

.

y

area of R =

∫ 4

0

∫ √
4−x2/4

−
√

4−x2/4
dy dx

21.

.....

R

.

y = x2

.

y =
x+

2

.
−1
.

1
.

2
.

1

.

2

.

3

.

4

. x.

y

area of R =

∫ 2

−1

∫ x+2

x2
dy dx

SecƟon 13.2

1. volume

3. The double integral gives the signed volume under the surface.
Since the surface is always posiƟve, it is always above the x-y
plane and hence produces only “posiƟve” volume.

5. 6;
∫ 1

−1

∫ 2

1

(
x
y
+ 3
)

dy dx

7. 112/3;
∫ 2

0

∫ 4−2y

0

(
3x2 − y+ 2

)
dx dy

9. 16/5;
∫ 1

−1

∫ 1−x2

0
(x+ y+ 2) dy dx

11.
3
56

=

∫ 1

0

∫ √
x

x2
x2y dy dx =

∫ 1

0

∫ √
y

y2
x2y dx dy.

13. 0 =

∫ 1

−1

∫ 1

−1
x2 − y2 dy dx =

∫ 1

−1

∫ 1

−1
x2 − y2 dx dy.

15. 6 =

∫ 2

0

∫ 3−3/2x

0

(
6− 3x− 2y

)
dy dx =∫ 3

0

∫ 2−2/3y

0

(
6− 3x− 2y

)
dx dy.

17. 0 =

∫ 3

−3

∫ √
9−x2

0

(
x3y− x

)
dy dx =∫ 3

0

∫ √
9−y2

−
√

9−y2

(
x3y− x

)
dx dy.

19. IntegraƟng ex
2
with respect to x is not possible in terms of

elementary funcƟons.
∫ 2

0

∫ 2x

0
ex

2
dy dx = e4 − 1.
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21. IntegraƟng
∫ 1

y

2y
x2 + y2

dx gives tan−1(1/y)− π/4; integraƟng

tan−1(1/y) is hard.∫ 1

0

∫ x

0

2y
x2 + y2

dy dx = ln 2.

23. average value of f = 6/2 = 3

25. average value of f = 112/3
4 = 28/3

SecƟon 13.3

1. f
(
r cos θ, r sin θ

)
, r dr dθ

3.
∫ 2π

0

∫ 1

0

(
3r cos θ − r sin θ + 4

)
r dr dθ = 4π

5.
∫ π

0

∫ 3 cos θ

cos θ

(
8− r sin θ

)
r dr dθ = 16π

7.
∫ 2π

0

∫ 2

1

(
ln(r2)

)
r dr dθ = 2π

(
ln 16− 3/2

)
9.
∫ π/2

−π/2

∫ 6

0

(
r2 cos2 θ − r2 sin2 θ

)
r dr dθ =∫ π/2

−π/2

∫ 6

0

(
r2 cos(2θ)

)
r dr dθ = 0

11.
∫ π/2

−π/2

∫ 5

0

(
r2
)
dr dθ = 125π/3

13.
∫ π/4

0

∫ √
8

0

(
r cos θ + r sin θ

)
r dr dθ = 16

√
2/3

15. (a) This is impossible to integrate with rectangular coordinates
as e−(x2+y2) does not have an anƟderivaƟve in terms of
elementary funcƟons.

(b)
∫ 2π

0

∫ a

0
rer

2
dr dθ = π(1− e−a2 ).

(c) lim
a→∞

π(1− e−a2 ) = π. This implies that there is a finite

volume under the surface e−(x2+y2) over the enƟre x-y
plane.

SecƟon 13.4

1. Because they are scalar mulƟples of each other.

3. “liƩle masses”

5. Mx measures the moment about the x-axis, meaning we need to
measure distance from the x-axis. Such measurements are
measures in the y-direcƟon.

7. x = 5.25

9. (x, y) = (0, 3)

11. M = 150gm;

13. M = 2lb

15. M = 16π ≈ 50.27kg

17. M = 54π ≈ 169.65lb

19. M = 150gm;My = 600;Mx = −75; (x, y) = (4,−0.5)

21. M = 2lb;My = 0;Mx = 2/3; (x, y) = (0, 1/3)

23. M = 16π ≈ 50.27kg;My = 4π;Mx = 4π; (x, y) = (1/4, 1/4)

25. M = 54π ≈ 169.65lb;My = 0;Mx = 504; (x, y) = (0, 2.97)

27. Ix = 64/3; Iy = 64/3; IO = 128/3

29. Ix = 16/3; Iy = 64/3; IO = 80/3

SecƟon 13.5

1. arc length

3. surface areas

5. IntuiƟvely, adding h to f only shiŌs f up (i.e., parallel to the z-axis)
and does not change its shape. Therefore it will not change the
surface area over R.
AnalyƟcally, fx = gx and fy = gy; therefore, the surface area of
each is computed with idenƟcal double integrals.

7. SA =

∫ 2π

0

∫ 2π

0

√
1+ cos2 x cos2 y+ sin2 x sin2 y dx dy

9. SA =

∫ 1

−1

∫ 1

−1

√
1+ 4x2 + 4y2 dx dy

11. SA =

∫ 3

0

∫ 1

−1

√
1+ 9+ 49 dx dy = 6

√
59 ≈ 46.09

13. This is easier in polar:

SA =

∫ 2π

0

∫ 4

0
r
√

1+ 4r2 cos2 t+ 4r2 sin2 t dr dθ

=

∫ 2π

0

∫ 4

0
r
√

1+ 4r2 dr dθ

=
π

6
(
65

√
65− 1

)
≈ 273.87

15.

SA =

∫ 2

0

∫ 2x

0

√
1+ 1+ 4x2 dy dx

=

∫ 2

0

(
2x
√

2+ 4x2
)
dx

=
26
3

√
2 ≈ 12.26

17. This is easier in polar:

SA =

∫ 2π

0

∫ 5

0
r

√
1+

4r2 cos2 t+ 4r2 sin2 t
r2 sin2 t+ r2 cos2 t

dr dθ

=

∫ 2π

0

∫ 5

0
r
√
5 dr dθ

= 25π
√
5 ≈ 175.62

19. IntegraƟng in polar is easiest considering R:

SA =

∫ 2π

0

∫ 1

0
r
√

1+ c2 + d2 dr dθ

=

∫ 2π

0

1
2

(√
1+ c2 + d2

)
dy

= π
√

1+ c2 + d2.

The value of h does not maƩer as it only shiŌs the plane verƟcally
(i.e., parallel to the z-axis). Different values of h do not create
different ellipses in the plane.

SecƟon 13.6

1. surface to surface, curve to curve and point to point

3. Answers can vary. From this secƟon we used triple integraƟon to
find the volume of a solid region, the mass of a solid, and the
center of mass of a solid.

5. V =
∫ 1
−1
∫ 1
−1
(
8− x2 − y2 − (2x+ y)

)
dx dy = 88/3

7. V =
∫ π
0
∫ x
0
(
cos x sin y+ 2− sin x cos y

)
dy dx = π2 − π ≈ 6.728
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9. dz dy dx:
∫ 3

0

∫ 1−x/3

0

∫ 2−2x/3−2y

0
dz dy dx

dz dx dy:
∫ 1

0

∫ 3−3y

0

∫ 2−2x/3−2y

0
dz dy dx

dy dz dx:
∫ 3

0

∫ 2−2x/3

0

∫ 1−x/3−z/2

0
dy dz dx

dy dx dz:
∫ 2

0

∫ 3−3z/2

0

∫ 1−x/3−z/2

0
dy dx dz

dx dz dy:
∫ 1

0

∫ 2−2y

0

∫ 3−3y−3z/2

0
dx dz dy

dx dy dz:
∫ 2

0

∫ 1−z/2

0

∫ 3−3y−3z/2

0
dx dy dz

V =

∫ 3

0

∫ 1−x/3

0

∫ 2−2x/3−2y

0
dz dy dx = 1.

11. dz dy dx:
∫ 2

0

∫ 0

−2

∫ −y

y2/2
dz dy dx

dz dx dy:
∫ 0

−2

∫ 2

0

∫ −y

y2/2
dz dx dy

dy dz dx:
∫ 2

0

∫ 2

0

∫ −z

−
√

2z
dy dz dx

dy dx dz:
∫ 2

0

∫ 2

0

∫ −z

−
√

2z
dy dx dz

dx dz dy:
∫ 0

−2

∫ −y

y2/2

∫ 2

0
dx dz dy

dx dy dz:
∫ 2

0

∫ −z

−
√

2z

∫ 2

0
dx dy dz

V =

∫ 2

0

∫ 2

0

∫ −z

−
√

2z
dy dz dx = 4/3.

13. dz dy dx:
∫ 2

0

∫ 1

1−x/2

∫ 2x+4y−4

0
dz dy dx

dz dx dy:
∫ 1

0

∫ 2

2−2y

∫ 2x+4y−4

0
dz dy dx

dy dz dx:
∫ 2

0

∫ 2x

0

∫ 1

z/4−x/2+1
dy dz dx

dy dx dz:
∫ 4

0

∫ 2

z/2

∫ 1

z/4−x/2+1
dy dx dz

dx dz dy:
∫ 1

0

∫ 4y

0

∫ 2

z/2−2y+2
dx dz dy

dx dy dz:
∫ 4

0

∫ 1

z/4

∫ 2

z/2−2y+2
dx dy dz

V =

∫ 4

0

∫ 1

z/4

∫ 2y−z/2−2

0
dx dy dz = 4/3.

15. dz dy dx:
∫ 1

0

∫ 1−x2

0

∫ √
1−y

0
dz dy dx

dz dx dy:
∫ 1

0

∫ √
1−y

0

∫ √
1−y

0
dz dy dx

dy dz dx:
∫ 1

0

∫ x

0

∫ 1−x2

0
dy dz dx+

∫ 1

0

∫ 1

x

∫ 1−z2

0
dy dz dx

dy dx dz:
∫ 1

0

∫ z

0

∫ 1−z2

0
dy dx dz+

∫ 1

0

∫ 1

z

∫ 1−x2

0
dy dx dz

dx dz dy:
∫ 1

0

∫ √
1−y

0

∫ √
1−y

0
dx dz dy

dx dy dz:
∫ 1

0

∫ 1−z2

0

∫ √
1−y

0
dx dy dz

Answers will vary. Neither order is parƟcularly “hard.” The order
dz dy dx requires integraƟng a square root, so powers can be
messy; the order dy dz dx requires two triple integrals, but each
uses only polynomials.

17. 8

19. π

21. M = 10,Myz = 15/2,Mxz = 5/2,Mxy = 5;
(x, y, z) = (3/4, 1/4, 1/2)

23. M = 16/5,Myz = 16/3,Mxz = 104/45,Mxy = 32/9;
(x, y, z) = (5/3, 13/18, 10/9) ≈ (1.67, 0.72, 1.11)
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Index

!, 383
Absolute Convergence Theorem, 431
absolute maximum, 121
absolute minimum, 121
Absolute Value Theorem, 387
acceleraƟon, 71, 618
AlternaƟng Harmonic Series, 403, 428, 441
AlternaƟng Series Test

for series, 425
aN, 636, 646
analyƟc funcƟon, 459
angle of elevaƟon, 623
anƟderivaƟve, 185
arc length, 357, 499, 523, 615, 640
arc length parameter, 640, 642
asymptote

horizontal, 46
verƟcal, 44

aT, 636, 646
average rate of change, 603
average value of a funcƟon, 743
average value of funcƟon, 229

Binomial Series, 460
BisecƟon Method, 39
boundary point, 658
bounded sequence, 389

convergence, 390
bounded set, 658

center of mass, 757–759, 761, 788
Chain Rule, 94

mulƟvariable, 689, 691
notaƟon, 100

circle of curvature, 645
closed, 658
closed disk, 658
concave down, 142
concave up, 142
concavity, 142, 496

inflecƟon point, 143
test for, 143

conic secƟons, 469
degenerate, 469
ellipse, 473
hyperbola, 476
parabola, 470

Constant MulƟple Rule
of derivaƟves, 78
of integraƟon, 189
of series, 403

constrained opƟmizaƟon, 720
conƟnuous funcƟon, 34, 664

properƟes, 37, 665
vector–valued, 606

contour lines, 653
convergence

absolute, 429, 431
AlternaƟng Series Test, 425
condiƟonal, 429
Direct Comparison Test, 413

for integraƟon, 327
Integral Test, 410
interval of, 436
Limit Comparison Test, 414

for integraƟon, 329
nth–term test, 406
of geometric series, 398
of improper int., 322, 327, 329
of monotonic sequences, 393
of p-series, 399
of power series, 435
of sequence, 385, 390
of series, 395
radius of, 436
RaƟo Comparison Test, 419
Root Comparison Test, 422

criƟcal number, 123
criƟcal point, 123, 715–717
cross product

and derivaƟves, 611
applicaƟons, 574

area of parallelogram, 575
torque, 577
volume of parallelepiped, 576

definiƟon, 570
properƟes, 572, 573

curvature, 642
and moƟon, 646
equaƟons for, 644
of circle, 644, 645
radius of, 645

curve
parametrically defined, 483
rectangular equaƟon, 483
smooth, 489

curve sketching, 149
cusp, 489
cycloid, 601
cylinder, 532

decreasing funcƟon, 134
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finding intervals, 135
strictly, 134

definite integral, 196
and subsƟtuƟon, 262
properƟes, 197

derivaƟve
acceleraƟon, 72
as a funcƟon, 62
at a point, 58
basic rules, 76
Chain Rule, 94, 100, 689, 691
Constant MulƟple Rule, 78
Constant Rule, 76
differenƟal, 179
direcƟonal, 696, 698, 699, 702
exponenƟal funcƟons, 100
First Deriv. Test, 137
Generalized Power Rule, 95
higher order, 79

interpretaƟon, 80
hyperbolic funct., 306
implicit, 103, 693
interpretaƟon, 69
inverse funcƟon, 114
inverse hyper., 309
inverse trig., 117
Mean Value Theorem, 130
mixed parƟal, 672
moƟon, 72
mulƟvariable differenƟability, 681, 686
normal line, 59
notaƟon, 62, 79
parametric equaƟons, 493
parƟal, 668, 676
Power Rule, 76, 89, 108
power series, 439
Product Rule, 83
QuoƟent Rule, 86
Second Deriv. Test, 146
Sum/Difference Rule, 78
tangent line, 58
trigonometric funcƟons, 87
vector–valued funcƟons, 607, 608, 611
velocity, 72

differenƟable, 58, 681, 686
differenƟal, 179

notaƟon, 179
Direct Comparison Test

for integraƟon, 327
for series, 413

direcƟonal derivaƟve, 696, 698, 699, 702
directrix, 470, 532
Disk Method, 342
displacement, 223, 602, 615
distance

between lines, 587
between point and line, 587
between point and plane, 595
between points in space, 530
traveled, 626

divergence
AlternaƟng Series Test, 425
Direct Comparison Test, 413

for integraƟon, 327
Integral Test, 410
Limit Comparison Test, 414

for integraƟon, 329
nth–term test, 406
of geometric series, 398
of improper int., 322, 327, 329
of p-series, 399
of sequence, 385
of series, 395
RaƟo Comparison Test, 419
Root Comparison Test, 422

dot product
and derivaƟves, 611
definiƟon, 557
properƟes, 558, 559

double integral, 736, 737
in polar, 747
properƟes, 740

eccentricity, 475, 479
elementary funcƟon, 233
ellipse

definiƟon, 473
eccentricity, 475
parametric equaƟons, 489
reflecƟve property, 476
standard equaƟon, 474

extrema
absolute, 121, 715
and First Deriv. Test, 137
and Second Deriv. Test, 146
finding, 124
relaƟve, 122, 715, 716

Extreme Value Theorem, 122, 720
extreme values, 121

factorial, 383
First DerivaƟve Test, 137
fluid pressure/force, 375, 377
focus, 470, 473, 476
Fubini’s Theorem, 737
funcƟon

of three variables, 655
of two variables, 651
vector–valued, 599

Fundamental Theorem of Calculus, 221, 222
and Chain Rule, 225

Gabriel’s Horn, 363
Generalized Power Rule, 95
geometric series, 397, 398
gradient, 698, 699, 702, 712

and level curves, 699
and level surfaces, 712

Harmonic Series, 403
Head To Tail Rule, 547



Hooke’s Law, 368
hyperbola

definiƟon, 476
eccentricity, 479
parametric equaƟons, 489
reflecƟve property, 479
standard equaƟon, 477

hyperbolic funcƟon
definiƟon, 303
derivaƟves, 306
idenƟƟes, 306
integrals, 306
inverse, 307

derivaƟve, 309
integraƟon, 309
logarithmic def., 308

implicit differenƟaƟon, 103, 693
improper integraƟon, 322, 325
increasing funcƟon, 134

finding intervals, 135
strictly, 134

indefinite integral, 185
indeterminate form, 2, 45, 316, 317
inflecƟon point, 143
iniƟal point, 543
iniƟal value problem, 190
Integral Test, 410
integraƟon

arc length, 357
area, 196, 728, 729
area between curves, 226, 334
average value, 229
by parts, 266
by subsƟtuƟon, 249
definite, 196

and subsƟtuƟon, 262
properƟes, 197
Riemann Sums, 217

displacement, 223
distance traveled, 626
double, 736
fluid force, 375, 377
Fun. Thm. of Calc., 221, 222
general applicaƟon technique, 333
hyperbolic funct., 306
improper, 322, 325, 327, 329
indefinite, 185
inverse hyper., 309
iterated, 727
Mean Value Theorem, 227
mulƟple, 727
notaƟon, 186, 196, 222, 727
numerical, 233

LeŌ/Right Hand Rule, 233, 240
Simpson’s Rule, 238, 240, 241
Trapezoidal Rule, 236, 240, 241

of mulƟvariable funcƟons, 725
of power series, 439
of trig. funcƟons, 255

of trig. powers, 276, 281
of vector–valued funcƟons, 613
parƟal fracƟon decomp., 296
Power Rule, 190
Sum/Difference Rule, 190
surface area, 361, 501, 524
trig. subst., 287
triple, 774, 785, 787
volume

cross-secƟonal area, 341
Disk Method, 342
Shell Method, 349, 353
Washer Method, 344, 353

work, 365
interior point, 658
Intermediate Value Theorem, 39
interval of convergence, 436
iterated integraƟon, 727, 736, 737, 774, 785, 787

changing order, 731
properƟes, 740, 781

L’Hôpital’s Rule, 313, 315
lamina, 753
LeŌ Hand Rule, 204, 209, 212, 233
LeŌ/Right Hand Rule, 240
level curves, 653, 699
level surface, 656, 712
limit

Absolute Value Theorem, 387
at infinity, 46
definiƟon, 10
difference quoƟent, 6
does not exist, 4, 29
indeterminate form, 2, 45, 316, 317
L’Hôpital’s Rule, 313, 315
leŌ handed, 27
of infinity, 43
of mulƟvariable funcƟon, 659, 660, 666
of sequence, 385
of vector–valued funcƟons, 605
one sided, 27
properƟes, 16, 660
pseudo-definiƟon, 2
right handed, 27
Squeeze Theorem, 20

Limit Comparison Test
for integraƟon, 329
for series, 414

lines, 580
distances between, 587
equaƟons for, 582
intersecƟng, 583
parallel, 583
skew, 583

logarithmic differenƟaƟon, 110

Maclaurin Polynomial, see Taylor Polynomial
definiƟon, 447

Maclaurin Series, see Taylor Series
definiƟon, 457



magnitude of vector, 543
mass, 753, 754, 788

center of, 757
maximum

absolute, 121, 715
and First Deriv. Test, 137
and Second Deriv. Test, 146
relaƟve/local, 122, 715, 718

Mean Value Theorem
of differenƟaƟon, 130
of integraƟon, 227

Midpoint Rule, 204, 209, 212
minimum

absolute, 121, 715
and First Deriv. Test, 137, 146
relaƟve/local, 122, 715, 718

moment, 759, 761, 788
monotonic sequence, 390
mulƟple integraƟon, see iterated integraƟon
mulƟvariable funcƟon, 651, 655

conƟnuity, 664–666, 682, 687
differenƟability, 681, 682, 686, 687
domain, 651, 655
level curves, 653
level surface, 656
limit, 659, 660, 666
range, 651, 655

Newton’s Method, 158
norm, 543
normal line, 59, 493, 708
normal vector, 590
nth–term test, 406
numerical integraƟon, 233

LeŌ/Right Hand Rule, 233, 240
Simpson’s Rule, 238, 240

error bounds, 241
Trapezoidal Rule, 236, 240

error bounds, 241

open, 658
open ball, 666
open disk, 658
opƟmizaƟon, 171

constrained, 720
orthogonal, 561, 708

decomposiƟon, 565
orthogonal decomposiƟon of vectors, 565
orthogonal projecƟon, 563
osculaƟng circle, 645

p-series, 399
parabola

definiƟon, 470
general equaƟon, 471
reflecƟve property, 473

parallel vectors, 551
Parallelogram Law, 547
parametric equaƟons

arc length, 499
concavity, 496

definiƟon, 483
finding d2y

dx2 , 497
finding dy

dx , 493
normal line, 493
surface area, 501
tangent line, 493

parƟal derivaƟve, 668, 676
high order, 676
meaning, 670
mixed, 672
second derivaƟve, 672
total differenƟal, 680, 686

perpendicular, see orthogonal
planes

coordinate plane, 531
distance between point and plane, 595
equaƟons of, 591
introducƟon, 531
normal vector, 590
tangent, 711

point of inflecƟon, 143
polar

coordinates, 503
funcƟon

arc length, 523
gallery of graphs, 510
surface area, 524

funcƟons, 506
area, 519
area between curves, 521
finding dy

dx , 516
graphing, 506

polar coordinates, 503
ploƫng points, 503

Power Rule
differenƟaƟon, 76, 83, 89, 108
integraƟon, 190

power series, 434
algebra of, 462
convergence, 435
derivaƟves and integrals, 439

projecƟle moƟon, 623, 624, 637

quadric surface
definiƟon, 535
ellipsoid, 538
ellipƟc cone, 537
ellipƟc paraboloid, 537
gallery, 537–539
hyperbolic paraboloid, 539
hyperboloid of one sheet, 538
hyperboloid of two sheets, 539
sphere, 538
trace, 536

QuoƟent Rule, 86

R, 543
radius of convergence, 436
radius of curvature, 645
RaƟo Comparison Test



for series, 419
rearrangements of series, 430, 431
related rates, 164
Riemann Sum, 204, 208, 211

and definite integral, 217
Right Hand Rule, 204, 209, 212, 233
right hand rule

of Cartesian coordinates, 529
Rolle’s Theorem, 130
Root Comparison Test

for series, 422

saddle point, 717, 718
Second DerivaƟve Test, 146, 718
sensiƟvity analysis, 685
sequence

Absolute Value Theorem, 387
posiƟve, 413

sequences
boundedness, 389
convergent, 385, 390, 393
definiƟon, 383
divergent, 385
limit, 385
limit properƟes, 388
monotonic, 390

series
absolute convergence, 429
Absolute Convergence Theorem, 431
alternaƟng, 424

ApproximaƟon Theorem, 427
AlternaƟng Series Test, 425
Binomial, 460
condiƟonal convergence, 429
convergent, 395
definiƟon, 395
Direct Comparison Test, 413
divergent, 395
geometric, 397, 398
Integral Test, 410
interval of convergence, 436
Limit Comparison Test, 414
Maclaurin, 457
nth–term test, 406
p-series, 399
parƟal sums, 395
power, 434, 435

derivaƟves and integrals, 439
properƟes, 403
radius of convergence, 436
RaƟo Comparison Test, 419
rearrangements, 430, 431
Root Comparison Test, 422
Taylor, 457
telescoping, 400, 401

Shell Method, 349, 353
signed area, 196
signed volume, 736, 737
Simpson’s Rule, 238, 240

error bounds, 241

smooth, 610
smooth curve, 489
speed, 618
sphere, 530
Squeeze Theorem, 20
Sum/Difference Rule

of derivaƟves, 78
of integraƟon, 190
of series, 403

summaƟon
notaƟon, 205
properƟes, 207

surface area, 766
solid of revoluƟon, 361, 501, 524

surface of revoluƟon, 534, 535

tangent line, 58, 493, 516, 609
direcƟonal, 705

tangent plane, 711
Taylor Polynomial

definiƟon, 447
Taylor’s Theorem, 450

Taylor Series
common series, 462
definiƟon, 457
equality with generaƟng funcƟon, 459

Taylor’s Theorem, 450
telescoping series, 400, 401
terminal point, 543
total differenƟal, 680, 686

sensiƟvity analysis, 685
total signed area, 196
trace, 536
Trapezoidal Rule, 236, 240

error bounds, 241
triple integral, 774, 785, 787

properƟes, 781

unbounded sequence, 389
unbounded set, 658
unit normal vector

aN, 636
and acceleraƟon, 635, 636
and curvature, 646
definiƟon, 633
in R2, 635

unit tangent vector
and acceleraƟon, 635, 636
and curvature, 642, 646
aT, 636
definiƟon, 631
in R2, 635

unit vector, 549
properƟes, 551
standard unit vector, 553
unit normal vector, 633
unit tangent vector, 631

vector–valued funcƟon
algebra of, 600
arc length, 615



average rate of change, 603
conƟnuity, 606
definiƟon, 599
derivaƟves, 607, 608, 611
describing moƟon, 618
displacement, 602
distance traveled, 626
graphing, 599
integraƟon, 613
limits, 605
of constant length, 613, 622, 623, 632
projecƟle moƟon, 623, 624
smooth, 610
tangent line, 609

vectors, 543
algebra of, 546
algebraic properƟes, 549
component form, 544
cross product, 570, 572, 573
definiƟon, 543
dot product, 557–559
Head To Tail Rule, 547
magnitude, 543
norm, 543
normal vector, 590
orthogonal, 561
orthogonal decomposiƟon, 565
orthogonal projecƟon, 563
parallel, 551
Parallelogram Law, 547
resultant, 547
standard unit vector, 553
unit vector, 549, 551
zero vector, 547

velocity, 71, 618
volume, 736, 737, 772

Washer Method, 344, 353
work, 365, 567



DifferenƟaƟon Rules

1.
d
dx

(cx) = c

2.
d
dx

(u± v) = u′ ± v′

3.
d
dx

(u · v) = uv′ + u′v

4.
d
dx

(
u
v

)
=

vu′ − uv′

v2

5.
d
dx

(u(v)) = u′(v)v′

6.
d
dx

(c) = 0

7.
d
dx

(x) = 1

8.
d
dx

(xn) = nxn−1

9.
d
dx

(ex) = ex

10.
d
dx

(ax) = ln a · ax

11.
d
dx

(ln x) =
1
x

12.
d
dx

(loga x) =
1
ln a

·
1
x

13.
d
dx

(sin x) = cos x

14.
d
dx

(cos x) = − sin x

15.
d
dx

(csc x) = − csc x cot x

16.
d
dx

(sec x) = sec x tan x

17.
d
dx

(tan x) = sec2 x

18.
d
dx

(cot x) = − csc2 x

19.
d
dx
(
sin−1 x

)
=

1
√
1− x2

20.
d
dx
(
cos−1 x

)
=

−1
√
1− x2

21.
d
dx
(
csc−1 x

)
=

−1
|x|

√
x2 − 1

22.
d
dx
(
sec−1 x

)
=

1
|x|

√
x2 − 1

23.
d
dx
(
tan−1 x

)
=

1
1+ x2

24.
d
dx
(
cot−1 x

)
=

−1
1+ x2

25.
d
dx

(cosh x) = sinh x

26.
d
dx

(sinh x) = cosh x

27.
d
dx

(tanh x) = sech2 x

28.
d
dx

(sech x) = − sech x tanh x

29.
d
dx

(csch x) = − csch x coth x

30.
d
dx

(coth x) = − csch2 x

31.
d
dx
(
cosh−1 x

)
=

1
√
x2 − 1

32.
d
dx
(
sinh−1 x

)
=

1
√
x2 + 1

33.
d
dx
(
sech−1 x

)
=

−1
x
√
1− x2

34.
d
dx
(
csch−1 x

)
=

−1
|x|

√
1+ x2

35.
d
dx
(
tanh−1 x

)
=

1
1− x2

36.
d
dx
(
coth−1 x

)
=

1
1− x2

IntegraƟon Rules

1.
∫

c · f(x) dx = c
∫

f(x) dx

2.
∫

f(x)± g(x) dx =∫
f(x) dx±

∫
g(x) dx

3.
∫

0 dx = C

4.
∫

1 dx = x+ C

5.
∫

xn dx =
1

n+ 1
xn+1 + C, n ̸= −1

n ̸= −1

6.
∫

ex dx = ex + C

7.
∫

ax dx =
1
ln a

· ax + C

8.
∫

1
x
dx = ln |x|+ C

9.
∫

cos x dx = sin x+ C

10.
∫

sin x dx =− cos x+ C

11.
∫

tan x dx =− ln | cos x|+ C

12.
∫

sec x dx = ln | sec x+ tan x|+ C

13.
∫

csc x dx =− ln | csc x+ cot x|+ C

14.
∫

cot x dx = ln | sin x|+ C

15.
∫

sec2 x dx = tan x+ C

16.
∫

csc2 x dx =− cot x+ C

17.
∫

sec x tan x dx = sec x+ C

18.
∫

csc x cot x dx =− csc x+ C

19.
∫

cos2 x dx =
1
2
x+

1
4
sin
(
2x
)
+ C

20.
∫

sin2 x dx =
1
2
x−

1
4
sin
(
2x
)
+ C

21.
∫

1
x2 + a2

dx =
1
a
tan−1

(
x
a

)
+ C

22.
∫

1
√
a2 − x2

dx = sin−1
(
x
a

)
+ C

23.
∫

1
x
√
x2 − a2

dx =
1
a
sec−1

(
|x|
a

)
+ C

24.
∫

cosh x dx = sinh x+ C

25.
∫

sinh x dx = cosh x+ C

26.
∫

tanh x dx = ln(cosh x) + C

27.
∫

coth x dx = ln | sinh x|+ C

28.
∫

1
√
x2 − a2

dx = ln
∣∣x+√x2 − a2

∣∣+ C

29.
∫

1
√
x2 + a2

dx = ln
∣∣x+√x2 + a2

∣∣+ C

30.
∫

1
a2 − x2

dx =
1
2
ln
∣∣∣∣a+ x
a− x

∣∣∣∣+ C

31.
∫

1
x
√
a2 − x2

dx =
1
a
ln
(

x
a+

√
a2 − x2

)
+ C

32.
∫

1
x
√
x2 + a2

dx =
1
a
ln
∣∣∣∣ x
a+

√
x2 + a2

∣∣∣∣+ C
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DefiniƟons of the Trigonometric FuncƟons

Unit Circle DefiniƟon

.. x.

y

.

(x, y)

.

y

.
x

.

θ

sin θ = y cos θ = x

csc θ =
1
y

sec θ =
1
x

tan θ =
y
x

cot θ =
x
y

Right Triangle DefiniƟon

..
Adjacent

.

O
pposite

.

Hy
po
ten

use

. θ

sin θ =
O
H

csc θ =
H
O

cos θ =
A
H

sec θ =
H
A

tan θ =
O
A

cot θ =
A
O

Common Trigonometric IdenƟƟes

Pythagorean IdenƟƟes

sin2 x+ cos2 x = 1

tan2 x+ 1 = sec2 x

1+ cot2 x = csc2 x

CofuncƟon IdenƟƟes

sin
(π
2
− x
)
= cos x

cos
(π
2
− x
)
= sin x

tan
(π
2
− x
)
= cot x

csc
(π
2
− x
)
= sec x

sec
(π
2
− x
)
= csc x

cot
(π
2
− x
)
= tan x

Double Angle Formulas

sin 2x = 2 sin x cos x

cos 2x = cos2 x− sin2 x

= 2 cos2 x− 1

= 1− 2 sin2 x

tan 2x =
2 tan x

1− tan2 x

Sum to Product Formulas

sin x+ sin y = 2 sin
(
x+ y
2

)
cos
(
x− y
2

)
sin x− sin y = 2 sin

(
x− y
2

)
cos
(
x+ y
2

)
cos x+ cos y = 2 cos

(
x+ y
2

)
cos
(
x− y
2

)
cos x− cos y = −2 sin

(
x+ y
2

)
cos
(
x− y
2

)

Power–Reducing Formulas

sin2 x =
1− cos 2x

2

cos2 x =
1+ cos 2x

2

tan2 x =
1− cos 2x
1+ cos 2x

Even/Odd IdenƟƟes

sin(−x) = − sin x

cos(−x) = cos x

tan(−x) = − tan x

csc(−x) = − csc x

sec(−x) = sec x

cot(−x) = − cot x

Product to Sum Formulas

sin x sin y =
1
2
(
cos(x− y)− cos(x+ y)

)
cos x cos y =

1
2
(
cos(x− y) + cos(x+ y)

)
sin x cos y =

1
2
(
sin(x+ y) + sin(x− y)

)

Angle Sum/Difference Formulas

sin(x± y) = sin x cos y± cos x sin y

cos(x± y) = cos x cos y∓ sin x sin y

tan(x± y) =
tan x± tan y
1∓ tan x tan y



Areas and Volumes

Triangles

h = a sin θ

Area = 1
2bh

Law of Cosines:
c2 = a2 + b2 − 2ab cos θ

..
b

. θ.

a

.

c

.

h

Right Circular Cone

Volume = 1
3πr

2h

Surface Area =
πr
√
r2 + h2 + πr2 ..

h

. r

Parallelograms

Area = bh

..
b

.
h

Right Circular Cylinder

Volume = πr2h

Surface Area =
2πrh+ 2πr2 ..

h
.

r

Trapezoids

Area = 1
2 (a+ b)h

..
b

.

a

.
h

Sphere

Volume = 4
3πr

3

Surface Area =4πr2
.. r

Circles

Area = πr2

Circumference = 2πr .. r

General Cone

Area of Base = A

Volume = 1
3Ah ..

h

.
A

Sectors of Circles

θ in radians

Area = 1
2θr

2

s = rθ ..
r

.

s

. θ

General Right Cylinder

Area of Base = A

Volume = Ah

..

h

. A



Algebra

Factors and Zeros of Polynomials
Let p(x) = anxn + an−1xn−1 + · · ·+ a1x+ a0 be a polynomial. If p(a) = 0, then a is a zero of the polynomial and a soluƟon of
the equaƟon p(x) = 0. Furthermore, (x− a) is a factor of the polynomial.

Fundamental Theorem of Algebra
An nth degree polynomial has n (not necessarily disƟnct) zeros. Although all of these zeros may be imaginary, a real
polynomial of odd degree must have at least one real zero.

QuadraƟc Formula
If p(x) = ax2 + bx+ c, and 0 ≤ b2 − 4ac, then the real zeros of p are x = (−b±

√
b2 − 4ac)/2a

Special Factors
x2 − a2 = (x− a)(x+ a) x3 − a3 = (x− a)(x2 + ax+ a2)
x3 + a3 = (x+ a)(x2 − ax+ a2) x4 − a4 = (x2 − a2)(x2 + a2)
(x+ y)n = xn + nxn−1y+ n(n−1)

2! xn−2y2 + · · ·+ nxyn−1 + yn

(x− y)n = xn − nxn−1y+ n(n−1)
2! xn−2y2 − · · · ± nxyn−1 ∓ yn

Binomial Theorem
(x+ y)2 = x2 + 2xy+ y2 (x− y)2 = x2 − 2xy+ y2
(x+ y)3 = x3 + 3x2y+ 3xy2 + y3 (x− y)3 = x3 − 3x2y+ 3xy2 − y3
(x+ y)4 = x4 + 4x3y+ 6x2y2 + 4xy3 + y4 (x− y)4 = x4 − 4x3y+ 6x2y2 − 4xy3 + y4

RaƟonal Zero Theorem
If p(x) = anxn + an−1xn−1 + · · ·+ a1x+ a0 has integer coefficients, then every rational zero of p is of the form x = r/s,
where r is a factor of a0 and s is a factor of an.

Factoring by Grouping
acx3 + adx2 + bcx+ bd = ax2(cs+ d) + b(cx+ d) = (ax2 + b)(cx+ d)

ArithmeƟc OperaƟons
ab+ ac = a(b+ c)

a
b
+

c
d
=

ad+ bc
bd

a+ b
c

=
a
c
+

b
c(a

b

)
( c
d

) =
(a
b

)(d
c

)
=

ad
bc

(a
b

)
c

=
a
bc

a(
b
c

) =
ac
b

a
(
b
c

)
=

ab
c

a− b
c− d

=
b− a
d− c

ab+ ac
a

= b+ c

Exponents and Radicals

a0 = 1, a ̸= 0 (ab)x = axbx axay = ax+y √
a = a1/2

ax

ay
= ax−y n

√
a = a1/n

(a
b

)x
=

ax

bx
n
√
am = am/n a−x =

1
ax

n
√
ab = n

√
a n
√
b (ax)y = axy n

√
a
b
=

n
√
a

n
√
b



AddiƟonal Formulas

SummaƟon Formulas:
n∑

i=1

c = cn
n∑

i=1

i =
n(n+ 1)

2
n∑

i=1

i2 =
n(n+ 1)(2n+ 1)

6

n∑
i=1

i3 =
(
n(n+ 1)

2

)2

Trapezoidal Rule:∫ b

a
f(x) dx ≈ ∆x

2
[
f(x1) + 2f(x2) + 2f(x3) + ...+ 2f(xn) + f(xn+1)

]
with Error ≤ (b− a)3

12n2
[
max

∣∣f ′′(x)∣∣]

Simpson’s Rule:∫ b

a
f(x) dx ≈ ∆x

3
[
f(x1) + 4f(x2) + 2f(x3) + 4f(x4) + ...+ 2f(xn−1) + 4f(xn) + f(xn+1)

]
with Error ≤ (b− a)5

180n4
[
max

∣∣f (4)(x)∣∣]

Arc Length:

L =
∫ b

a

√
1+ f ′(x)2 dx

Surface of RevoluƟon:

S = 2π
∫ b

a
f(x)
√

1+ f ′(x)2 dx

(where f(x) ≥ 0)

S = 2π
∫ b

a
x
√

1+ f ′(x)2 dx

(where a, b ≥ 0)

Work Done by a Variable Force:

W =

∫ b

a
F(x) dx

Force Exerted by a Fluid:

F =
∫ b

a
wd(y) ℓ(y) dy

Taylor Series Expansion for f(x):

pn(x) = f(c) + f ′(c)(x− c) +
f ′′(c)
2!

(x− c)2 +
f ′′′(c)
3!

(x− c)3 + ...+
f (n)(c)
n!

(x− c)n

Maclaurin Series Expansion for f(x), where c = 0:

pn(x) = f(0) + f ′(0)x+
f ′′(0)
2!

x2 +
f ′′′(0)
3!

x3 + ...+
f (n)(0)

n!
xn



Summary of Tests for Series:

Test Series CondiƟon(s) of
Convergence

CondiƟon(s) of
Divergence Comment

nth-Term
∞∑
n=1

an lim
n→∞

an ̸= 0 This test cannot be used to
show convergence.

Geometric Series
∞∑
n=0

rn |r| < 1 |r| ≥ 1 Sum =
1

1− r

Telescoping Series
∞∑
n=1

(bn − bn+a) lim
n→∞

bn = L Sum =

(
a∑

n=1

bn

)
− L

p-Series
∞∑
n=1

1
(an+ b)p

p > 1 p ≤ 1

Integral Test
∞∑
n=0

an

∫ ∞

1
a(n) dn

is convergent

∫ ∞

1
a(n) dn

is divergent

an = a(n) must be
conƟnuous

Direct Comparison
∞∑
n=0

an

∞∑
n=0

bn

converges and
0 ≤ an ≤ bn

∞∑
n=0

bn

diverges and
0 ≤ bn ≤ an

Limit Comparison
∞∑
n=0

an

∞∑
n=0

bn

converges and
lim

n→∞
an/bn ≥ 0

∞∑
n=0

bn

diverges and
lim

n→∞
an/bn > 0

Also diverges if
lim

n→∞
an/bn = ∞

RaƟo Test
∞∑
n=0

an lim
n→∞

an+1

an
< 1 lim

n→∞

an+1

an
> 1

{an}must be posiƟve
Also diverges if
lim

n→∞
an+1/an = ∞

Root Test
∞∑
n=0

an lim
n→∞

(
an
)1/n

< 1 lim
n→∞

(
an
)1/n

> 1

{an}must be posiƟve
Also diverges if

lim
n→∞

(
an
)1/n

= ∞
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